Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 7, pp. 2411-2418

Title:

Bounds for the dimension of the c-nilpotent multiplier of a pair of Lie algebras

Author(s):

H. Arabyani

Published by the Iranian Mathematical Society http://bims.ims.ir

BOUNDS FOR THE DIMENSION OF THE c-NILPOTENT MULTIPLIER OF A PAIR OF LIE ALGEBRAS

H. ARABYANI
(Communicated by Saeid Azam)

Abstract

In 2009, Salemkar et al. extended the notion of the Schur multiplier of a Lie algebra to the c-nilpotent multiplier. In this paper, we study the c-nilpotent multiplier of a pair of Lie algebras and give some inequalities for the dimension of the c-nilpotent multiplier of a pair of Lie algebras. Keywords: Pair of Lie algebras, Schur multiplier, c-nilpotent multiplier. MSC(2010): Primary: 17B99; Secondary: 16W25.

1. Introduction

The notion of Schur multiplier arises from works of Schur on the projective representation in 1904 [18]. Let G be a group with a free presentation $1 \rightarrow$ $R \rightarrow F \rightarrow G \rightarrow 1$. The abelian group

$$
\mathcal{M}(G)=\left(R \cap F^{2}\right) /[F, R]
$$

is said to be the Schur multiplier of G (See $[7,8,11,12]$ for more information). Analogous to the Schur multiplier of a group, the Schur multiplier of a Lie algebra L, can be defined as $\mathcal{M}(L)=\left(R \cap F^{2}\right) /[R, F]$, where $L \cong F / R$ and F is a free Lie algebra (See $[3,4,6,13]$ for more details).

In 2009, Salemkar and colleagues [17] generalized the concept of the Schur multiplier to the c-nilpotent multiplier as follows. For a given Lie algebra L, the c-nilpotent multiplier of $L, c \geq 1$, is

$$
\mathcal{M}^{(c)}(L)=\left(R \cap \gamma_{c+1}(F)\right) / \gamma_{c+1}(R, F)
$$

where $\gamma_{c+1}(F)$ is the $(c+1)$-st term of the lower central series of $F, \gamma_{1}(R, F)=$ $R, \gamma_{c+1}(R, F)=\left[\gamma_{c}(R, F), F\right]$ and $L \cong F / R$ for a free Lie algebra F. This is analogous to the definition of the Bear-invariant of a group with respect to the variety of nilpotent groups of class at most c (See [2]). The Lie algebra $\mathcal{M}^{(1)}(L)$ is the Schur multiplier of L.

[^0]In [15], Saeedi et al. defined the Schur multiplier of a pair of Lie algebras (Also, see [5] for more details). Let (N, L) be a pair of Lie algebras, in which N is an ideal in L, if N has a complement in L, then for each free presentation $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$ of $L, \mathcal{M}(N, L)$ is isomorphic to the factor Lie algebra $(R \cap[S, F]) /[R, F]$, in which S is an ideal in F such that $N \cong S / R$ (See [1,14] for more information). Using the above concept, we define the c-nilpotent multiplier of a pair (N, L) as $\mathcal{M}^{(c)}(N, L)=\left(R \cap\left[S,{ }_{c} F\right]\right) /\left[R,{ }_{c} F\right]$. In particular, if $N=L$, then $\mathcal{M}^{(c)}(L, L)$ is the c-nilpotent multiplier of L (See $\left.[16,17]\right)$. In this paper, we generalize some results of Rismanchian and Araskhan [14].

2. Preliminaries

In this section, we study some notions and results, which are needed for the next section.

All Lie algebras are considered over a fixed field Λ and [,] denotes the Lie bracket. Recall from [9] that Kassel and Loday investigated the notion of Lie crossed module of pairs of Lie algebras (N, L) to be a Lie homomorphism $\sigma: M \rightarrow L$ together with an action of L on M, which is denoted by ${ }^{l} m$ for all $l \in L, m \in M$ satisfying the following conditions:
(i) $\sigma\left({ }^{l} m\right)=[l, \sigma(m)]$, for all $l \in L, m \in M$
(ii) ${ }^{\sigma(m)} m^{\prime}=\left[m, m^{\prime}\right]$, for all $m, m^{\prime} \in M$
(iii) $\sigma(M)=N$.

Also, see [10] for more information. The inclusion map $i: N \rightarrow L$ is a crossed module of the pair (N, L). In this case, $[N, L]$ and $Z(N, L)$ denote the commutator subalgebra and centralizer of L in N, respectively. Using the above notions, we define the subalgebras $Z_{c}(N, L)$ and $\left[N,{ }_{c} L\right]$, for all $c \geq 1$, as follows:

$$
\begin{aligned}
Z_{c}(N, L) & =\left\{n \in N \mid\left[n, l_{1}, \ldots, l_{c}\right]=0, \forall l_{1},, l_{c} \in L\right\}, \\
{\left[N,{ }_{c} L\right] } & =\left\langle\left[n, l_{1}, \ldots, l_{c}\right] \mid n \in N, l_{1}, \ldots, l_{c} \in L\right\rangle,
\end{aligned}
$$

where $\left.\left[n, l_{1}, \ldots, l_{c}\right]=\left[\ldots\left[n, l_{1}\right], l_{2}\right], \ldots, l_{c}\right]$. Moreover, a pair (N, L) is called nilpotent of class k, if $\left[N_{, k} L\right]=0$ and $\left[N,_{k-1} L\right] \neq 0$, for some positive integer k.

The following Lemmas are useful for the proof of our main results.
Lemma 2.1 (See [11, Lemma 2.2]). Let L be a finite dimensional Lie algebra with an ideal N. Let $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$ be a free presentation of L and $N \cong \frac{S}{R}$ for some ideal S of the free Lie algebra F such that $K=\frac{L}{N} \cong \frac{F}{S}$. Then, there exists the following epimorphism

$$
\otimes^{c+1}(N, K) \longrightarrow \frac{[S, c}{} \frac{\left[R,_{c} F\right]+\left[S,_{c+1} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(S, F)_{i}}{},
$$

where for all $2 \leq i \leq c, \gamma_{c+1}(S, F)_{i}=\left[D_{1}, \ldots, D_{c+1}\right]$ such that $D_{1}=D_{i}=S$, $D_{j}=F$, for all $j \neq 1, i$ and $\otimes^{c+1}(N, K)=N \otimes \underbrace{K \otimes \cdots \otimes K}_{c-\text { times }}$ is the abelian

tensor product.

Lemma 2.2 (See [14, Lemma 2.5]). Let H and N be ideals of Lie algebra L and $N=N_{0} \supseteq N_{1} \supseteq \cdots$, a chain of ideals of N such that $\left[N_{i}, L\right] \subseteq N_{i+1}$ for all $i=1,2, \ldots$ Then

$$
\left[N_{i},\left[H,{ }_{j} L\right]\right] \subseteq N_{i+j+1}
$$

for all i, j.
Proposition 2.3. Let L be a Lie algebra and K be an ideal in L contained in N; then the following sequences are exact
(a)

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{M}^{(c)}(K, L) \longrightarrow \mathcal{M}^{(c)}(N, L) \xrightarrow{\alpha} \\
& \mathcal{M}^{(c)}\left(\frac{N}{K}, \frac{L}{K}\right) \longrightarrow \frac{K \cap\left[N,{ }_{c} L\right]}{\left[K,{ }_{c} L\right]} \longrightarrow 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \mathcal{M}^{(c)}(N, L) \longrightarrow \mathcal{M}^{(c)}\left(\frac{N}{K}, \frac{L}{K}\right) \longrightarrow K \\
& \longrightarrow \frac{L}{\left[N,{ }_{c} L\right]} \longrightarrow \frac{L}{\left[N,{ }_{c} L\right]+K} \longrightarrow 0
\end{aligned}
$$

Proof. Let $0 \longrightarrow R \longrightarrow F \longrightarrow L \longrightarrow 0$ be a free presentation of L and let S and T be ideals in F such that $K \cong \frac{F}{T}$ and $N \cong \frac{F}{S}$. By definition we obtain
(i) $\mathcal{M}^{(c)}(K, L)=\frac{R \cap\left[T+R,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]}$;
(ii) $\mathcal{M}^{(c)}(N, L)=\frac{R \cap\left[S+R,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]}$;
(iii) $\mathcal{M}^{(c)}\left(\frac{N}{K}, \frac{L}{K}\right)=\frac{(T+R) \cap\left[S+R,{ }_{c} F\right]}{\left[T+R,{ }_{c} F\right]}$;
(iv) $\frac{K \cap\left[N,{ }_{c} L\right]}{\left[K,{ }_{c} L\right]}=\frac{\left((T+R) \cap\left[S+R,{ }_{c} F\right]\right)+R}{\left[T+R,{ }_{c} F\right]+R}$.
(a) Clearly the following sequence, with obvious natural homomorphism is exact

$$
\begin{aligned}
0 & \longrightarrow \frac{R \cap\left[T+R,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]} \longrightarrow \frac{R \cap\left[(S+R)_{{ }_{c}} F\right]}{\left[R,{ }_{c} F\right]} \\
& \longrightarrow \frac{(T+R) \cap\left[(S+R){ }_{, c} F\right]}{\left[T+R,{ }_{c} F\right]} \\
& \longrightarrow \frac{\left((T+R) \cap\left[(S+R){ }_{c} F\right]\right)+R}{\left[(T+R)_{c} F\right]+R} \longrightarrow 0 .
\end{aligned}
$$

(b) The inclusion maps

$$
\begin{aligned}
& R \cap\left[(S+R),{ }_{c} F\right] \longrightarrow(T+R) \cap\left[(S+R),{ }_{c} F\right] \\
& \longrightarrow(T+R) \longrightarrow F \longrightarrow F
\end{aligned}
$$

induce the following exact sequence of homomorphisms

$$
\begin{aligned}
& \frac{R \cap\left[(S+R)_{c} F\right]}{\left[R,{ }_{c} F\right]} \longrightarrow \frac{(T+R) \cap\left[(S+R)_{{ }_{c}} F\right]}{\left[(T+R){ }_{, c} F\right]} \longrightarrow \frac{T+R}{R} \\
& \longrightarrow \frac{F}{\left[(S+R){ }_{, c} F\right]+R} \longrightarrow \frac{F}{\left[(S+R)_{,} F\right]+T+R} \longrightarrow 0
\end{aligned}
$$

which gives the result.

The following corollary is an immediate consequence of Proposition 2.3.
Corollary 2.4. Let (N, L) be a pair of finite dimensional Lie algebras and K be an ideal in L contained in N. Then

$$
\left.\begin{array}{l}
\operatorname{dim}\left(\frac{K \cap\left[N,{ }_{c} L\right]}{[K, c} L\right]
\end{array}\right)+\operatorname{dim} \mathcal{M}^{(c)}(N, L) ~\left(K i m \mathcal{M}^{(c)}\left(\frac{N}{K}, \frac{L}{K}\right)+\operatorname{dim} \mathcal{M}^{(c)}(K, L) . ~ \$ ~=\operatorname{dim}\right.
$$

3. Some inequalities on dimension of $\mathcal{M}^{(c)}(N, L)$

In this section, we give some inequalities for the dimension of the c-nilpotent multiplier of a pair of finite dimensional Lie algebras.

Theorem 3.1. Let (N, L) be a pair of finite dimensional Lie algebras and K be a central subalgebra of L contained in N. Let $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$ be a free presentation of L and $\frac{T}{R} \cong K$. Then

$$
\begin{aligned}
& \operatorname{dim} \frac{K \cap\left[N,{ }_{c} L\right]}{\left[K,{ }_{c} L\right]}+\operatorname{dim} \mathcal{M}^{(c)}(N, L) \\
& \leq \operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{K}, \frac{L}{K}\right)+\operatorname{dim}\left(\otimes^{c+1}\left(K, \frac{L}{K}\right)\right) \\
& +\operatorname{dim}\left(\frac{\left[R,{ }_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}}{\left[R,{ }_{c} F\right]}\right)
\end{aligned}
$$

Proof. Since K is a central subalgebra of L, we have $[T, F] \leq R$. Then by Lemma 2.1,

$$
\left.\otimes^{c+1}\left(K, \frac{L}{K}\right)\right) \longrightarrow \frac{\left[T,_{c} F\right]}{\left[R,{ }_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}}
$$

is an epimorphism. On the other hand, we have

$$
\begin{aligned}
& \operatorname{dim} \frac{\left(R \cap\left[T,_{c} F\right]\right) /\left[R,{ }_{c} F\right]}{\left(\left[R,{ }_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}\right) /\left[R,{ }_{c} F\right]} \\
& =\operatorname{dim} \frac{\left[T,_{c} F\right]}{\left[R,{ }_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}} .
\end{aligned}
$$

Therefore,

$$
\operatorname{dim} \frac{\left(R \cap\left[T,_{c} F\right]\right) /\left[R,_{c} F\right]}{\left(\left[R,_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}\right) /\left[R,_{c} F\right]} \leq \operatorname{dim}\left(\otimes^{c+1}\left(K, \frac{L}{K}\right)\right)
$$

and so,

$$
\begin{aligned}
& \operatorname{dim} \mathcal{M}^{(c)}(K, L) \leq \operatorname{dim}\left(\otimes^{c+1}\left(K, \frac{L}{K}\right)\right) \\
& +\operatorname{dim}\left(\frac{\left[R,{ }_{c} F\right]+\sum_{i=2}^{c+1} \gamma_{c+1}(T, F)_{i}}{\left[R,{ }_{c} F\right]}\right)
\end{aligned}
$$

Hence, the result holds by Corollary 2.4.
In Theorems 3.2 and 3.3, we generalize [14, Corollary 2.7].
Theorem 3.2. Let (N, L) be a pair of finite dimensional nilpotent Lie algebras of class t. Then
(1) If $t \geq c+1$, then

$$
\begin{aligned}
& \operatorname{dim}[N, t-1 L]+\operatorname{dim} \mathcal{M}^{(c)}(N, L) \\
& \left.\leq \operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, t-1} L\right], \frac{L}{\left[N,_{t-1} L\right]}\right) \\
& +\operatorname{dim}\left(\otimes^{c+1}\left([N, t-1 L], \frac{L}{Z_{t-1}(N, L)}\right)\right) .
\end{aligned}
$$

(2) If $t<c+1$, then

$$
\begin{aligned}
& \operatorname{dim}\left[N,{ }_{c} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L) \\
& \left.\leq \operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, t-1} L\right], \frac{L}{[N, t-1} L\right] \\
& +\operatorname{dim}\left(\otimes^{c+1}\left(\left[N_{, t-1} L\right], \frac{L}{Z_{t-1}(N, L)}\right)\right)
\end{aligned}
$$

Proof. Let $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$ be a free presentation of L. Let $N \cong \frac{S}{R}$ and $Z_{i}(N, L) \cong \frac{T_{i}}{R}$, for all $0 \leq i \leq t$. Consider the following chain

$$
S=T_{0} \supseteq \cdots \supseteq T_{k} \supseteq \cdots \supseteq T_{t-1} \supseteq T_{t}=R \supseteq[R, F] \supseteq \cdots \supseteq\left[R,{ }_{c} F\right]
$$

Since $\left[T_{k}, F\right] \subseteq T_{k+1}$, we have $\left[T_{i},\left[S,_{t-1} F\right]\right] \subseteq\left[R,{ }_{i} F\right]$ by Lemma 2.2. This inclusion induces the following epimorphism

$$
\begin{aligned}
\otimes^{c+1}\left(\frac{\left[S,_{t-1} F\right]+R}{R}, \frac{F}{T_{t-1}}\right) & \longrightarrow \frac{\left[\left[S,_{t-1} F\right]+R,_{c} F\right]}{\left[R,{ }_{c} F\right]} \\
(s+R) \otimes\left(x_{1}+T_{t-1}\right) \otimes \cdots \otimes\left(x_{c}+T_{t-1}\right) & \longmapsto\left[s, x_{1}, \ldots, x_{c}\right]+\left[R,,_{c} F\right] .
\end{aligned}
$$

So, we have

$$
\begin{equation*}
\operatorname{dim}\left(\frac{\left[\left[S,_{t-1} F\right]+R,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]}\right) \leq \operatorname{dim}\left(\otimes^{c+1}\left(\frac{\left[S,_{t-1} F\right]+R}{R}, \frac{F}{T_{t-1}}\right)\right) \tag{3.1}
\end{equation*}
$$

On the other hand, considering $K=\left[N_{, t-1} L\right]$ in Corollary 2.4, if $t \geq c+1$, then

$$
\left.\begin{array}{l}
\operatorname{dim}\left[N,{ }_{t-1} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L)=\operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{\left[N,_{t-1} L\right]}, \frac{L}{[N, t-1} L\right]
\end{array}\right)
$$

and if $t<c+1$, then

$$
\left.\begin{array}{l}
\left.\operatorname{dim}\left[N,{ }_{c} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L)=\operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, t-1} L\right], \frac{L}{\left[N,{ }_{t-1} L\right]}\right) \\
\left.\quad+\operatorname{dim}\left(\frac{[[S, t-1}{} F\right]+R,_{c} F\right] \\
{[R, c]}
\end{array}\right) .
$$

Now the theorem follows by (3.1).

Theorem 3.3. Let (N, L) be a pair of finite dimensional nilpotent Lie algebras of class at most $t \geq 2$. Then

$$
\begin{aligned}
& \operatorname{dim}\left[N,{ }_{c} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L) \leq \operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, L]}, \frac{L}{[N, L]}\right) \\
& +\left(\sum_{i=1}^{t-1} \operatorname{dim}\left(\otimes^{c+1}\left(\left[N,_{i} L\right], \frac{L}{\left[N,{ }_{i} L\right]}\right)\right)\right.
\end{aligned}
$$

Proof. Let F, S and R be as in Theorem 3.2. Considering $K=[N, L]$ in Corollary 2.4, we have

$$
\begin{aligned}
& \operatorname{dim}\left[N,{ }_{c} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L)=\operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, L]}, \frac{L}{[N, L]}\right) \\
& +\operatorname{dim} \mathcal{M}^{(c)}([N, L], L)+\operatorname{dim}\left[N,{ }_{c+1} L\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \operatorname{dim}\left[N,_{c+1} L\right]+\operatorname{dim} \mathcal{M}^{(c)}([N, L], L) \\
= & \operatorname{dim}\left(\frac{\left[S,_{c+1} F\right]+R}{R}\right)+\operatorname{dim}\left(\frac{\left(R \cap\left[S, F,{ }_{c} F\right]\right)+\left[R,{ }_{c} F\right]}{\left[R,_{c} F\right]}\right) \\
= & \operatorname{dim} \frac{\left[\left[S,_{t} F\right]+R,{ }_{c} F\right]}{\left[R,_{c} F\right]}+\sum_{i=1}^{t-1} \operatorname{dim} \frac{\left[\left[S,_{i} F\right]+R,_{c} F\right]}{\left[\left[S,_{i+1} F\right]+R,_{c} F\right]} .
\end{aligned}
$$

By the assumption, $\left[N,_{t} L\right]=\frac{\left[S,_{t} F\right]+R}{R}=0$, and hence we can write $\left[\left[S,_{t} F\right]+\right.$ $\left.R,{ }_{c} F\right]=\left[R,{ }_{c} F\right]$. Therefore

$$
\begin{aligned}
& \operatorname{dim}\left[N,{ }_{c} L\right]+\operatorname{dim} \mathcal{M}^{(c)}(N, L)=\operatorname{dim} \mathcal{M}^{(c)}\left(\frac{N}{[N, L]}, \frac{L}{[N, L]}\right) \\
& +\sum_{i=1}^{t-1} \operatorname{dim} \frac{\left[\left[S,_{i} F\right]+R,_{c} F\right]}{\left[\left[S,_{i+1} F\right]+R,_{c} F\right]} .
\end{aligned}
$$

On the other hand for all $1 \leq i \leq t-1$,
$\sum_{j=2}^{c+1} \gamma_{c+1}\left(\left[S,_{i} F\right]+R, F\right)_{j}+\left[\left[S,_{i} F\right]+R,{ }_{c+1} F\right]+\left[R,,_{c} F\right] \subseteq\left[\left[S,_{i+1} F\right]+R,{ }_{c} F\right]$.
Considering this relation, Lemma 2.1 implies that

$$
\operatorname{dim} \frac{\left[\left[S,_{i} F\right]+R,{ }_{c} F\right]}{\left[\left[S,{ }_{i+1} F\right]+R,_{c} F\right]} \leq \operatorname{dim}\left(\otimes^{c+1}\left(\left[N,_{i} L\right], \frac{L}{\left[N,{ }_{i} L\right]}\right)\right)
$$

and hence the proof is complete.

Acknowledgements

The author would like to thank the referees for their valuable comments.

References

[1] H. Arabyani, F. Saeedi, M.R.R. Moghaddam and E. Khamseh, Characterization of nilpotent Lie algebras pair by their Schur multipliers, Comm. Algebra 42 (2014) 5474-5483.
[2] R. Baer, Representations of groups as quotient groups, I, II and III, Trans Amer. Math. Soc. 58 (1945) 295-419.
[3] P. Batten, K. Moneyhun and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers, Comm. Algebra 24 (1996), no. 14, 4319-4330.
[4] P. Batten and E. Stitzinger, On covers of Lie algebras, Comm. Algebra 24 (1996) 43014317.
[5] G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures 6 (1998), no. 3, 355-371.
[6] P. Hardy, On characterizing nilpotent Lie algebras by their multipliers III, Comm. Algebra 33 (2005) 4205-4210.
[7] A. Hokmabadi, F. Mohammadzadeh and B. Mashayekhy, On Nilpotent multipliers of pairs of groups and their nilpotent covering pairs, Arxiv:1511.08139v1math. GR].
[8] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
[9] C. Kassel and J.L. Loady, Extensions centrales d'algèbras de Lie, Ann. Inst. Fourier 32 (1982), no. 4, 119-142.
[10] J.L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978) 178-202.
[11] B. Mashayekhy, F. Mohammadzadeh and A. Hokmabadi, Some inequalities for nilpotent multipliers of finite groups, Arxive:1012.3250v1 [math.GR].
[12] M.R.R. Moghaddam, A.R. Salemkar and H.M. Sanny, Some inequalities for the Baerinvariant of a pair of finite groups, Indag. Math. 18 (2007), no. 1, 73-82.
[13] K. Moneyhun, Isoclinisms in Lie algebras, Algebras Groups Geom. 11 (1994) 9-22.
[14] M.R. Rismanchian and M. Araskhan, Some inequalities for the dimension of the Schur multiplier of a pair of (nilpotent) Lie algebras, J. Algebra 352 (2012) 173-179.
[15] F. Saeedi, A.R. Salemkar and B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras, J. Lie Theory 21 (2011) 491-498.
[16] H. Safa and H. Arabyani, On c-nilpotent multiplier and c-covers of a pair of Lie algebras, Comm. Algebra 45 (2017) 4429-4434.
[17] A. R. Salemkar, B. Edalatzadeh and M. Araskhan, Some inequalities for the dimension of the c-nilpotent multiplier of Lie algebras, J. Algebra $\mathbf{3 2 2}$ (2009) 1575-1585.
[18] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904) 20-50.
(Homayoon Arabyani) Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.

E-mail address: arabyani.h@gmail.com; h.arabyani@iau-neyshabur.ac.ir

[^0]: Article electronically published on December 30, 2017.
 Received: 19 November 2016, Accepted: 11 May 2017.

