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Abstract. In this paper, we introduce the two-dimensional Legendre
wavelets (2D-LWs), and develop them for solving a class of two-dimensional
integro-differential equations (2D-IDEs) of fractional order. We also in-

vestigate convergence of the method. Finally, we give some illustrative
examples to demonstrate the validity and efficiency of the method.
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1. Introduction

Fractional calculus is a generalization of integration and differentiation to
arbitrary order. In recent years, a large number of scientists have studied frac-
tional calculus. Fractional integral and differential equations are used to model
many practical problems in physics, engineering, mechanics, economics and bi-
ology [2,5,6,17,18]. Some numerical methods have been proposed for solving the
fractional integro-differential equations in one-dimensional case, such as Ado-
mian decomposition method [13, 20], variational iteration and homotopy per-
turbation method [15] and wavelet method [10,24]. Also, variational iteration,
Adomian decomposition, multivariate Pade approximations methods [12,14,22]
and wavelet operational method [16] have been used to solve fractional partial
differential equations. Recently, a finite difference technique has been devel-
oped for solving variable-order fractional integro-differential equations in [23].
On the other hand, although there are many works about two-dimensional
integro-differential equations with integer order [7, 19], but there are not suit-
able work on the partial integro-differential equations with fractional order. So,
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in this paper we study this kind of equations.
Here, our purpose is to apply the Legendre wavelet method for solving two-
dimensional fractional integro-differential equations of the form

(1.1) Dα
xf(x, y)− λ

∫ y

0

∫ x

0

k(x, y, u, v)f(u, v)dudv = g(x, y)

subject to the initial conditions

(1.2)
∂i

∂xi
f(0, y) = 0, i = 0, 1, . . . , r − 1, r − 1 < α ≤ r, r ∈ N

where g ∈ L2(D) and k ∈ L2(D × D) with D = [0, 1) × [0, 1), f(x, y) is an
unknown function to be found and Dα

x is the partial fractional derivative of
order α with respect to x in the Caputo sense.

2. Preliminaries

In this section, we present some preliminary results which will be used
throughout the paper.

2.1. Digamma function.

Definition 2.1. The digamma function, the logarithmic derivative of the
gamma function, is defined as

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
,

where Γ(x) is the classical gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0.

The derivatives ψ′, ψ′′, . . . are called polygamma functions.
Digamma function has the following series representation [1]

ψ(x) = −γ +
∞∑
k=1

(
1

k
− 1

x+ k
)− 1

x
,
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where γ = limn→∞

(∑n
k=1

1

k
− lnn

)
∼= 0.57721566... is the Euler-Mascheroni’s

constant. A simple calculation shows that

ψ′(x) =

∞∑
k=1

(
1

(x+ k)2

)
+

1

x2
=

∞∑
k=0

1

(x+ k)2
,

ψ′′(x) = −2
∞∑
k=0

1

(x+ k)3
,

ψ′′′(x) = 6
∞∑
k=0

1

(x+ k)4
.

2.2. Fractional calculus.

Definition 2.2. The partial Rimann-Liouville fractional integral operator Iαx
of order α > 0 with respect to x is defined as [8]

Iαx f(x, y) =
1

Γ(α)

∫ x

0

(x− τ)α−1f(τ, y)dτ

I0xf(x, y) = f(x, y).

Definition 2.3. The Caputo partial fractional derivative of order α > 0 with
respect to x is given by [8]

Dα
xf(x, y) =

1

Γ(n− α)

∫ x

0

(x− τ)n−α−1 ∂
nf(τ, y)

∂τn
dτ, n− 1 < α ≤ n

where n is an integer.

Similar to one-dimensional functions, it can be easily shown that:

Dα
x I

α
x f(x, y) = f(x, y).

(2.1) IαxD
α
xf(x, y) = f(x, y)−

n−1∑
k=0

∂kf(0+, y)

∂xk
xk

k!
, x > 0.

2.3. Legendre polynomials. For n = 0, 1, 2, . . . , Legendre polynomials of
degree n are given by Rodrigue’s formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, −1 ≤ x ≤ 1,

which satisfies the following recurrence relation

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x), n ≥ 1,
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with P0(x) = 1, P1(x) = x.
The following properties hold for the Legendre polynomials [21]:

(2.2)

∫ 1

−1

Pn(x)Pm(x)dx = 0, n ̸= m,

(2.3)

∫ 1

−1

P 2
n(x)dx =

2

2n+ 1
,

(2.4) Pn(−1) = (−1)n, Pn(1) = 1,

(2.5) P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x), n ≥ 1.

2.4. 2D-LWs and their properties. The two-dimentional Legendre wavelets
ψn1m1n2m2(x, y) are defined on the interval D as [3]

√
2m1 + 1

2

2m2 + 1

2
2(k1+k2)/2Pm1(2

k1x− n̂1)Pm2(2
k2y − n̂2),

n̂1−1
2k1

≤ x < n̂1+1
2k1

, n̂2−1
2k2

≤ y < n̂2+1
2k2

,
0, other wise,

(2.6)

where n̂1 = 2n1 − 1, n̂2 = 2n2 − 1, n1 = 1, 2, . . . , 2k1−1, n2 = 1, 2, . . . , 2k2−1

and k1, k2 are assumed positive integers. Also m1 = 0, 1, . . . ,M1 − 1 and
m2 = 0, 1, . . . ,M2−1 are the order of the Legendre polynomials whereM1 and
M2 are fixed positive integers. Furthermore, Pm1 and Pm2 are the Legendre
polynomials of order m1 and m2, respectively.
Since the 2D-LWs are orthonormal, so a function f ∈ L2(D) may be expressed
in terms of the Legendre wavelets as

f(x, y) =
∞∑

n1=1

∞∑
m1=0

∞∑
n2=1

∞∑
m2=0

cn1m1n2m2ψn1m1n2m2(x, y),

where

(2.7) cn1m1n2m2
=

∫ 1

0

∫ 1

0

f(x, y)ψn1m1n2m2
(x, y)dxdy.

We can approximate the function f(x, y) by the truncated form

f(x, y) ≃
2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
m2=0

cn1m1n2m2ψn1m1n2m2(x, y).

For simplicity, we write the function f(x, y) as

f(x, y) ≃
m̂1∑
i=1

m̂2∑
j=1

cijψij(x, y),
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where m̂1 = 2k1−1M1, m̂2 = 2k2−1M2, cij = cn1m1n2m2 , ψij = ψn1m1n2m2

and i, j are determined by the relations i = M1(n1 − 1) + m1 + 1 and j =
M2(n2−1)+m2+1, respectively. The above representation, alternatively, can
be written as

f(x, y) ≃ CTΨ(x, y)

where C and Ψ(x, y) are m̂1m̂2 vectors as

C = [c11, . . . , c1m̂2
, c21, . . . , c2m̂2

, . . . , cm̂11, . . . , cm̂1m̂2
]T

and

(2.8) Ψ(x, y) = [ψ11, . . . , ψ1m̂2
, ψ21, . . . , ψ2m̂2

, . . . , ψm̂11, . . . , ψm̂1m̂2
]T .

3. Solution of 2D-IDEs of the fractional order

An m̂1m̂2-set of the two-dimensional Block-Pulse functions(2D-BPFs) on
the interval D is defined as

bij(x, y) =

{
1, i−1

m̂1
≤ x < i

m̂1
, j−1

m̂2
≤ y < j

m̂2
,

0, otherwise,
(3.1)

where i = 1, 2, . . . , m̂1, j = 1, 2, . . . , m̂2. These functions have disjointness and
orthogonality properties [4].
Similar to given operational matrix of BPFs for fractional integration in [9], the
2D-BPFs operational matrix of the fractional integration(Fα) can be obtained
as

(3.2) Iαx (B(x, y)) = FαB(x, y),

where

B(x, y) = [b11(x, y), . . . , b1m̂2
(x, y), . . . , bm̂11(x, y), . . . , bm̂1m̂2

(x, y)]T(3.3)

and

Fα =
1

m̂α
1

1

Γ(α+ 2)

×


1 0 · · · 0 ξ1 0 · · · 0 ξ2 · · · ξm̂1−1 0 · · · 0
0 1 0 · · · 0 ξ1 0 · · · 0 ξ2 · · · ξm̂1−1 · · · 0
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 1

 .
The nonzero elements of the above matrix are computed as follows

Fα
k,k = 1, k = 1, 2, . . . , m̂1m̂2,

Fα
i,i+jm̂2

= ξj , i = 1, . . . , m̂1m̂2 − j, j = 1, . . . , m̂1 − 1,
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where ξj = (j + 1)α+1 − 2jα+1 + (j − 1)α+1.
The 2D-LWs may be expanded into an m̂1m̂2-term of the 2D-BPFs as

(3.4) Ψ(x, y) = ΦB(x, y)

in which

Φ = [Ψ(x1, y1), . . . ,Ψ(x1, ym̂2
), . . . ,Ψ(xm̂1

, y1), . . . ,Ψ(xm̂1
, ym̂2

)]

where the vector Ψ(xi, yj) can be obtained from (2.8) and

(3.5) xi =
2i− 1

2m̂1
, i = 1, 2, . . . , m̂1, yj =

2j − 1

2m̂2
, j = 1, 2, . . . , m̂2.

Now, we can get

(3.6) IαxΨ(x, y) = PαΨ(x, y),

where Pα is called the 2D-LWs operational matrix of fractional integration.
Using (3.2) and (3.4), we get

(3.7) IαxΨ(x, y) = IαxΦB(x, y) = ΦIαxB(x, y) = ΦFαB(x, y),

and applying (3.6) and (3.7) lead to

PαΦB(x, y) = PαΨ(x, y) = ΦFαB(x, y).

Therefore, one gets

Pα = ΦFαΦ−1.

To solve (1.1), we can approximate the functions Dα
xf(x, y) and g(x, y) by the

Legendre wavelets as

(3.8) Dα
xf(x, y) ≃ CTΨ(x, y),

(3.9) g(x, y) ≃ GTΨ(x, y),

where

G = [g11, . . . , g1m̂2
, g21, . . . , g2m̂2

, . . . , gm̂11, . . . , gm̂1m̂2
]T ,

gij =

∫ 1

0

∫ 1

0

ψij(x, y)g(x, y)dxdy.

Now using (3.6) and (3.8), we obtain

(3.10) f(x, y) = IαxD
α
xf(x, y) ≃ Iαx (C

TΨ(x, y)) = CTPαΨ(x, y).

Substituting (3.8), (3.9) and (3.10) into (1.1), implies

CTΨ(x, y)− λ

∫ y

0

∫ x

0

k(x, y, u, v)CTPαΨ(u, v)dudv = GTΨ(x, y).
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By taking the collocation points (3.5), we collocate (1.1) at m̂1m̂2 points (xi, tj)
as follows
(3.11)

CTΨ(xi, yj)− λ

∫ yj

0

∫ xi

0

k(xi, yj , u, v)C
TPαΨ(u, v)dudv = GTΨ(xi, yj).

By setting

s =
2

xi
u− 1, t =

2

tj
v − 1,

the y-intervals [0, xi] and z-intervals [0, yj ] are converted into s and t intervals
[−1, 1]. Thus, (3.11) can be written as

CTΨ(xi, yj)− λ
xiyj
4

∫ 1

−1

∫ 1

−1

k(xi, yj ,
xi
2
(s+ 1),

yj
2
(t+ 1))

× CTPαΨ(
xi
2
(s+ 1),

yj
2
(t+ 1))dsdt = GTΨ(xi, yj).(3.12)

Finally using the Gaussian integration formula, we obtain

CTΨ(xi, yj)− λ
xiyj
4

h1∑
p=1

h2∑
q=1

w1pw2qk(xi, yj ,
xi
2
(sq + 1),

yj
2
(tp + 1))

× CTPαΨ(
xi
2
(sq + 1),

yj
2
(tp + 1)) = GTΨ(xi, yj),

i = 1, 2, . . . , m̂1, j = 1, 2, . . . , m̂2.(3.13)

where tp and sq are zeros of Legendre polynomials of degrees h1 and h2 re-
spectively, and w1p and w2q are corresponding weights. By solving this linear
system of m̂1m̂2 equations, the approximate solution f(x, y) is obtained from
(3.10).

Remark 3.1. The cost of computation for (3.13) is approximately O(m̂2
1m̂

2
2).

4. Error analysis

In this section, we give a lemma and theorem based on [10] about error
bound and convergence.

Lemma 4.1. Let Dα
xfk1,M1,k2,M2(x, y) be approximation of Dα

xf(x, y) which is
obtained by Legendre wavelets. Then

Dα
xf(x, y)−Dα

xfk1,M1,k2,M2(x, y) =
∞∑

n1=2k1−1+1

∞∑
m1=M1

∞∑
n2=2k2−1+1

∞∑
m2=M2

cn1m1n2m2ψn1m1n2m2(x, y).(4.1)
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where

cn1m1n2m2 =

√
1

25k1+1(2m1 + 1)

1

25k2+1(2m2 + 1)

(4.2)

×
∫ 1

−1

∫ 1

−1

Dα+2
x D2

yf

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)(
Pm1+2(u)− Pm1(u)

2m1 + 3

(4.3)

−Pm1(u)− Pm1−2(u)

2m1 − 1

)(
Pm2+2(v)− Pm2(v)

2m2 + 3
− Pm2(v)− Pm2−2(v)

2m2 − 1

)
dvdu

(4.4)

(4.5)

and u = 2k1x− n̂1, v = 2k2y − n̂2.

Proof. Since Dα
xfk1,M1,k2,M2(x, y) is approximation of Dα

xf(x, y), similar to
(3.8), we have

Dα
xfk1,M1,k2,M2(x, y) =

2k1−1∑
n1=1

M1−1∑
m1=0

2k2−1∑
n2=1

M2−1∑
m2=0

cn1m1n2m2ψn1m1n2m2(x, y),

(4.6)

which leads to (4.1). By setting 2k1x− n̂1 = u, 2k2y− n̂2 = v and using (2.7),
we have

cn1m1n2m2 =

∫ 1

0

∫ 1

0

Dα
xf(x, y)ψn1m1n2m2(x, y)dxdy

=

∫ (n̂2+1)/2k2

(n̂2−1)/2k2

∫ (n̂1+1)/2k1

(n̂1−1)/2k1

Dα
xf(x, y)

√
2m1 + 1

2

2m2 + 1

2
2(k1+k2)/2

× Pm1(2
k1x− n̂1)Pm2(2

k2y − n̂2)dxdy

=

√
2m1 + 1

2k1+1

2m2 + 1

2k2+1

∫ 1

−1

∫ 1

−1

Dα
xf

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)
Pm1(u)Pm2(v)dudv.
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Using (2.4) and (2.5) , we have

cn1m1n2m2 =

√
1

2k1+1(2m1 + 1)

2m2 + 1

2k2+1

×
∫ 1

−1

Pm2(v)

∫ 1

−1

Dα
xf

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)
d(Pm1+1(u)− Pm1−1(u))dv

= −

√
1

23k1+1(2m1 + 1)

2m2 + 1

2k2+1

∫ 1

−1

Pm2(v)

∫ 1

−1

Dα+1
x f

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)
× (Pm1+1(u)− Pm1−1(u))dudv

= −

√
1

23k1+1(2m1 + 1)

2m2 + 1

2k2+1

∫ 1

−1

Pm2(v)

∫ 1

−1

Dα+1
x f

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)
× d

(
Pm1+2(u)− Pm1(u)

2m1 + 3
− Pm1(u)− Pm1−2(u)

2m1 − 1

)
dv

=

√
1

25k1+1(2m1 + 1)

2m2 + 1

2k2+1

∫ 1

−1

Pm2(v)

∫ 1

−1

Dα+2
x f

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)
×
(
Pm1+2(u)− Pm1(u)

2m1 + 3
− Pm1(u)− Pm1−2(u)

2m1 − 1

)
dudv,

and by the same way for pm2(v) we obtain

cn1m1n2m2 =

√
1

25k1+1(2m1 + 1)

1

25k2+1(2m2 + 1)

×
∫ 1

−1

∫ 1

−1

Dα+2
x D2

yf

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)(
Pm1+2(u)− Pm1(u)

2m1 + 3

−Pm1(u)− Pm1−2(u)

2m1 − 1

)(
Pm2+2(v)− Pm2(v)

2m2 + 3
− Pm2(v)− Pm2−2(v)

2m2 − 1

)
dvdu.

□

Theorem 4.2. Let the assumptions of Lemma 4.1 hold and there exists a
positive constant M̃ , such that

|Dα+2
x D2

yf(x, y)| ≤ M̃, ∀(x, y) ∈ D.

Then∥∥∥ Dα
x f(x, y)−Dα

x fk1,M1,k2,M2
(x, y)

∥∥∥
E

≤
(
M̃2

225

1

24k124k2
ψ′′′(M1 − 1.5)ψ′′′(M2 − 1.5)

)1/2

where ∥f(x, y)∥E = (
∫ 1

0

∫ 1

0
f2(x, y)dydx)1/2 and ψ(x) is the digamma function.
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Proof. The orthonormality of the sequence {ψn1m1n2m2} on D implies that∫ 1

0

∫ 1

0
Ψ(x, y)ΨT (x, y)dxdy = I, where I is the identity matrix. Therefore, we

get ∥∥∥Dα
xf(x, y)−Dα

xfk1,M1,k2,M2(x, y)
∥∥∥2
E

=
∞∑

n1=2k1−1+1

∞∑
m1=M1

∞∑
n2=2k2−1+1

∞∑
m2=M2

c2n1m1n2m2
.

By Lemma 4.1 and relations (2.2) and (2.3), we have

cn1m1n2m2

2 ≤ 1

25k1+1(2m1 + 1)

1

25k2+1(2m2 + 1)

×
∫ 1

−1

∫ 1

−1

∣∣∣∣Dα+2
x D2

yf

(
n̂1 + u

2k1
,
n̂2 + v

2k2

)∣∣∣∣2 dudv
×

∫ 1

−1

∫ 1

−1

∣∣∣∣ (2m1 − 1)Pm1+2(u)− (4m1 + 2)Pm1(u) + (2m1 + 3)Pm1−2(u)

(2m1 + 3)(2m1 − 1)

∣∣∣∣2
×

∣∣∣∣ (2m2 − 1)Pm2+2(v)− (4m2 + 2)Pm2(v) + (2m2 + 3)Pm2−2(v)

(2m2 + 3)(2m2 − 1)

∣∣∣∣2 dudv
<

M̃2

25k1(2m1 + 1)25k2(2m2 + 1)(2m1 + 3)2(2m1 − 1)2(2m2 + 3)2(2m2 − 1)2

×
(
(2m1 − 1)2

2

2m1 + 5
+ (4m1 + 2)2

2

2m1 + 1
+ (2m1 + 3)2

2

2m1 − 3

)
×

(
(2m2 − 1)2

2

2m2 + 5
+ (4m2 + 2)2

2

2m2 + 1
+ (2m2 + 3)2

2

2m2 − 3

)
<

M̃2

25k1(2m1 + 1)25k2(2m2 + 1)(2m1 + 3)2(2m1 − 1)2(2m2 + 3)2(2m2 − 1)2

× 12(2m1 + 3)2

2m1 − 3

12(2m2 + 3)2

2m2 − 3

=
144M̃2

25k1(2m1 + 1)25k2(2m2 + 1)(2m1 − 3)(2m1 − 1)2(2m2 − 3)(2m2 − 1)2

<
144M̃2

(2n1)5(2m1 − 3)4(2n2)5(2m2 − 3)4
.

Therefore, we get

∞∑
n1=2k1−1+1

∞∑
m1=M1

∞∑
n2=2k2−1+1

∞∑
m2=M2

c2n1m1n2m2

< 144M̃2
∞∑

n1=2k1−1+1

1

(2n1)5

∞∑
m1=M1

1

(2m1 − 3)4

∞∑
n2=2k2−1+1

1

(2n2)5
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×
∞∑

m2=M2

1

(2m2 − 3)4
≤ M̃2

225

1

24k124k2
ψ′′′(M1 − 1.5)ψ′′′(M2 − 1.5).

Then, we obtain∥∥∥ Dα
x f(x, y)−Dα

x fk1,M1,k2,M2
(x, y)

∥∥∥2
E

≤
M̃2

225

1

24k124k2
ψ′′′(M1 − 1.5)ψ′′′(M2 − 1.5),

which implies∥∥∥ Dα
x f(x, y)−Dα

x fk1,M1,k2,M2
(x, y)

∥∥∥
E

≤
(
M̃2

225

1

24k124k2
ψ′′′(M1 − 1.5)ψ′′′(M2 − 1.5)

)1/2

.

It completes the proof. □
Note that ∥Dα

xf(x, y)−Dα
xfk1,M1,k2,M2

(x, y)∥E = O(N1
−1N2

−1) with N1 =
22k1 and N2 = 22k2 .

Corollary 4.3. Under the assumptions of Theorem 4.2, we have

∥Dα
xf(x, y)−Dα

xfk1,M1,k2,M2(x, y)∥E → 0.

Using (2.1), in view of (1.2), we get

∥f(x, y)− fk1,M1,k2,M2(x, y)∥E → 0,

when M1,M2 is fixed and k1, k2 → ∞.

5. Numerical results

In this section, we apply the proposed method based on the two-dimensional
Legendre wavelets for some examples to show the efficiency and accuracy of the
method.

Example 5.1. Consider the linear two-dimensional fractional integro-differential
equation (See [11])

D0.5
x f(x, y)−

∫ y

0

∫ x

0

(x2y + u)f(u, v)dudv = 4y

√
x

π
− 1

2
x4y3 − 1

3
x3y2

subject to the initial condition f(0, y) = 0. The exact solution of this equation
is f(x, y) = 2xy. The values of absolute errors at some points are shown in
Table 1 for different values of k1 and k2. According to this table, we observe
that the results are improved when the numbers k1 and k2 increase.

Example 5.2. Consider the equation

D0.75
x f(x, y)−

∫ y

0

∫ x

0

(y + v)f(u, v)dudv =
6.4

Γ(0.25)
yx5/4 − 5

18
x3y3

such that f(0, y) = 0, with the exact solution f(x, y) = x2y. Here, we also use
the approximate L2-norm of absolute error as

∥ e(x, y) ∥2=
(∫ 1

0

∫ 1

0

e(x, y)2dxdy

)1/2

.
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Table 1. Numerical results of example 5.1

(x, t) k1 = 3, k2 = 3 k1 = 4, k2 = 4 k1 = 5, k2 = 5
(0.1,0.8) 0.8674e-2 0.1173e-3 0.1250e-3
(0.2,0.6) 0.2026e-3 0.1805e-3 0.2751e-4
(0.3,0.8) 0.6235e-3 0.9276e-4 0.1189e-4
(0.4,0.6) 0.2376e-3 0.2710e-4 0.1395e-5
(0.5,0.5) 0.8078e-4 0.7309e-5 0.4065e-5
(0.6,0.5) 0.6571e-4 0.3884e-4 0.1174e-4
(0.7,0.3) 0.1011e-3 0.3548e-4 0.9798e-5
(0.8,0.4) 0.3268e-3 0.9069e-4 0.2406e-4
(0.9,0.9) 0.2395e-2 0.6179e-3 0.1607e-3

The valuse of error at some points together with L2-norm errors are reported
in Table 2.

Table 2. Numerical results of Example 5.2

(x, t) k1 = 3, k2 = 3 k1 = 4, k2 = 4 k1 = 5, k2 = 5
(0,0.7) 0.5624e-2 0.1404e-2 0.3508e-3
(0.1,0.3) 0.2124e-2 0.1636e-3 0.1342e-3
(0.3,0.8) 0.1688e-2 0.1456e-2 0.1099e-3
(0.4,0.2) 0.1429e-2 0.1087e-3 0.8962e-4
(0.6,0.6) 0.4400e-2 0.3248e-3 0.2700e-3
(0.7,0.5) 0.1122e-2 0.8878e-3 0.6759e-4
(0.8,0.4) 0.8837e-3 0.7061e-3 0.5285e-4
(0.9,0.9) 0.7037e-2 0.5898e-3 0.4090e-3
L2-norm 0.3133e-2 0.7745e-3 0.1974e-3

The plots of the absolute errors for Example 5.2 are also shown in Figure 1.
We observe that, the higher accuracy can be obtained by taking larger values
of k1 and k2.

Example 5.3. Consider the equation

D0.5
x f(x, y)−

∫ y

0

∫ x

0
(xcos(u) + yv)f(u, v)dudv =

2sin(y)
√
x

Γ(0.5)
+ x− xcos(x)

−x2sin(x)− xcos(y) + xcos(x)cos(y) + x2sin(x)cos(y)−
1

2
x2ysin(y) +

1

2
x2y2cos(y)

with initial condition f(0, y) = 0 and exact solution f(x, y) = xsin(y). We
solve this problem for M1 = M2 = 4 and k1 = k2 = 2, 3, 4. The numerical
results are reported in Table 3 and plotted in Figure 2. Clearly, the accuracy is
very satisfactory. Moreover, higher accuracy can be achieved by taking higher-
order approximations.
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Figure 1. The plots of the absolute errors of example 5.2 for different
values of k1, k2 and M1 =M2 = 2
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Figure 2. The plots of the absolute errors of example 5.3 for different
values of k1, k2 and M1 =M2 = 4
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Table 3. Numerical results of example 5.3

(x, t) k1 = 2, k2 = 2 k1 = 3, k2 = 3 k1 = 4, k2 = 4
(0.1,0.1) 0.6417e-3 0.1599e-3 0.5398-4
(0.2,0.2) 0.6384e-3 0.2155e-3 0.5185e-4
(0.3,0.3) 0.8544e-3 0.1566e-3 0.6503e-4
(0.4,0.4) 0.8798e-3 0.2122e-3 0.7688e-4
(0.5,0.5) 0.4962e-3 0.2477e-3 0.8809e-4
(0.6,0.6) 0.7754e-3 0.2971e-3 0.9899e-4
(0.7,0.7) 0.1021e-2 0.3662e-3 0.1226e-3
(0.8,0.8) 0.1311e-2 0.4738e-3 0.1599e-3
(0.9,0.9) 0.5624e-2 0.6344e-3 0.2246e-3

Example 5.4. Consider the equation

Dα
xf(x, y)−

∫ y

0

∫ x

0

f(u, v)dudv = e2y +
1

4
x2 − 1

4
x2e2y

subject to the initial condition f(0, y) = 0. The exact solution of this problem
for α = 1 is f(x, y) = xe2y. The numerical results are given in Table 4. We see
that the numerical solution is very closed to the exact solution when α = 1.
Also, results of Table 4 illustrates that, when α, the approximate solution,
tends to the exact solution α→ 0.

Table 4. Numerical results of example 5.4

(x, t) α = 0.7 α = 0.8 α = 0.9 α = 1 Exact solution
(0.1,0.1) 0.26601 0.20659 0.15935 0.12214 0.12214
(0.2,0.2) 0.53239 0.44194 0.36432 0.29836 0.29836
(0.3,0.3) 0.86665 0.74817 0.64156 0.54663 0.54663
(0.4,0.4) 1.29938 1.15276 1.01614 0.89021 0.89021
(0.5,0.5) 1.86431 1.68793 1.51904 1.35913 1.35914
(0.6,0.6) 2.60016 2.39255 2.18912 1.99205 1.99207
(0.7,0.7) 3.55669 3.31648 3.07616 2.83857 2.83864
(0.8,0.8) 4.79588 4.52245 4.24337 3.96219 3.96242
(0.9,0.9) 6.39578 6.08985 5.77115 5.44400 5.44468

6. Conclusion

In this paper, the two-dimensional Legendre wavelets are developed for solv-
ing two-dimensional fractional integro-differential equations. The convergence
results also are investigated. Numerical results confirm convergency of the
method, too. It seems that, the presented method can be applied for solving
multi-order partial fractional integro-differential equations.
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