ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 7, pp. 2419-2435

Title:

Solving two-dimensional fractional integrodifferential equations by Legendre wavelets

Author(s):

M. Mojahedfar and A. Tari Marzabad

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 7, pp. 2419–2435 Online ISSN: 1735-8515

SOLVING TWO-DIMENSIONAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE WAVELETS

M. MOJAHEDFAR AND A. TARI MARZABAD*

(Communicated by Saeid Azam)

ABSTRACT. In this paper, we introduce the two-dimensional Legendre wavelets (2D-LWs), and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order. We also investigate convergence of the method. Finally, we give some illustrative examples to demonstrate the validity and efficiency of the method. **Keywords:** Two-dimensional integro-differential equations, fractional operators, Legendre wavelets, operational matrix. **MSC(2010):** 65R20.

1. Introduction

Fractional calculus is a generalization of integration and differentiation to arbitrary order. In recent years, a large number of scientists have studied fractional calculus. Fractional integral and differential equations are used to model many practical problems in physics, engineering, mechanics, economics and biology [2,5,6,17,18]. Some numerical methods have been proposed for solving the fractional integro-differential equations in one-dimensional case, such as Adomian decomposition method [13, 20], variational iteration and homotopy perturbation method [15] and wavelet method [10,24]. Also, variational iteration, Adomian decomposition, multivariate Pade approximations methods [12,14,22] and wavelet operational method [16] have been used to solve fractional partial differential equations. Recently, a finite difference technique has been developed for solving variable-order fractional integro-differential equations in [23]. On the other hand, although there are many works about two-dimensional integro-differential equations with integer order [7, 19], but there are not suitable work on the partial integro-differential equations with fractional order. So,

O2017 Iranian Mathematical Society

Article electronically published on December 30, 2017.

Received: 19 November 2016, Accepted: 11 May 2017.

^{*}Corresponding author.

²⁴¹⁹

in this paper we study this kind of equations.

Here, our purpose is to apply the Legendre wavelet method for solving twodimensional fractional integro-differential equations of the form

(1.1)
$$D_x^{\alpha} f(x,y) - \lambda \int_0^y \int_0^x k(x,y,u,v) f(u,v) du dv = g(x,y)$$

subject to the initial conditions

(1.2)
$$\frac{\partial^{i}}{\partial x^{i}}f(0,y) = 0, \quad i = 0, 1, \dots, r-1, \quad r-1 < \alpha \le r, \quad r \in N$$

where $g \in L^2(D)$ and $k \in L^2(D \times D)$ with $D = [0,1) \times [0,1)$, f(x,y) is an unknown function to be found and D_x^{α} is the partial fractional derivative of order α with respect to x in the Caputo sense.

2. Preliminaries

In this section, we present some preliminary results which will be used throughout the paper.

2.1. Digamma function.

Definition 2.1. The digamma function, the logarithmic derivative of the gamma function, is defined as

$$\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)},$$

where $\Gamma(x)$ is the classical gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad x > 0.$$

The derivatives ψ', ψ'', \ldots are called polygamma functions. Digamma function has the following series representation [1]

$$\psi(x) = -\gamma + \sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{x+k}) - \frac{1}{x},$$

where $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right) \cong 0.57721566...$ is the Euler-Mascheroni's constant. A simple calculation shows that

$$\begin{split} \psi'(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{(x+k)^2} \right) + \frac{1}{x^2} = \sum_{k=0}^{\infty} \frac{1}{(x+k)^2}, \\ \psi''(x) &= -2 \sum_{k=0}^{\infty} \frac{1}{(x+k)^3}, \\ \psi'''(x) &= 6 \sum_{k=0}^{\infty} \frac{1}{(x+k)^4}. \end{split}$$

2.2. Fractional calculus.

Definition 2.2. The partial Rimann-Liouville fractional integral operator I_x^{α} of order $\alpha > 0$ with respect to x is defined as [8]

$$I_x^{\alpha} f(x,y) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-\tau)^{\alpha-1} f(\tau,y) d\tau$$
$$I_x^0 f(x,y) = f(x,y).$$

Definition 2.3. The Caputo partial fractional derivative of order $\alpha > 0$ with respect to x is given by [8]

$$D_x^{\alpha}f(x,y) = \frac{1}{\Gamma(n-\alpha)} \int_0^x (x-\tau)^{n-\alpha-1} \frac{\partial^n f(\tau,y)}{\partial \tau^n} d\tau, \quad n-1 < \alpha \le n$$

where n is an integer.

Similar to one-dimensional functions, it can be easily shown that:

$$D_x^{\alpha} I_x^{\alpha} f(x, y) = f(x, y).$$

(2.1)
$$I_x^{\alpha} D_x^{\alpha} f(x,y) = f(x,y) - \sum_{k=0}^{n-1} \frac{\partial^k f(0^+,y)}{\partial x^k} \frac{x^k}{k!}, \quad x > 0.$$

2.3. Legendre polynomials. For n = 0, 1, 2, ..., Legendre polynomials of degree n are given by Rodrigue's formula

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad -1 \le x \le 1,$$

which satisfies the following recurrence relation

$$P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) - \frac{n}{n+1}P_{n-1}(x), \quad n \ge 1,$$

with $P_0(x) = 1$, $P_1(x) = x$. The following properties hold for the Legendre polynomials [21]:

(2.2)
$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0, \quad n \neq m,$$

(2.3)
$$\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1},$$

(2.4)
$$P_n(-1) = (-1)^n, \quad P_n(1) = 1,$$

(2.5)
$$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1)P_n(x), \quad n \ge 1.$$

2.4. **2D-LWs and their properties.** The two-dimensional Legendre wavelets $\psi_{n_1m_1n_2m_2}(x, y)$ are defined on the interval D as [3]

$$(2.6) \quad \begin{cases} \sqrt{\frac{2m_1+1}{2}} \frac{2m_2+1}{2} 2^{(k_1+k_2)/2} P_{m_1}(2^{k_1}x-\hat{n}_1) P_{m_2}(2^{k_2}y-\hat{n}_2), \\ \frac{\hat{n}_1-1}{2^{k_1}} \le x < \frac{\hat{n}_1+1}{2^{k_1}}, \quad \frac{\hat{n}_2-1}{2^{k_2}} \le y < \frac{\hat{n}_2+1}{2^{k_2}}, \\ 0, & \text{other wise,} \end{cases}$$

where $\hat{n}_1 = 2n_1 - 1$, $\hat{n}_2 = 2n_2 - 1$, $n_1 = 1, 2, \ldots, 2^{k_1 - 1}$, $n_2 = 1, 2, \ldots, 2^{k_2 - 1}$ and k_1 , k_2 are assumed positive integers. Also $m_1 = 0, 1, \ldots, M_1 - 1$ and $m_2 = 0, 1, \ldots, M_2 - 1$ are the order of the Legendre polynomials where M_1 and M_2 are fixed positive integers. Furthermore, P_{m_1} and P_{m_2} are the Legendre polynomials of order m_1 and m_2 , respectively.

Since the 2D-LWs are orthonormal, so a function $f \in L^2(D)$ may be expressed in terms of the Legendre wavelets as

$$f(x,y) = \sum_{n_1=1}^{\infty} \sum_{m_1=0}^{\infty} \sum_{n_2=1}^{\infty} \sum_{m_2=0}^{\infty} c_{n_1m_1n_2m_2}\psi_{n_1m_1n_2m_2}(x,y),$$

where

(2.7)
$$c_{n_1m_1n_2m_2} = \int_0^1 \int_0^1 f(x,y)\psi_{n_1m_1n_2m_2}(x,y)dxdy.$$

We can approximate the function f(x, y) by the truncated form

$$f(x,y) \simeq \sum_{n_1=1}^{2^{k_1-1}} \sum_{m_1=0}^{M_1-1} \sum_{n_2=1}^{2^{k_2-1}} \sum_{m_2=0}^{M_2-1} c_{n_1m_1n_2m_2} \psi_{n_1m_1n_2m_2}(x,y).$$

For simplicity, we write the function f(x, y) as

$$f(x,y) \simeq \sum_{i=1}^{\hat{m}_1} \sum_{j=1}^{\hat{m}_2} c_{ij} \psi_{ij}(x,y),$$

where $\widehat{m}_1 = 2^{k_1-1}M_1$, $\widehat{m}_2 = 2^{k_2-1}M_2$, $c_{ij} = c_{n_1m_1n_2m_2}$, $\psi_{ij} = \psi_{n_1m_1n_2m_2}$ and i, j are determined by the relations $i = M_1(n_1 - 1) + m_1 + 1$ and $j = M_2(n_2 - 1) + m_2 + 1$, respectively. The above representation, alternatively, can be written as

$$f(x,y) \simeq C^T \Psi(x,y)$$

where C and $\Psi(x,y)$ are $\widehat{m}_1\widehat{m}_2$ vectors as

$$C = [c_{11}, \dots, c_{1\widehat{m}_2}, c_{21}, \dots, c_{2\widehat{m}_2}, \dots, c_{\widehat{m}_1 1}, \dots, c_{\widehat{m}_1 \widehat{m}_2}]^T$$

and

(2.8)
$$\Psi(x,y) = [\psi_{11}, \dots, \psi_{1\widehat{m}_2}, \psi_{21}, \dots, \psi_{2\widehat{m}_2}, \dots, \psi_{\widehat{m}_1 1}, \dots, \psi_{\widehat{m}_1 \widehat{m}_2}]^T.$$

3. Solution of 2D-IDEs of the fractional order

An $\hat{m}_1\hat{m}_2$ -set of the two-dimensional Block-Pulse functions(2D-BPFs) on the interval D is defined as

(3.1)
$$b_{ij}(x,y) = \begin{cases} 1, & \frac{i-1}{\widehat{m}_1} \le x < \frac{i}{\widehat{m}_1}, \ \frac{j-1}{\widehat{m}_2} \le y < \frac{j}{\widehat{m}_2}, \\ 0, & otherwise, \end{cases}$$

where $i = 1, 2, ..., \widehat{m}_1, j = 1, 2, ..., \widehat{m}_2$. These functions have disjointness and orthogonality properties [4].

Similar to given operational matrix of BPFs for fractional integration in [9], the 2D-BPFs operational matrix of the fractional integration (F^{α}) can be obtained as

(3.2)
$$I_x^{\alpha}(B(x,y)) = F^{\alpha}B(x,y),$$

where

$$(3.3) \quad B(x,y) = [b_{11}(x,y), \dots, b_{1\widehat{m}_2}(x,y), \dots, b_{\widehat{m}_11}(x,y), \dots, b_{\widehat{m}_1\widehat{m}_2}(x,y)]^T$$

and

The nonzero elements of the above matrix are computed as follows

$$F_{k,k}^{\alpha} = 1, \ k = 1, 2, \dots, \widehat{m}_1 \widehat{m}_2,$$

$$F_{i,i+j\widehat{m}_2}^{\alpha} = \xi_j, \ i = 1, \dots, \widehat{m}_1 \widehat{m}_2 - j, \ j = 1, \dots, \widehat{m}_1 - 1,$$

where $\xi_j = (j+1)^{\alpha+1} - 2j^{\alpha+1} + (j-1)^{\alpha+1}$. The 2D-LWs may be expanded into an $\hat{m}_1 \hat{m}_2$ -term of the 2D-BPFs as

(3.4)
$$\Psi(x,y) = \Phi B(x,y)$$

in which

$$\Phi = [\Psi(x_1, y_1), \dots, \Psi(x_1, y_{\widehat{m}_2}), \dots, \Psi(x_{\widehat{m}_1}, y_1), \dots, \Psi(x_{\widehat{m}_1}, y_{\widehat{m}_2})]$$

where the vector $\Psi(x_i, y_j)$ can be obtained from (2.8) and

(3.5)
$$x_i = \frac{2i-1}{2\widehat{m}_1}, \ i = 1, 2, \dots, \widehat{m}_1, \ y_j = \frac{2j-1}{2\widehat{m}_2}, \ j = 1, 2, \dots, \widehat{m}_2.$$

Now, we can get

(3.6)
$$I_x^{\alpha}\Psi(x,y) = P^{\alpha}\Psi(x,y),$$

where P^{α} is called the 2D-LWs operational matrix of fractional integration. Using (3.2) and (3.4), we get

(3.7)
$$I_x^{\alpha}\Psi(x,y) = I_x^{\alpha}\Phi B(x,y) = \Phi I_x^{\alpha}B(x,y) = \Phi F^{\alpha}B(x,y),$$

and applying (3.6) and (3.7) lead to

$$P^{\alpha}\Phi B(x,y) = P^{\alpha}\Psi(x,y) = \Phi F^{\alpha}B(x,y).$$

Therefore, one gets

$$P^{\alpha} = \Phi F^{\alpha} \Phi^{-1}.$$

To solve (1.1), we can approximate the functions $D_x^{\alpha}f(x,y)$ and g(x,y) by the Legendre wavelets as

(3.8)
$$D_x^{\alpha} f(x,y) \simeq C^T \Psi(x,y),$$

(3.9)
$$g(x,y) \simeq G^T \Psi(x,y),$$

where

$$G = [g_{11}, \dots, g_{1\widehat{m}_2}, g_{21}, \dots, g_{2\widehat{m}_2}, \dots, g_{\widehat{m}_1 1}, \dots, g_{\widehat{m}_1 \widehat{m}_2}]^T,$$

$$g_{ij} = \int_0^1 \int_0^1 \psi_{ij}(x, y) g(x, y) dx dy.$$

Now using (3.6) and (3.8), we obtain

(3.10)
$$f(x,y) = I_x^{\alpha} D_x^{\alpha} f(x,y) \simeq I_x^{\alpha} (C^T \Psi(x,y)) = C^T P^{\alpha} \Psi(x,y).$$

Substituting (3.8), (3.9) and (3.10) into (1.1), implies

$$C^T \Psi(x,y) - \lambda \int_0^y \int_0^x k(x,y,u,v) C^T P^\alpha \Psi(u,v) du dv = G^T \Psi(x,y).$$

By taking the collocation points (3.5), we collocate (1.1) at $\hat{m}_1 \hat{m}_2$ points (x_i, t_j) as follows

(3.11)

$$C^{T}\Psi(x_{i}, y_{j}) - \lambda \int_{0}^{y_{j}} \int_{0}^{x_{i}} k(x_{i}, y_{j}, u, v) C^{T} P^{\alpha} \Psi(u, v) du dv = G^{T} \Psi(x_{i}, y_{j}).$$

By setting

$$s = \frac{2}{x_i}u - 1, \quad t = \frac{2}{t_j}v - 1,$$

the y-intervals $[0, x_i]$ and z-intervals $[0, y_j]$ are converted into s and t intervals [-1, 1]. Thus, (3.11) can be written as

(3.12)
$$C^{T}\Psi(x_{i}, y_{j}) - \lambda \frac{x_{i}y_{j}}{4} \int_{-1}^{1} \int_{-1}^{1} k(x_{i}, y_{j}, \frac{x_{i}}{2}(s+1), \frac{y_{j}}{2}(t+1)) \times C^{T}P^{\alpha}\Psi(\frac{x_{i}}{2}(s+1), \frac{y_{j}}{2}(t+1))dsdt = G^{T}\Psi(x_{i}, y_{j}).$$

Finally using the Gaussian integration formula, we obtain

$$C^{T}\Psi(x_{i}, y_{j}) - \lambda \frac{x_{i}y_{j}}{4} \sum_{p=1}^{h_{1}} \sum_{q=1}^{h_{2}} w_{1p}w_{2q}k(x_{i}, y_{j}, \frac{x_{i}}{2}(s_{q}+1), \frac{y_{j}}{2}(t_{p}+1)) \\ \times C^{T}P^{\alpha}\Psi(\frac{x_{i}}{2}(s_{q}+1), \frac{y_{j}}{2}(t_{p}+1)) = G^{T}\Psi(x_{i}, y_{j}),$$

$$(3.13) \qquad \qquad i = 1, 2, \dots, \widehat{m}_{1}, \ j = 1, 2, \dots, \widehat{m}_{2}.$$

where t_p and s_q are zeros of Legendre polynomials of degrees h_1 and h_2 respectively, and w_{1p} and w_{2q} are corresponding weights. By solving this linear system of $\hat{m}_1 \hat{m}_2$ equations, the approximate solution f(x, y) is obtained from (3.10).

Remark 3.1. The cost of computation for (3.13) is approximately $O(\hat{m}_1^2 \hat{m}_2^2)$.

4. Error analysis

In this section, we give a lemma and theorem based on [10] about error bound and convergence.

Lemma 4.1. Let $D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y)$ be approximation of $D_x^{\alpha} f(x,y)$ which is obtained by Legendre wavelets. Then

$$(4.1) \qquad \begin{aligned} D_x^{\alpha} f(x,y) - D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y) &= \\ \\ (4.1) \qquad \sum_{n_1=2^{k_1-1}+1}^{\infty} \sum_{m_1=M_1}^{\infty} \sum_{n_2=2^{k_2-1}+1}^{\infty} \sum_{m_2=M_2}^{\infty} c_{n_1m_1n_2m_2}\psi_{n_1m_1n_2m_2}(x,y). \end{aligned}$$

where

$$\begin{array}{l} (4.2) \\ c_{n_{1}m_{1}n_{2}m_{2}} = \sqrt{\frac{1}{2^{5k_{1}+1}(2m_{1}+1)} \frac{1}{2^{5k_{2}+1}(2m_{2}+1)}} \\ (4.3) \\ \times \int_{-1}^{1} \int_{-1}^{1} D_{x}^{\alpha+2} D_{y}^{2} f\left(\frac{\widehat{n}_{1}+u}{2^{k_{1}}}, \frac{\widehat{n}_{2}+v}{2^{k_{2}}}\right) \left(\frac{P_{m_{1}+2}(u) - P_{m_{1}}(u)}{2m_{1}+3}\right) \\ (4.4) \\ - \frac{P_{m_{1}}(u) - P_{m_{1}-2}(u)}{2m_{1}-1} \right) \left(\frac{P_{m_{2}+2}(v) - P_{m_{2}}(v)}{2m_{2}+3} - \frac{P_{m_{2}}(v) - P_{m_{2}-2}(v)}{2m_{2}-1}\right) dv du \\ (4.5) \end{array}$$

and $u = 2^{k_1}x - \hat{n}_1, \ v = 2^{k_2}y - \hat{n}_2.$

Proof. Since $D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y)$ is approximation of $D_x^{\alpha} f(x,y)$, similar to (3.8), we have

(4.6)

$$D_x^{\alpha} f_{k_1, M_1, k_2, M_2}(x, y) = \sum_{n_1=1}^{2^{k_1-1}} \sum_{m_1=0}^{M_1-1} \sum_{n_2=1}^{2^{k_2-1}} \sum_{m_2=0}^{M_2-1} c_{n_1 m_1 n_2 m_2} \psi_{n_1 m_1 n_2 m_2}(x, y),$$

which leads to (4.1). By setting $2^{k_1}x - \hat{n}_1 = u$, $2^{k_2}y - \hat{n}_2 = v$ and using (2.7), we have

$$\begin{split} c_{n_1m_1n_2m_2} &= \int_0^1 \int_0^1 D_x^{\alpha} f(x,y) \psi_{n_1m_1n_2m_2}(x,y) dx dy \\ &= \int_{(\widehat{n}_2 - 1)/2^{k_2}}^{(\widehat{n}_2 + 1)/2^{k_2}} \int_{(\widehat{n}_1 - 1)/2^{k_1}}^{(\widehat{n}_1 + 1)/2^{k_1}} D_x^{\alpha} f(x,y) \sqrt{\frac{2m_1 + 1}{2} \frac{2m_2 + 1}{2}} 2^{(k_1 + k_2)/2} \\ &\times P_{m_1}(2^{k_1}x - \widehat{n}_1) P_{m_2}(2^{k_2}y - \widehat{n}_2) dx dy \\ &= \sqrt{\frac{2m_1 + 1}{2^{k_1 + 1}} \frac{2m_2 + 1}{2^{k_2 + 1}}} \int_{-1}^1 \int_{-1}^1 D_x^{\alpha} f\left(\frac{\widehat{n}_1 + u}{2^{k_1}}, \frac{\widehat{n}_2 + v}{2^{k_2}}\right) P_{m_1}(u) P_{m_2}(v) du dv. \end{split}$$

Using (2.4) and (2.5), we have

$$\begin{split} c_{n_1m_1n_2m_2} &= \sqrt{\frac{1}{2^{k_1+1}(2m_1+1)} \frac{2m_2+1}{2^{k_2+1}}} \\ &\times \int_{-1}^{1} P_{m_2}(v) \int_{-1}^{1} D_x^{\alpha} f\left(\frac{\widehat{n}_1+u}{2^{k_1}}, \frac{\widehat{n}_2+v}{2^{k_2}}\right) d(P_{m_1+1}(u) - P_{m_1-1}(u)) dv \\ &= -\sqrt{\frac{1}{2^{3k_1+1}(2m_1+1)} \frac{2m_2+1}{2^{k_2+1}}} \int_{-1}^{1} P_{m_2}(v) \int_{-1}^{1} D_x^{\alpha+1} f\left(\frac{\widehat{n}_1+u}{2^{k_1}}, \frac{\widehat{n}_2+v}{2^{k_2}}\right) \\ &\times (P_{m_1+1}(u) - P_{m_1-1}(u)) du dv \\ &= -\sqrt{\frac{1}{2^{3k_1+1}(2m_1+1)} \frac{2m_2+1}{2^{k_2+1}}} \int_{-1}^{1} P_{m_2}(v) \int_{-1}^{1} D_x^{\alpha+1} f\left(\frac{\widehat{n}_1+u}{2^{k_1}}, \frac{\widehat{n}_2+v}{2^{k_2}}\right) \\ &\times d\left(\frac{P_{m_1+2}(u) - P_{m_1}(u)}{2m_1+3} - \frac{P_{m_1}(u) - P_{m_1-2}(u)}{2m_1-1}\right) dv \\ &= \sqrt{\frac{1}{2^{5k_1+1}(2m_1+1)} \frac{2m_2+1}{2^{k_2+1}}} \int_{-1}^{1} P_{m_2}(v) \int_{-1}^{1} D_x^{\alpha+2} f\left(\frac{\widehat{n}_1+u}{2^{k_1}}, \frac{\widehat{n}_2+v}{2^{k_2}}\right) \\ &\times \left(\frac{P_{m_1+2}(u) - P_{m_1}(u)}{2m_1+3} - \frac{P_{m_1}(u) - P_{m_1-2}(u)}{2m_1-1}\right) du dv, \end{split}$$

and by the same way for $p_{m_2}(v)$ we obtain

$$c_{n_1m_1n_2m_2} = \sqrt{\frac{1}{2^{5k_1+1}(2m_1+1)} \frac{1}{2^{5k_2+1}(2m_2+1)}}$$

$$\times \int_{-1}^{1} \int_{-1}^{1} D_x^{\alpha+2} D_y^2 f\left(\frac{\hat{n}_1+u}{2^{k_1}}, \frac{\hat{n}_2+v}{2^{k_2}}\right) \left(\frac{P_{m_1+2}(u) - P_{m_1}(u)}{2m_1+3} - \frac{P_{m_1}(u) - P_{m_1-2}(u)}{2m_1-1}\right) \left(\frac{P_{m_2+2}(v) - P_{m_2}(v)}{2m_2+3} - \frac{P_{m_2}(v) - P_{m_2-2}(v)}{2m_2-1}\right) dv du.$$

Theorem 4.2. Let the assumptions of Lemma 4.1 hold and there exists a positive constant \tilde{M} , such that

$$|D_x^{\alpha+2}D_y^2f(x,y)| \le \tilde{M}, \quad \forall (x,y) \in D.$$

Then

$$\begin{split} \left\| D_x^{\alpha} f(x,y) - D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y) \right\|_E &\leq \left(\frac{\tilde{M}^2}{225} \frac{1}{2^{4k_1} 2^{4k_2}} \psi^{\prime\prime\prime}(M_1 - 1.5) \psi^{\prime\prime\prime}(M_2 - 1.5) \right)^{1/2} \\ where \| f(x,y) \|_E &= (\int_0^1 \int_0^1 f^2(x,y) dy dx)^{1/2} \text{ and } \psi(x) \text{ is the digamma function.} \end{split}$$

Proof. The orthonormality of the sequence $\{\psi_{n_1m_1n_2m_2}\}$ on D implies that $\int_0^1 \int_0^1 \Psi(x, y) \Psi^T(x, y) dx dy = I$, where I is the identity matrix. Therefore, we get

$$\left\| D_x^{\alpha} f(x,y) - D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y) \right\|_E^2$$

= $\sum_{n_1=2^{k_1-1}+1}^{\infty} \sum_{m_1=M_1}^{\infty} \sum_{n_2=2^{k_2-1}+1}^{\infty} \sum_{m_2=M_2}^{\infty} c_{n_1m_1n_2m_2}^2.$

By Lemma 4.1 and relations (2.2) and (2.3), we have

$$\begin{split} c_{n_1m_1n_2m_2}^{2} &\leq \frac{1}{2^{5k_1+1}(2m_1+1)} \frac{1}{2^{5k_2+1}(2m_2+1)} \\ &\times \int_{-1}^{1} \int_{-1}^{1} \left| D_x^{\alpha+2} D_y^2 f\left(\frac{\hat{n}_1+u}{2^{k_1}}, \frac{\hat{n}_2+v}{2^{k_2}}\right) \right|^2 du dv \\ &\times \int_{-1}^{1} \int_{-1}^{1} \left| \frac{(2m_1-1)P_{m_1+2}(u) - (4m_1+2)P_{m_1}(u) + (2m_1+3)P_{m_1-2}(u)}{(2m_1+3)(2m_1-1)} \right|^2 \\ &\times \left| \frac{(2m_2-1)P_{m_2+2}(v) - (4m_2+2)P_{m_2}(v) + (2m_2+3)P_{m_2-2}(v)}{(2m_2+3)(2m_2-1)} \right|^2 du dv \\ &< \frac{\hat{M}^2}{2^{5k_1}(2m_1+1)2^{5k_2}(2m_2+1)(2m_1+3)^2(2m_1-1)^2(2m_2+3)^2(2m_2-1)^2} \\ &\times \left((2m_1-1)^2 \frac{2}{2m_1+5} + (4m_1+2)^2 \frac{2}{2m_1+1} + (2m_1+3)^2 \frac{2}{2m_1-3} \right) \\ &\times \left((2m_2-1)^2 \frac{2}{2m_2+5} + (4m_2+2)^2 \frac{2}{2m_2+1} + (2m_2+3)^2 \frac{2}{2m_2-3} \right) \\ &< \frac{\hat{M}^2}{2^{5k_1}(2m_1+1)2^{5k_2}(2m_2+1)(2m_1+3)^2(2m_1-1)^2(2m_2+3)^2(2m_2-1)^2} \\ &\times \frac{12(2m_1+3)^2}{2m_1-3} \frac{12(2m_2+3)^2}{2m_2-3} \\ &= \frac{144\tilde{M}^2}{2^{5k_1}(2m_1+1)2^{5k_2}(2m_2+1)(2m_1-3)(2m_1-1)^2(2m_2-3)(2m_2-1)^2} \\ &< \frac{144\tilde{M}^2}{(2n_1)^5(2m_1-3)^4(2n_2)^5(2m_2-3)^4}. \end{split}$$

Therefore, we get

$$\sum_{n_1=2^{k_1-1}+1}^{\infty} \sum_{m_1=M_1}^{\infty} \sum_{n_2=2^{k_2-1}+1}^{\infty} \sum_{m_2=M_2}^{\infty} c_{n_1m_1n_2m_2}^2$$

< $144\tilde{M}^2 \sum_{n_1=2^{k_1-1}+1}^{\infty} \frac{1}{(2n_1)^5} \sum_{m_1=M_1}^{\infty} \frac{1}{(2m_1-3)^4} \sum_{n_2=2^{k_2-1}+1}^{\infty} \frac{1}{(2n_2)^5}$

Mojahedfar and Tari Marzabad

$$\times \sum_{m_2=M_2}^{\infty} \frac{1}{(2m_2-3)^4} \le \frac{\tilde{M}^2}{225} \frac{1}{2^{4k_1} 2^{4k_2}} \psi^{\prime\prime\prime}(M_1-1.5) \psi^{\prime\prime\prime}(M_2-1.5).$$

Then, we obtain

$$\left\| D_x^{\alpha} f(x,y) - D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y) \right\|_E^2 \le \frac{\dot{M}^2}{225} \frac{1}{2^{4k_1} 2^{4k_2}} \psi^{\prime\prime\prime}(M_1 - 1.5) \psi^{\prime\prime\prime}(M_2 - 1.5),$$

which implies

$$\left\| D_x^{\alpha} f(x,y) - D_x^{\alpha} f_{k_1,M_1,k_2,M_2}(x,y) \right\|_E \le \left(\frac{\tilde{M}^2}{225} \frac{1}{2^{4k_1} 2^{4k_2}} \psi^{\prime\prime\prime} (M_1 - 1.5) \psi^{\prime\prime\prime} (M_2 - 1.5) \right)^{1/2}.$$

It completes the proof.

Note that $||D_x^{\alpha}f(x,y) - D_x^{\alpha}f_{k_1,M_1,k_2,M_2}(x,y)||_E = O(N_1^{-1}N_2^{-1})$ with $N_1 = 2^{2k_1}$ and $N_2 = 2^{2k_2}$.

Corollary 4.3. Under the assumptions of Theorem 4.2, we have

$$\|D_x^{\alpha}f(x,y) - D_x^{\alpha}f_{k_1,M_1,k_2,M_2}(x,y)\|_E \to 0.$$

Using (2.1), in view of (1.2), we get

$$||f(x,y) - f_{k_1,M_1,k_2,M_2}(x,y)||_E \to 0,$$

when M_1, M_2 is fixed and $k_1, k_2 \to \infty$.

5. Numerical results

In this section, we apply the proposed method based on the two-dimensional Legendre wavelets for some examples to show the efficiency and accuracy of the method.

Example 5.1. Consider the linear two-dimensional fractional integro-differential equation (See [11])

$$D_x^{0.5}f(x,y) - \int_0^y \int_0^x (x^2y + u)f(u,v)dudv = 4y\sqrt{\frac{x}{\pi}} - \frac{1}{2}x^4y^3 - \frac{1}{3}x^3y^2$$

subject to the initial condition f(0, y) = 0. The exact solution of this equation is f(x, y) = 2xy. The values of absolute errors at some points are shown in Table 1 for different values of k_1 and k_2 . According to this table, we observe that the results are improved when the numbers k_1 and k_2 increase.

Example 5.2. Consider the equation

$$D_x^{0.75}f(x,y) - \int_0^y \int_0^x (y+v)f(u,v)dudv = \frac{6.4}{\Gamma(0.25)}yx^{5/4} - \frac{5}{18}x^3y^3$$

such that f(0, y) = 0, with the exact solution $f(x, y) = x^2 y$. Here, we also use the approximate L_2 -norm of absolute error as

$$|| e(x,y) ||_2 = \left(\int_0^1 \int_0^1 e(x,y)^2 dx dy\right)^{1/2}.$$

(x,t)	$k_1 = 3, k_2 = 3$	$k_1 = 4, k_2 = 4$	$k_1 = 5, k_2 = 5$
(0.1, 0.8)	0.8674e-2	0.1173e-3	0.1250e-3
(0.2, 0.6)	0.2026e-3	0.1805e-3	0.2751e-4
(0.3, 0.8)	0.6235e-3	0.9276e-4	0.1189e-4
(0.4, 0.6)	0.2376e-3	0.2710e-4	0.1395e-5
(0.5, 0.5)	0.8078e-4	0.7309e-5	0.4065e-5
(0.6, 0.5)	0.6571e-4	0.3884e-4	0.1174e-4
(0.7, 0.3)	0.1011e-3	0.3548e-4	0.9798e-5
(0.8, 0.4)	0.3268e-3	0.9069e-4	0.2406e-4
(0.9, 0.9)	0.2395e-2	0.6179e-3	0.1607e-3

TABLE 1. Numerical results of example 5.1

The values of error at some points together with L_2 -norm errors are reported in Table 2.

TABLE 2. Numerical results of Example 5.2

(x,t)	$k_1 = 3, k_2 = 3$	$k_1 = 4, k_2 = 4$	$k_1 = 5, k_2 = 5$
(0,0.7)	0.5624e-2	0.1404e-2	0.3508e-3
(0.1, 0.3)	0.2124e-2	0.1636e-3	0.1342e-3
(0.3, 0.8)	0.1688e-2	0.1456e-2	0.1099e-3
(0.4, 0.2)	0.1429e-2	0.1087e-3	0.8962e-4
(0.6, 0.6)	0.4400e-2	0.3248e-3	0.2700e-3
(0.7, 0.5)	0.1122e-2	0.8878e-3	0.6759e-4
(0.8, 0.4)	0.8837e-3	0.7061e-3	0.5285e-4
(0.9,0.9)	0.7037e-2	0.5898e-3	0.4090e-3
L_2 -norm	0.3133e-2	0.7745e-3	0.1974e-3

The plots of the absolute errors for Example 5.2 are also shown in Figure 1. We observe that, the higher accuracy can be obtained by taking larger values of k_1 and k_2 .

Example 5.3. Consider the equation

$$D_x^{0.5}f(x,y) - \int_0^y \int_0^x (x\cos(u) + yv)f(u,v)dudv = \frac{2\sin(y)\sqrt{x}}{\Gamma(0.5)} + x - x\cos(x)$$
$$-x^2\sin(x) - x\cos(y) + x\cos(x)\cos(y) + x^2\sin(x)\cos(y) - \frac{1}{2}x^2y\sin(y) + \frac{1}{2}x^2y^2\cos(y)$$

with initial condition f(0, y) = 0 and exact solution f(x, y) = xsin(y). We solve this problem for $M_1 = M_2 = 4$ and $k_1 = k_2 = 2, 3, 4$. The numerical results are reported in Table 3 and plotted in Figure 2. Clearly, the accuracy is very satisfactory. Moreover, higher accuracy can be achieved by taking higher-order approximations.

FIGURE 1. The plots of the absolute errors of example 5.2 for different values of k_1,k_2 and $M_1=M_2=2$

Solving 2D-FIDEs by Legendre wavelets

FIGURE 2. The plots of the absolute errors of example 5.3 for different values of k_1, k_2 and $M_1 = M_2 = 4$

(x,t)	$k_1 = 2, k_2 = 2$	$k_1 = 3, k_2 = 3$	$k_1 = 4, k_2 = 4$
(0.1, 0.1)	0.6417e-3	0.1599e-3	0.5398-4
(0.2, 0.2)	0.6384e-3	0.2155e-3	0.5185e-4
(0.3, 0.3)	0.8544e-3	0.1566e-3	0.6503e-4
(0.4, 0.4)	0.8798e-3	0.2122e-3	0.7688e-4
(0.5, 0.5)	0.4962e-3	0.2477e-3	0.8809e-4
(0.6, 0.6)	0.7754e-3	0.2971e-3	0.9899e-4
(0.7, 0.7)	0.1021e-2	0.3662e-3	0.1226e-3
(0.8, 0.8)	0.1311e-2	0.4738e-3	0.1599e-3
(0.9, 0.9)	0.5624e-2	0.6344e-3	0.2246e-3

TABLE 3. Numerical results of example 5.3

Example 5.4. Consider the equation

$$D_x^{\alpha}f(x,y) - \int_0^y \int_0^x f(u,v) du dv = e^{2y} + \frac{1}{4}x^2 - \frac{1}{4}x^2 e^{2y}$$

subject to the initial condition f(0, y) = 0. The exact solution of this problem for $\alpha = 1$ is $f(x, y) = xe^{2y}$. The numerical results are given in Table 4. We see that the numerical solution is very closed to the exact solution when $\alpha = 1$. Also, results of Table 4 illustrates that, when α , the approximate solution, tends to the exact solution $\alpha \to 0$.

TABLE 4. Numerical results of example 5.4

(x,t)	$\alpha = 0.7$	$\alpha = 0.8$	$\alpha = 0.9$	$\alpha = 1$	Exact solution
(0.1, 0.1)	0.26601	0.20659	0.15935	0.12214	0.12214
(0.2, 0.2)	0.53239	0.44194	0.36432	0.29836	0.29836
(0.3, 0.3)	0.86665	0.74817	0.64156	0.54663	0.54663
(0.4, 0.4)	1.29938	1.15276	1.01614	0.89021	0.89021
(0.5, 0.5)	1.86431	1.68793	1.51904	1.35913	1.35914
(0.6, 0.6)	2.60016	2.39255	2.18912	1.99205	1.99207
(0.7, 0.7)	3.55669	3.31648	3.07616	2.83857	2.83864
(0.8, 0.8)	4.79588	4.52245	4.24337	3.96219	3.96242
(0.9, 0.9)	6.39578	6.08985	5.77115	5.44400	5.44468

6. Conclusion

In this paper, the two-dimensional Legendre wavelets are developed for solving two-dimensional fractional integro-differential equations. The convergence results also are investigated. Numerical results confirm convergency of the method, too. It seems that, the presented method can be applied for solving multi-order partial fractional integro-differential equations.

Acknowledgement

The authors would like to thank Professor S. Shahmorad and the anonymous referees for their valuable comments and suggestions which improved the quality of the paper.

References

- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, NewYork, 1965.
- [2] RT. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics 73 (1996) 5–59.
- [3] E. Banifatemi, M. Razzaghi and S. Yousefi, Two-dimensional Legendre wavelets method for the Mixed Volterra-Fredholm integral equations, J. Vib. Control 13 (2007), no. 11, 1667–1675.
- [4] M.S. EL-Azab, I.L. EL-Kalla and S.A. EL-Morsy, Solution of KDVB equation via Block-Pulse functions method, *Electron. J. Math. Anal. Appl.* 1 (2013), no. 2, 361–367.
- [5] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Cintinuum Mechanics, pp. 223–276, Springer Verlag, Wien-New York, 1997.
- [6] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [7] S.A. Hosseini, S. Shahmorad and A.Tari, Existence of an L^p-solution for two dimensional integral equations of the Hammerstein type, Bull. Iranian Math. Soc. 40 (2014), no. 4, 851–862.
- [8] A.A. Kilbas, H.M. Srivastava and J.J. Trujiilo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [9] A. Kilicman and ZAA. Al Zhour, Kronecker operational matrices for fractional calculus and some applications, *Appl. Math. Comput.* 187 (2007) 250–265.
- [10] Z. Menga, L. Wanga, H. Lib and W. Zhangb, Legendre wavelets method for solving fractional integro-differential equations, *Int. J. Comput. Math.* **92** (2015), no. 6, 1275– 1291.
- [11] M.A. Mohammed and F.S. Fadhel, Solution of two-dimensional fractional order volterra integro-differential equations, J. Al-Nahrain Univ. 12 (2009), no. 4, 185–189.
- [12] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Math. Comput. Simulation 70 (2005) 110–118.
- [13] S. Momani and M. Noor, Numerical methods for fourth order fractional integrodifferential equations, Appl. Math. Comput. 182 (2006) 754–760.
- [14] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, *Phys. Lett. A* **355** (2006) 271–279.
- [15] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourthorder fractional integro-differential equations, *Comput. Math. Appl.* **61** (2011) 2330– 2341.
- [16] A. Neamaty, B. Agheli and R. Darzi, Solving fractional partial differential equation by using wavelet operational method, J. Math. Comput. Sci. 7 (2013) 230–240.
- [17] K. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010) 9–17.
- [18] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 1999.

- [19] M.Y. Rahimi, S. Shahmorad, F. Talati and A.Tari, An operational method for the numerical solution of two dimensional linear Fredholm integral equations with an error estimation, *Bull. Iranian Math. Soc.* 36 (2010), no. 2, 119–132.
- [20] S.S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, *Commun. Nonlinear Sci. Numer. Simul.* 14 (2009) 1295–1306.
- [21] M. Tavassoli Kajani and A. Hadi Vencheh, Solving linear integro-differential equation with Legendre wavelets, Int. J. Comput. Math. 81 (2004), no. 6, 719–726
- [22] V. Turut and N. Güzel, On solving partial differential equations of fractional order by using the variational iteration method and multivariate pade approximations, *Eur. J. Pure App. Math.* 6 (2013), no. 2, 147–171.
- [23] Y. Xu and V. Suat Ertürk, A finite difference technique for solving variable-order fractional integro-differential equations, Bull. Iranian Math. Soc. 40 (2014), no. 3, 699–712.
- [24] L. Zhu and Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelets, *Commun. Nonlinear Sci. Numer. Simul.* 17 (2012) 2333–2341.

(Mansureh Mojahedfar) DEPARTMENT OF MATHEMATICS, SHAHED UNIVERSITY, TEHRAN, IRAN.

E-mail address: m.mojahedfar@shahed.ac.ir and m.mojahedfar@yahoo.com

(Abolfazl Tari Marzabad) Department of Mathematics, Shahed University, Tehran, Iran.

E-mail address: tari@shahed.ac.ir and at4932@gmail.com