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Abstract. In this paper we consider contact CR-warped product sub-
manifolds of the type M = NT ×f N⊥, of a nearly Kenmotsu generalized

Sasakian space form M̄(f1, f2, f3) and by use of Hopf’s Lemma we show

that M is simply contact CR-product under certain condition. Finally, we
establish a sharp inequality for squared norm of the second fundamental
form and equality case is discussed. The results in this paper generalize

existing results in the literature.
Keywords: Warped product, CR-submanifolds, nearly Kenmostsu man-
ifold.
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1. Introduction

The notion of CR-warped product submanifolds as a natural generalization
of CR-products was introduced by B. Y. Chen (see [9, 11]). Basically, Chen
obtained some basic results for CR-warped product submanifolds of Kaehler
manifolds and established a sharp relation ship between the warping function
f and squared norm of the second fundamental form. Later, I. Hesigawa and I.
Mihai proved a similar inequality for contact CR-warped product submanifolds
of Sasakian manifolds [12]. Moreover, I. Mihai in [16] improved same inequality
for contact CR-warped product submanifolds of Sasakian space form.

Furthermore, in [2] K. Arslan et al. obtained a sharp estimation for contact
CR-warped product submanifolds in the setting of Kenmotsu space form. Many
geometers obtained similar estimation for different setting of almost contact
metric manifolds (see references).
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In the present study, we consider contact CR-warped product submanifolds
of a nearly Kenmotsu generalized Sasakian space form and obtained a charac-
terizing inequality for existence of contact CR-warped product submanifolds.
Finally, we also obtained a sharp inequality for squared norm of the second
fundamental form in terms of warping function. The results in this paper
generalize the results of the papers (see [2, 4]).

2. Preliminaries

A (2n+1)−dimensional C∞−manifold M̄ is said to have an almost contact
structure, if there exist on M̄ a tensor field ϕ of type (1, 1), a vector field ξ and
a 1-form η satisfying [6]

(2.1) ϕ2 = −I + η ⊕ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1.

There always exists a Riemannian metric g on an almost contact metric mani-
fold M̄ satisfying the following conditions

(2.2) η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(X),

for all X,Y ∈ TM̄.
An almost contact structure (ϕ, ξ, η) is said to be normal if the almost com-

plex structure J on the product manifold M̄ ×R given by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

where f is a C∞−function on M̄ × R, has no torsion, that is J is integrable
and the condition for normality in terms of ϕ, ξ and η is [ϕ, ϕ] + 2dη⊗ ξ on M̄,
where [ϕ, ϕ] is the Nijenhuis tensor of ϕ. Finally, the fundamental 2-form Φ is
defined by Φ(X,Y ) = g(X,ϕY ).

An almost contact metric manifold is said to be Kenmotsu manifold if [2]

(∇̄Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

for all X,Y ∈ TM̄.

An almost contact metric manifold is said to be nearly Kenmotsu manifold
if [17]

(2.3) (∇̄Xϕ)Y + (∇̄Y ϕ)X = −η(Y )ϕX − η(X)ϕY,

for all X,Y ∈ TM̄.

Equation (2.3) is equivalent to

(2.4) (∇̄Xϕ)X = −η(X)X,

for each X ∈ TM̄.
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Given an almost contact metric manifold M̄, it is said to be a generalized
Sasakian space form [1], if there exist three functions f1, f2 and f3 on M̄ such
that

R̄(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(2.5)

+f2{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX

+2g(X,ϕY )ϕZ}+ f3{η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},
for any vector fields X,Y, Z on M̄ , where R̄ denotes the curvature tensor of M̄.
If f1 = c+3

4 , f2 = f3 = c−1
4 , then M̄ is Sasakian space form [6], if f1 = c−3

4 ,

f2 = f3 = c+1
4 , then M̄ is a Kenmotsu space form [13], if f1 = f2 = f3 = c

4 ,

then M̄ is a cosymplectic space form [1].
Let M be a submanifold of an almost contact metric manifold M̄ with in-

duced metric g, and if ∇ and ∇⊥ are the induced connection on the tangent
bundle TM and the normal bundle T⊥M of M , respectively, then the Gauss
and Weingarten formulae are given by

∇̄XY = ∇XY + h(X,Y ),(2.6)

∇̄XN = −ANX +∇⊥
XN,(2.7)

for each X,Y ∈ TM and N ∈ T⊥M, where h and AN are the second funda-
mental form and the shape operator respectively, for the immersion of M in
M̄, they are related as

(2.8) g(h(X,Y ), N) = g(ANX,Y ),

where g denotes the Riemannian metric on M̄ as well as on M.
The mean curvature vector H of M is given by

H =
1

n

n∑
i=1

h(ei, ei),

where n is the dimension of M and {e1, e2, . . . , en} is a local orthonormal
frame of vector fields onM. The squared norm of the second fundamental form
is defined as

(2.9) ∥h∥2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

A submanifoldM of M̄ is said to be a totally geodesic submanifold, if h(X,Y ) =
0, for eachX,Y ∈ TM, and totally umbilical submanifold if h(X,Y ) = g(X,Y )H.

For any X ∈ TM, we write

(2.10) ϕX = PX + FX,

where PX is the tangential component and FX is the normal component of
ϕX.
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Similarly, for N ∈ T⊥M, we can write

(2.11) ϕN = tN + fN,

where tN and fN are the tangential and normal components of ϕN respec-
tively.

The covariant differentiation of the tensors ϕ, P , F , t and f are defined as
respectively

(∇̄Xϕ)Y = ∇̄XϕY − ϕ∇̄XY,(2.12)

(∇̄XP )Y = ∇XPY − P∇XY,(2.13)

(∇̄XF )Y = ∇⊥
XFY − F∇XY,(2.14)

(∇̄Xt)N = ∇XtN − t∇⊥
XN,(2.15)

(∇̄Xf)N = ∇⊥
XfN − f∇⊥

XN.(2.16)

Furthermore, for any X,Y ∈ TM, the tangential and normal parts of (∇̄Xϕ)Y
are denoted by PXY and QXY i.e.,

(2.17) (∇̄Xϕ)Y = PXY +QXY.

By use of (2.1) and (2.12), it is easy to verify the following property

(2.18) (∇̄Xϕ)ϕY = −ϕ(∇̄X)ϕY )− η(∇XY )ξ.

On using equations (2.6)-(2.14) and (2.17), we may obtain that

PXY = (∇̄XP )Y −AFYX − th(X,Y ),(2.19)

QXY = (∇̄XF )Y + h(X,TY )− fh(X,Y ).(2.20)

Similarly, for N ∈ T⊥M, denoting by PXN and QXN respectively, the tan-
gential and normal parts of (∇̄Xϕ)N , we find that

PXN = (∇̄Xt)N + PANX −AfNX,(2.21)

QXN = (∇̄Xf)N + h(tN,X) + FANX.(2.22)

On a submanifold M of a nearly Kenmotsu manifold by (2.3) and (2.17)
(2.23)
(a)PXY + PY X = −η(Y )PX − η(X)PY, (b)QXY +QY X = −η(Y )FX − η(X)FY,

for any X,Y ∈ TM.
An m-dimensional Riemannian submanifold M of an almost contact metric

manifold M̄ , where ξ is tangent toM, is called contact CR-submanifold, if it ad-
mits an invariant distribution D whose orthogonal complementary distribution
D⊥ is anti invariant, that is,

TM = D ⊕D⊥ ⊕ ⟨ξ⟩,
where ϕD ⊆ D and ϕD⊥ ⊆ T⊥M and ⟨ξ⟩ denotes 1-dimensional distribution
which is spanned by ξ.
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If µ is the invariant subspace of the normal bundle T⊥M, then in the case
of contact CR-submanifold, the normal bundle T⊥M can be decomposed as
follows

(2.24) T⊥M = µ⊕ ϕD⊥.

A contact CR-submanifold M is called contact CR-product if the distribu-
tion D and D⊥ are parallel on M . In this case M is foliated by the leaves
of these distributions. In general, if N1 and N2 are Riemannian manifolds
with Riemannian metrics g1 and g2 respectively, then the product manifold
(N1 ×N2, g) is a Riemannian manifold with Riemannian metric g defined as

(2.25) g(X,Y ) = g1(dπ1X, dπ1Y ) + g2(dπ2X, dπ2),

where π1 and π2 are the projection maps of M onto N1 and N2, respectively,
and dπ1 and dπ2 are their differentials.

As a generalization of the product manifold and in particular of contact CR-
product submanifold, one can consider warped product of manifolds which are
defined as follows

Definition 2.1. Let (B, gB) and (C, gC) be two Riemannian manifolds with
Riemannian metric gB and gC respectively, and f be a positive differentiable
function on B. The warped product of B and C is the Riemannian manifold
(B × C, g), where

g = gB + f2gC .

For a warped product manifold N1 ×f N2, we denote by D1 and D2 the
distributions defined by the vectors tangent to the leaves and fibers respectively.
In other words, D1 is obtained by the tangent vectors of N1 via the horizontal
lift, and D2 is obtained by the tangent vectors of N2 via vertical lift. In case of
contact CR-warped product submanifolds D1 and D2 are replaced by D and
D⊥ respectively.

The warped product manifold (B × C, g) is denoted by B ×f C. If X is the
tangent vector field to M = B ×f C at (p, q) then

(2.26) ∥X∥2 = ∥dπ1X∥2 + f2(p)∥dπ2X∥2.
R. L. Bishop and B. O’Neill [5] proved the following ¿

Theorem 2.2. Let M = B ×f C be warped product manifolds. If X,Y ∈ TB
and V,W ∈ TC then

(i) ∇XY ∈ TB,

(ii) ∇XV = ∇VX = (Xf
f )V,

(iii) ∇VW = −g(V,W )
f ∇f.

From above Theorem, for the warped productM = B×fC it is easy to conclude
that

(2.27) ∇XV = ∇VX = (X ln f)V,
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for any X ∈ TB and V ∈ TC.
∇f is the gradient of f and is defined as

(2.28) g(∇f,X) = Xf,

for all X ∈ TM.

Corollary 2.3. On a warped product manifold M = N1 ×f N2, the following
statements hold

(i) N1 is totally geodesic in M,
(ii) N2 is totally umbilical in M.

In what follows, N⊥ and NT will denote an anti-invariant and invariant
submanifold respectively, of an almost contact metric manifold M̄.

A warped product manifold is said to be trivial if its warping function f is
constant. More generally, a trivial warped product manifold M = N1×N2 is a

Riemannian product N1×Nf
2 , where N

f
2 is the manifold with the Riemannian

metric f2g2 which is homothetic to the original metric g2 of N2. For example,
a trivial contact CR-warped product is contact CR-product.

LetM be am−dimensional Riemannian manifold with Riemannian metric g
and let {e1, . . . , em} be an orthogonal basis of TM. As a consequence of (2.28),
we have

(2.29) ∥∇f∥2 =

m∑
i=1

(ei(f))
2.

The Laplacian of f is defined by

(2.30) ∆f =
m∑
i=1

{(∇eiei)f − eieif}.

Now, we state the Hopf’s Lemma.
Hopf’s Lemma [10]. Let M be a n-dimensional compact Riemannian mani-
fold. If ψ is differentiable function on M such that ∆ψ ≥ 0 everywhere on M
(or ∆ψ ≤ 0 everywhere on M), then ψ is a constant function.

3. Contact CR-warped product submanifolds

In this section we consider contact CR-warped product of the type NT×fN⊥
of the nearly Kenmotsu manifolds M̄, where NT and N⊥ are the invariant and
anti-invariant submanifolds of M̄ , respectively. Throughout, this section, we
consider ξ tangent to NT .

Now we obtain some basic results in the following Lemma.

Lemma 3.1. Let M = NT ×fN⊥ be a contact CR-warped product submanifold
of a nearly Kenmotsu manifold M̄. Then

(i) ξ ln f = 1,
(ii) g(h(X,Z), ϕZ) = −ϕX ln f∥Z∥2,



101 Al-Solamy and Ali Khan

(iii) g(h(ϕX,Z), ϕZ) = X ln f∥Z∥2,
for any X ∈ TNT and Z ∈ TN⊥.

Proof. Parts (i) and (ii) are the special cases of [17, Lemma 3.1.]. Applying
equations (2.6), (2.5) and (2.27) as follows

g(h(ϕX,Z), ϕZ) = g(∇̄ZϕX, ϕZ) = −g(∇̄ZϕZ, ϕX),

= −g((∇̄Zϕ)Z, ϕX)− g(∇ZZ,X),

or

g(h(ϕX,Z) = X ln fZ.

□

Now we will prove the following Lemma which is useful in the proof of our
main theorem

Lemma 3.2. Let M = NT ×fN⊥ be a contact CR-warped product submanifold
of a nearly Kenmotsu manifold M̄. Then

g(h(ϕX,Z), ϕh(X,Z)) = ∥hµ(X,Z)∥2 − g(ϕh(X,Z),QXZ),

for any X ∈ TNT and Z ∈ TN⊥.

Proof. By (2.6) and (2.12)

h(ϕX,Z) = (∇̄Zϕ)X + ϕ∇ZX + ϕh(X,Z)−∇ZϕX.

Thus by using (2.17) and (2.27)

h(ϕX,Z) = PZX +QZX +XlnfϕZ + ϕh(X,Z)− ϕXlnfZ.

Comparing normal parts

h(ϕX,Z) = QZX +XlnfϕZ + ϕhµ(X,Z),

or

g(h(ϕX,Z), ϕh(X,Z)) = g(QZX,ϕh(X,Z)) + ∥hµ(X,Z)∥2.
By using (2.23)(b), we get

g(h(ϕX,Z), ϕh(X,Z)) = ∥hµ(X,Z)∥2 − g(ϕh(X,Z),QXZ).

□

Now we prove the following characterization theorem

Theorem 3.3. Let M = NT ×f N⊥ be a contact CR-warped product subman-
ifold of nearly Kenmotsu generalized Sasakian space form M̄(f1, f2, f3) such
that NT is compact. Then M is contact CR-product submanifold if either one
of the following inequality holds

(i)
2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≥ 2.p.q.f2 +
2p∑
i=1

q∑
j=1

∥Qeie
j∥2),
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(ii)
2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≤ 2.p.q.f2,

where hµ denotes the component of h in µ, 2p+ 1 and q are the dimensions of
NT and N⊥.

Proof. For any unit vector fields X tangent to NT and orthogonal to ξ, and Z
tangent to N⊥. Then from (2.5) we have

(3.1) R̄(X,ϕX,Z, ϕZ) = −2.f2.g(X,X) g(Z,Z).

On the other hand by Coddazi equation

R̄(X,ϕX,Z, ϕZ) = g(∇⊥
Xh(ϕX,Z), ϕZ)− g(h(∇XϕX,Z), ϕZ)(3.2)

−g(h(ϕX,∇XZ), ϕZ)− g(∇⊥
ϕXh(X,Z), ϕZ)

+g(h(∇ϕXX,Z), ϕZ) + g(h(X,∇ϕXZ), ϕZ).

By using part (iii) of Lemma 3.3, (2.12), (2.6) and (2.17) , we get

g(∇⊥
Xh(ϕX,Z), ϕZ) = Xg(h(ϕX,Z), ϕZ)− g(h(ϕX,Z), ∇̄XϕZ)

= X(Xlnfg(Z,Z))− g(h(ϕX,Z), (∇̄Xϕ)Z + ϕ∇̄XZ).

On further simplification above equation yields

g(∇⊥
Xh(ϕX,Z), ϕZ) = X2lnfg(Z,Z) + 2(Xlnf)2g(Z,Z)− g(h(ϕX,Z),QXZ)

−g(h(ϕX,Z), ϕh(X,Z))−Xlnfg(h(ϕX,Z), ϕZ).

By using Lemma 3.2, we have

(∇⊥
Xh(ϕX,Z), ϕZ) = X2lnfg(Z,Z) + (Xlnf)2g(Z,Z)− ∥hµ(X,Z)∥2

−g(ϕh(X,Z)− h(ϕX,Z),QXZ).

Further, using (2.6), (2.17), (2.23)(b) and (2.27) in the last term of above
equation, we get

g(∇⊥
Xh(ϕX,Z), ϕZ) = X2lnfg(Z,Z) + (Xlnf)2g(Z,Z)(3.3)

−∥hµ(X,Z)∥2 + ∥QXZ∥2.
Similarly, we can calculate

−g(∇⊥
ϕXh(X,Z), ϕZ) = (ϕX)2lnfg(Z,Z) + (ϕXlnf)2g(Z,Z)(3.4)

−∥hµ(ϕX,Z)∥2 + ∥QϕXZ∥2.
From part (iii) of Lemma 3.1, we have

g(AϕZZ, ϕX) = Xlnf,

replacing X by ∇XX

g(AϕZZ, ϕ∇XX) = ∇XXlnf.

By using the Gauss formula in last equation, we get

(3.5) g(AϕZZ, ϕ(∇̄XX − h(X,X)) = ∇XXlnf.
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By use of (2.6), (2.12), (2.4) and (2.27), it is easy to see that h(X,X) ∈ µ,
applying this fact in (3.5), we get

g(AϕZZ, ∇̄XϕX − (∇̄Xϕ)X) = ∇XXlnf.

In view of (2.4), the above equation reduced to

(3.6) g(h(∇XϕX,Z), ϕZ) = ∇XXlnfg(Z,Z).

Similarly,

(3.7) g(h(∇ϕXX,Z), ϕZ) = −∇ϕXϕXlnfg(Z,Z).

By use of (2.27) and part (iii) of Lemma 3.1, it is easy to see the following

(3.8) g(h(ϕX,∇XZ), ϕZ) = (Xlnf)2g(Z,Z)

and

(3.9) g(h(X,∇ϕXZ), ϕZ) = −(ϕXlnf)2g(Z,Z).

Substituting (3.3), (3.4), (3.6), (3.7), (3.8) and (3.9) in (3.2), we find

(3.10)

R̄(X,ϕX,Z, ϕZ) =X2lnfg(Z,Z) + (ϕX)2lnfg(Z,Z)

−∇XXlnfg(Z,Z)−∇ϕXϕXg(Z,Z)− ∥hµ(X,Z)∥2

−∥h(ϕX,Z)∥2 + ∥QXZ∥2 + ∥QϕXZ∥2,
Let {e0 = ξ, e1, e2, . . . , ep, ep+1 = ϕe1, ep+2 = ϕe2, . . . , e2p = ϕep, e

1, e2, . . . , eq}
be an orthonormal frame of TM such that {e1, e2, . . . , ep, ϕe1, ϕe2, . . . , ϕep} are
tangent to TNT and {e1, e2, . . . , eq} are tangent to TN⊥.
Using (3.1) and (2.30) in (3.10) and summing over i = 1, 2, . . . , p and j =
1, 2, . . . , q, we get

(3.11) q∆lnf = 2.p.q.f2 −
2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 +
2p∑
i=1

q∑
j=1

∥Qeie
j∥2.

From Hopf’s Lemma and (3.11), if

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≥ 2.p.q.f2 +

2p∑
i=1

∥Qeie
j∥2,

or

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≤ 2.p.q.f2,

then the warping function f is constant on M i.e., M is simply contact CR-
product submanifold, which proves the theorem completely. □

Now we have the following Corollary, which can be verified easily.
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Corollary 3.4. Let M = NT ×f N⊥ be a contact CR-warped product submani-
folds of a nearly Kenmotsu generalized Sasakian space form M̄(f1, f2, f3), such
that NT is compact. Then M is contact CR-product if and only if,

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 = 2.p.q.f2 +

2p∑
i=1

q∑
j=1

∥Qeie
j∥2.

Moreover, if the ambient manifold M̄ is a Kenmotsu space form, then from
above findings we have the following.

Corollary 3.5. Let M = NT ×f N⊥ be a contact CR-warped product subman-
ifold of a Kenmotsu space form M̄(c) such that NT is compact. Then M is
contact CR-product submanifold if either one of the inequality

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≥ c+ 1

2
p.q,

or

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 ≤ c+ 1

2
p.q,

holds, where hµ denotes the component of h in µ, 2p+1 and q are the dimensions
of NT and N⊥, respectively.

Corollary 3.6. Let M = NT ×f N⊥ be a contact CR-warped product subman-
ifolds of a Kenmotsu space form M̄(c) such that NT is compact. Then M is
contact CR-product if and only if

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 =
c+ 1

2
p.q.

4. Another inequality

In the present section, we estimate the squared norm of the second funda-
mental form in terms of warping function.
Theorem 4.1. Let M̄(f1, f2, f3) be a (2n+ 1)−dimensional nearly Kenmotsu
generalized Sasakian space form and M = NT ×f N⊥ be an m-dimensional
contact CR-warped product submanifold, such that N1 is (2p+1)−dimensional
invariant submanifold tangent to ξ and N⊥ be a q−dimensional anti-invariant
submanifold of M̄(f1, f2, f3). Then

(i) The squared norm of the second fundamental form h satisfies

(4.1) ∥h∥2 ≥ q[∥∇lnf∥2 −∆lnf − 1] + 2.p.q.f2 + ∥QDD
⊥∥2,

where ∆ denotes the Laplace operator on NT .
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(ii) The equality sign of (4.1) holds identically if and only if we have

(a) NT is totally geodesic invariant submanifold of M̄(f1, f2, f3). Hence
NT is a nearly Kenmotsu generalized Sasakian space form.

(b) N⊥ is a totally umbilical anti-invariant submanifold of M̄(f1, f2, f3).

Proof. For any X ∈ TNT and Z ∈ TN⊥, from (2.9)(b) and parts (ii) and (iii)
of Lemma 3.1, we have

g(h(ξ, Z), ϕZ) = 0,

and

g(h(ϕX,Z), ϕZ) = Xlnf∥Z∥2.
Since ξlnf = 1, then combining this with above two equations, we have

(4.2)

2p∑
i=0

q∑
j=1

∥hϕD⊥(ei, e
j)∥2 = q[∥∇lnf∥2 − 1].

Again from (3.11)

(4.3)

2p∑
i=1

q∑
j=1

∥hµ(ei, ej)∥2 = 2.p.q.f2 − q∆lnf +

2p∑
i=1

q∑
j=1

∥Qeie
j∥2.

We use the following notation

2p∑
i=1

q∑
j=1

∥Qeie
j∥2 = ∥QDD

⊥∥2.

Substituting above notation in (4.3) and combining it with (4.2), we obtain the
inequality (4.1).

Let h′′ be the second fundamental form of N⊥ in M. Then, we have

g(h′′(Z,W ), X) = g(∇ZW,X) = −Xlnfg(Z,W ),

on using (2.28), we get

(4.4) h′′(Z,W ) = −g(Z,W )∇lnf.

If the equality sign of (4.1) holds identically, then we obtain

(4.5) h(D,D) = 0, h(D⊥, D⊥) = 0.

The first condition of (4.5) implies that NT is totally geodesic in M. On the
other hand, one has

(4.6) g(h(X,ϕY ), ϕZ) = g(∇̄XϕY, ϕZ) = −g(ϕY, (∇̄Xϕ)Z).
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By use of (2.12) and (2.6) we get the following equation

g(ϕY, (∇̄Zϕ)X) = g(ϕY,∇ZϕX)− g(Y,∇ZX),

in view of (2.27) the above equation reduced to

(4.7) g(ϕY, (∇̄Zϕ)X) = 0.

From (4.6), (4.7) and (2.23)(a) we have

(4.8) g(h(X,ϕY ), ϕZ) = −g(ϕY, (∇̄Xϕ)Z + (∇̄Zϕ)X) = 0.

From (4.8), it is evident that NT is totally geodesic in M̄(f1, f2, f3) and hence
is a nearly Kenmotsu generalized Sasakian space form.

The second condition of (4.5) and (4.4) imply that N⊥ is totally umbilical
in M̄(f1, f2, f3). □

In the last we have the following corollary which can be deduced from in-
equality (4.1).

Corollary 4.2. Let M = NT ×f N⊥ be a contact CR-warped product sub-
manifold of a Kenmotsu space form M̄(c), then squared norm of the second
fundamental form satisfies

∥h∥2 ≥ q[∥∇lnf∥2 −∆lnf − 1] +
c+ 1

2
.p.q,

where ∆ is the Laplace operator on NT , and 2p+1 and q are the dimensions
of NT and N⊥ respectively.

Remark 4.3. Inequality (4.1) is the generalization of the inequality obtained
in [2].
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