Title:
Solving two-dimensional fractional integro-differential equations by Legendre wavelets

Author(s):
M. Mojahedfar and A. Tari Marzabad
SOLVING TWO-DIMENSIONAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY LEGENDRE WAVELETS

M. MOJAHEDFAR AND A. TARI MARZABAD*

(Communicated by Saeid Azam)

Abstract. In this paper, we introduce the two-dimensional Legendre wavelets (2D-LWs), and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order. We also investigate convergence of the method. Finally, we give some illustrative examples to demonstrate the validity and efficiency of the method.

Keywords: Two-dimensional integro-differential equations, fractional operators, Legendre wavelets, operational matrix.

1. Introduction

Fractional calculus is a generalization of integration and differentiation to arbitrary order. In recent years, a large number of scientists have studied fractional calculus. Fractional integral and differential equations are used to model many practical problems in physics, engineering, mechanics, economics and biology [2,5,6,17,18]. Some numerical methods have been proposed for solving the fractional integro-differential equations in one-dimensional case, such as Adomian decomposition method [13,20], variational iteration and homotopy perturbation method [15] and wavelet method [10,24]. Also, variational iteration, Adomian decomposition, multivariate Pade approximations methods [12,14,22] and wavelet operational method [16] have been used to solve fractional partial differential equations. Recently, a finite difference technique has been developed for solving variable-order fractional integro-differential equations in [23]. On the other hand, although there are many works about two-dimensional integro-differential equations with integer order [7,19], but there are not suitable work on the partial integro-differential equations with fractional order. So,

*Corresponding author.
in this paper we study this kind of equations. Here, our purpose is to apply the Legendre wavelet method for solving two-dimensional fractional integro-differential equations of the form

\begin{equation}
D_x^\alpha f(x, y) - \lambda \int_0^y \int_0^x k(x, y, u, v)f(u, v)dvdu = g(x, y)
\end{equation}

subject to the initial conditions

\begin{equation}
\frac{\partial^i}{\partial x^i} f(0, y) = 0, \quad i = 0, 1, \ldots, r - 1, \quad r - 1 < \alpha \leq r, \quad r \in \mathbb{N}
\end{equation}

where \(g \in L^2(D) \) and \(k \in L^2(D \times D) \) with \(D = [0, 1] \times [0, 1] \), \(f(x, y) \) is an unknown function to be found and \(D_x^\alpha \) is the partial fractional derivative of order \(\alpha \) with respect to \(x \) in the Caputo sense.

2. Preliminaries

In this section, we present some preliminary results which will be used throughout the paper.

2.1. Digamma function.

Definition 2.1. The digamma function, the logarithmic derivative of the gamma function, is defined as

\[
\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)},
\]

where \(\Gamma(x) \) is the classical gamma function

\[
\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt, \quad x > 0.
\]

The derivatives \(\psi', \psi'', \ldots \) are called polygamma functions. Digamma function has the following series representation [1]

\[
\psi(x) = -\gamma + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{x+k} \right) - \frac{1}{x},
\]
where $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) \approx 0.57721566\ldots$ is the Euler-Mascheroni’s constant. A simple calculation shows that

\begin{align*}
\psi'(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{(x+k)^2} \right) + \frac{1}{x^2} = \sum_{k=0}^{\infty} \frac{1}{(x+k)^2}, \\
\psi''(x) &= -2 \sum_{k=0}^{\infty} \frac{1}{(x+k)^3}, \\
\psi'''(x) &= 6 \sum_{k=0}^{\infty} \frac{1}{(x+k)^4}.
\end{align*}

2.2. Fractional calculus.

Definition 2.2. The partial Rimann-Liouville fractional integral operator I_x^α of order $\alpha > 0$ with respect to x is defined as $[8]

\begin{align*}
I_x^\alpha f(x, y) &= \frac{1}{\Gamma(\alpha)} \int_0^x (x - \tau)^{\alpha-1} f(\tau, y) d\tau \\
I_0^0 f(x, y) &= f(x, y).
\end{align*}

Definition 2.3. The Caputo partial fractional derivative of order $\alpha > 0$ with respect to x is given by $[8]

\begin{align*}
D_x^\alpha f(x, y) &= \frac{1}{\Gamma(n-\alpha)} \int_0^x (x - \tau)^{n-\alpha-1} \frac{\partial^n f(\tau, y)}{\partial \tau^n} d\tau, \quad n - 1 < \alpha \leq n
\end{align*}

where n is an integer.

Similar to one-dimensional functions, it can be easily shown that:

\begin{align*}
D_x^\alpha I_x^\alpha f(x, y) &= f(x, y).
\end{align*}

(2.1)

2.3. Legendre polynomials. For $n = 0, 1, 2, \ldots$, Legendre polynomials of degree n are given by Rodrigue’s formula

\begin{align*}
P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad -1 \leq x \leq 1,
\end{align*}

which satisfies the following recurrence relation

\begin{align*}
P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x), \quad n \geq 1,
\end{align*}
with \(P_0(x) = 1, \ P_1(x) = x. \)

The following properties hold for the Legendre polynomials [21]:

\[
\begin{align*}
(2.2) \quad & \int_{-1}^{1} P_n(x)P_m(x)dx = 0, \quad n \neq m, \\
(2.3) \quad & \int_{-1}^{1} P_n^2(x)dx = \frac{2}{2n + 1}, \\
(2.4) \quad & P_n(-1) = (-1)^n, \quad P_n(1) = 1, \\
(2.5) \quad & P_{n+1}'(x) - P_{n-1}'(x) = (2n + 1)P_n(x), \quad n \geq 1.
\end{align*}
\]

2.4. 2D-LWs and their properties. The two-dimensional Legendre wavelets \(\psi_{n_1m_1n_2m_2}(x, y) \) are defined on the interval \(D \) as [3]

\[
\psi_{n_1m_1n_2m_2}(x, y) = \sum_{n_1=1}^{\infty} \sum_{m_1=0}^{\infty} \sum_{n_2=1}^{\infty} \sum_{m_2=1}^{\infty} c_{n_1m_1n_2m_2} \psi_{n_1m_1n_2m_2}(x, y),
\]

where

\[
(2.7) \quad c_{n_1m_1n_2m_2} = \int_{0}^{1} \int_{0}^{1} f(x, y)\psi_{n_1m_1n_2m_2}(x, y)dxdy.
\]

We can approximate the function \(f(x, y) \) by the truncated form

\[
f(x, y) \simeq \sum_{n_1=1}^{2^{k_1}-1} \sum_{m_1=0}^{M_1-1} \sum_{n_2=1}^{2^{k_2}-1} \sum_{m_2=1}^{M_2-1} c_{n_1m_1n_2m_2} \psi_{n_1m_1n_2m_2}(x, y).
\]

For simplicity, we write the function \(f(x, y) \) as

\[
f(x, y) \simeq \sum_{i=1}^{\hat{m}_1} \sum_{j=1}^{\hat{m}_2} c_{ij} \psi_{ij}(x, y),
\]
where \(\tilde{m}_1 = 2^{k_1-1}M_1 \), \(\tilde{m}_2 = 2^{k_2-1}M_2 \), \(c_{ij} = c_{n_1,m_1,n_2,m_2} \), \(\psi_{ij} = \psi_{n_1,m_1,n_2,m_2} \) and \(i, j \) are determined by the relations \(i = M_1(n_1 - 1) + m_1 + 1 \) and \(j = M_2(n_2 - 1) + m_2 + 1 \), respectively. The above representation, alternatively, can be written as

\[
f(x, y) \simeq C^T \Psi(x, y)
\]

where \(C \) and \(\Psi(x, y) \) are \(\tilde{m}_1 \tilde{m}_2 \) vectors as

\[
C = [c_{11}, \ldots, c_{1\tilde{m}_2}, c_{21}, \ldots, c_{2\tilde{m}_2}, \ldots, c_{\tilde{m}_1,1}, \ldots, c_{\tilde{m}_1,\tilde{m}_2}]^T
\]

and

\[
(2.8) \quad \Psi(x, y) = [\psi_{11}, \ldots, \psi_{1\tilde{m}_2}, \psi_{21}, \ldots, \psi_{2\tilde{m}_2}, \ldots, \psi_{\tilde{m}_1,1}, \ldots, \psi_{\tilde{m}_1,\tilde{m}_2}]^T.
\]

3. Solution of 2D-IDEs of the fractional order

An \(\tilde{m}_1 \tilde{m}_2 \)-set of the two-dimensional Block-Pulse functions (2D-BPFs) on the interval \(D \) is defined as

\[
b_{ij}(x, y) = \begin{cases}
1, & \frac{i-1}{\tilde{m}_1} \leq x < \frac{i}{\tilde{m}_1}, \quad \frac{j-1}{\tilde{m}_2} \leq y < \frac{j}{\tilde{m}_2}, \\
0, & \text{otherwise},
\end{cases}
\]

where \(i = 1, 2, \ldots, \tilde{m}_1 \), \(j = 1, 2, \ldots, \tilde{m}_2 \). These functions have disjointness and orthogonality properties [4].

Similar to given operational matrix of BPFs for fractional integration in [9], the 2D-BPFs operational matrix of the fractional integration \(F^\alpha \) can be obtained as

\[
(3.2) \quad F^\alpha_x (B(x, y)) = F^\alpha B(x, y),
\]

where

\[
(3.3) \quad B(x, y) = [b_{11}(x, y), \ldots, b_{1\tilde{m}_2}(x, y), \ldots, b_{\tilde{m}_1,1}(x, y), \ldots, b_{\tilde{m}_1,\tilde{m}_2}(x, y)]^T
\]

and

\[
F^\alpha = \frac{1}{\tilde{m}_1^\alpha} \frac{1}{\Gamma(\alpha + 2)} \left[\begin{array}{cccccccccccccccc}
1 & 0 & \cdots & 0 & \xi_1 & 0 & \cdots & 0 & \xi_2 & \cdots & \xi_{\tilde{m}_1-1} & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & \xi_1 & 0 & \cdots & 0 & \xi_2 & \cdots & \xi_{\tilde{m}_1-1} & 0 & \\
& \vdots & \vdots & \cdots & \\
0 & 0 & 0 & \cdots & 1
\end{array} \right]
\]

The nonzero elements of the above matrix are computed as follows

\[
F^\alpha_{k,k} = 1, \quad k = 1, 2, \ldots, \tilde{m}_1 \tilde{m}_2,
\]

\[
F^\alpha_{i,i+j\tilde{m}_2} = \xi_j, \quad i = 1, \ldots, \tilde{m}_1 \tilde{m}_2 - j, \quad j = 1, \ldots, \tilde{m}_1 - 1,
\]
where \(\xi_j = (j + 1)^{\alpha+1} - 2j^{\alpha+1} + (j - 1)^{\alpha+1} \).

The 2D-LWs may be expanded into an \(\hat{m}_1 \hat{m}_2 \)-term of the 2D-BPFs as

\[
\Psi(x, y) = \Phi B(x, y)
\]

in which

\[
\Phi = [\Psi(x_1, y_1), \ldots, \Psi(x_1, y_{\hat{m}_2}), \ldots, \Psi(x_{\hat{m}_1}, y_1), \ldots, \Psi(x_{\hat{m}_1}, y_{\hat{m}_2})]
\]

where the vector \(\Psi(x_i, y_j) \) can be obtained from (2.8) and

\[
x_i = \frac{2i - 1}{2\hat{m}_1}, \quad i = 1, 2, \ldots, \hat{m}_1, \quad y_j = \frac{2j - 1}{2\hat{m}_2}, \quad j = 1, 2, \ldots, \hat{m}_2.
\]

Now, we can get

\[
I_x^\alpha \Psi(x, y) = P^\alpha \Psi(x, y),
\]

where \(P^\alpha \) is called the 2D-LWs operational matrix of fractional integration.

Using (3.2) and (3.4), we get

\[
I_x^\alpha \Psi(x, y) = I_x^\alpha \Phi B(x, y) = \Phi I_x^\alpha B(x, y) = \Phi F^\alpha B(x, y),
\]

and applying (3.6) and (3.7) lead to

\[
P^\alpha \Phi B(x, y) = P^\alpha \Psi(x, y) = \Phi F^\alpha B(x, y).
\]

Therefore, one gets

\[
P^\alpha = \Phi F^\alpha \Phi^{-1}.
\]

To solve (1.1), we can approximate the functions \(D_x^\alpha f(x, y) \) and \(g(x, y) \) by the Legendre wavelets as

\[
D_x^\alpha f(x, y) \simeq C^T \Psi(x, y),
\]

\[
g(x, y) \simeq G^T \Psi(x, y),
\]

where

\[
G = [g_{11}, \ldots, g_{1\hat{m}_2}, g_{21}, \ldots, g_{2\hat{m}_2}, \ldots, g_{\hat{m}_1}, \ldots, g_{\hat{m}_1 \hat{m}_2}]^T,
\]

\[
g_{ij} = \int_0^1 \int_0^1 \psi_{ij}(x, y)g(x, y)dxdy.
\]

Now using (3.6) and (3.8), we obtain

\[
f(x, y) = I_x^\alpha D_x^\alpha f(x, y) \simeq I_x^\alpha (C^T \Psi(x, y)) = C^T P^\alpha \Psi(x, y).
\]

Substituting (3.8), (3.9) and (3.10) into (1.1), implies

\[
C^T \Psi(x, y) - \lambda \int_0^x \int_0^x h(x, y, u, v)C^T P^\alpha \Psi(u, v)dudv = G^T \Psi(x, y).
\]
By taking the collocation points (3.5), we collocate (1.1) at \(\tilde{m}_1 \tilde{m}_2 \) points \((x_i, t_j)\) as follows
\[(3.11)\]
\[C^T \Psi(x_i, y_j) - \lambda \int_0^{y_j} \int_0^{x_i} k(x_i, y_j, u, v) C^T P^\alpha \Psi(u, v) du dv = G^T \Psi(x_i, y_j).\]

By setting
\[s = \frac{2}{x_i} u - 1, \quad t = \frac{2}{t_j} v - 1,\]
the \(y\)-intervals \([0, x_i]\) and \(z\)-intervals \([0, y_j]\) are converted into \(s\) and \(t\) intervals \([-1, 1]\). Thus, (3.11) can be written as
\[(3.12)\]
\[C^T \Psi(x_i, y_j) - \lambda \frac{x_i y_j}{4} \int_{-1}^{1} \int_{-1}^{1} k(x_i, y_j, \frac{x_i}{2}(s + 1), \frac{y_j}{2}(t + 1)) \times C^T P^\alpha \Psi \left(\frac{x_i}{2}(s + 1), \frac{y_j}{2}(t + 1) \right) ds dt = G^T \Psi(x_i, y_j).\]

Finally using the Gaussian integration formula, we obtain
\[(3.13)\]
\[C^T \Psi(x_i, y_j) - \lambda \frac{x_i y_j}{4} \sum_{p=1}^{h_1} \sum_{q=1}^{h_2} w_{1p} w_{2q} k(x_i, y_j, \frac{x_i}{2}(s_q + 1), \frac{y_j}{2}(t_p + 1)) \times C^T P^\alpha \Psi \left(\frac{x_i}{2}(s_q + 1), \frac{y_j}{2}(t_p + 1) \right) = G^T \Psi(x_i, y_j),\]
where \(t_p\) and \(s_q\) are zeros of Legendre polynomials of degrees \(h_1\) and \(h_2\) respectively, and \(w_{1p}\) and \(w_{2q}\) are corresponding weights. By solving this linear system of \(\tilde{m}_1 \tilde{m}_2\) equations, the approximate solution \(f(x, y)\) is obtained from (3.10).

Remark 3.1. The cost of computation for (3.13) is approximately \(O(\tilde{m}_1^2 \tilde{m}_2^2)\).

4. **Error analysis**

In this section, we give a lemma and theorem based on [10] about error bound and convergence.

Lemma 4.1. Let \(D^\alpha f_{k_1, M_1, k_2, M_2}(x, y)\) be approximation of \(D^\alpha f(x, y)\) which is obtained by Legendre wavelets. Then
\[(4.1)\]
\[D^\alpha f(x, y) - D^\alpha f_{k_1, M_1, k_2, M_2}(x, y) = \sum_{n_1=2^{k_1}-1+1}^{\infty} \sum_{m_1=M_1}^{\infty} \sum_{n_2=2^{k_2}-1+1}^{\infty} \sum_{m_2=M_2}^{\infty} c_{n_1 m_1 n_2 m_2} \psi_{n_1 m_1 n_2 m_2}(x, y).\]
where

\begin{equation}
(4.2)
c_{n_1m_1n_2m_2} = \sqrt{\frac{1}{2^{5k_1+1}(2m_1+1)} \frac{1}{2^{5k_2+1}(2m_2+1)}}
\end{equation}

\begin{equation}
(4.3)
\times \int_{-1}^{1} \int_{-1}^{1} D_x^{k_1+2} D_y^{k_2} f\left(\frac{\hat{n}_1 + u}{2k_1}, \frac{\hat{n}_2 + v}{2k_2}\right) \left(\frac{P_{m_1+2}(u) - P_{m_1}(u)}{2m_1+3}\right) dudv
\end{equation}

\begin{equation}
(4.4)
\frac{P_{m_1}(u) - P_{m_1-2}(u)}{2m_1-1} \left(\frac{P_{m_1+2}(v) - P_{m_2}(v)}{2m_2+3} - \frac{P_{m_2}(v) - P_{m_2-2}(v)}{2m_2-1}\right) dudv
\end{equation}

\begin{equation}
(4.5)
and \ u = 2^{k_1}x - \hat{n}_1, \ v = 2^{k_2}y - \hat{n}_2.
\end{equation}

Proof. Since \(D_x^\alpha f_{k_1,k_2,M_2}(x,y) \) is approximation of \(D_x^\alpha f(x,y) \), similar to (3.8), we have

\begin{equation}
(4.6)
D_x^\alpha f_{k_1,k_2,M_2}(x,y) = \sum_{n_1=1}^{2^{k_1-1}M_1-1} \sum_{m_1=0}^{2^{k_2-1}M_2-1} \sum_{n_2=1}^{2^{k_2-1}M_2-1} \sum_{m_2=0}^{2^{k_2-1}M_2-1} c_{n_1m_1n_2m_2} \psi_{n_1m_1n_2m_2}(x,y),
\end{equation}

which leads to (4.1). By setting \(2^{k_1}x - \hat{n}_1 = u, 2^{k_2}y - \hat{n}_2 = v \) and using (2.7), we have

\[c_{n_1m_1n_2m_2} = \int_0^1 \int_0^1 D_x^\alpha f(x,y) \psi_{n_1m_1n_2m_2}(x,y) dxdy \]

\[= \int_{(\hat{n}_1-1)/2^{k_1}}^{(\hat{n}_1+1)/2^{k_1}} D_x^\alpha f(x,y) \sqrt{\frac{2m_1+1}{2}} \sqrt{\frac{2m_2+1}{2}} \]

\[\times P_{m_1}(2^{k_1}x - \hat{n}_1) P_{m_2}(2^{k_2}y - \hat{n}_2) dxdy \]

\[= \sqrt{\frac{2m_1+1}{2^{k_1+1}}} \int_{-1}^{1} \int_{-1}^{1} D_x^\alpha f\left(\frac{\hat{n}_1 + u}{2k_1}, \frac{\hat{n}_2 + v}{2k_2}\right) P_{m_1}(u) P_{m_2}(v) dudv. \]
Using (2.4) and (2.5), we have

\[
c_{n_{1}m_{1}n_{2}m_{2}} = \sqrt{\frac{1}{2^{k_{1}+1}(2m_{1} + 1)} \frac{2m_{2} + 1}{2^{k_{2}+1}}} \\
\times \int_{-1}^{1} P_{m_{2}}(v) \int_{-1}^{1} D_{x}^{\alpha} f \left(\frac{\tilde{n}_{1} + u}{2^{k_{1}}}, \frac{\tilde{n}_{2} + v}{2^{k_{2}}} \right) d(P_{m_{1}+1}(u) - P_{m_{1}-1}(u))dv \\
= - \sqrt{\frac{1}{2^{k_{1}+1}(2m_{1} + 1)} \frac{2m_{2} + 1}{2^{k_{2}+1}}} \int_{-1}^{1} P_{m_{2}}(v) \int_{-1}^{1} D_{x}^{\alpha+1} f \left(\frac{\tilde{n}_{1} + u}{2^{k_{1}}}, \frac{\tilde{n}_{2} + v}{2^{k_{2}}} \right) \\
\times (P_{m_{1}+1}(u) - P_{m_{1}-1}(u))dudv \\
= - \sqrt{\frac{1}{2^{k_{1}+1}(2m_{1} + 1)} \frac{2m_{2} + 1}{2^{k_{2}+1}}} \int_{-1}^{1} P_{m_{2}}(v) \int_{-1}^{1} D_{x}^{\alpha+1} f \left(\frac{\tilde{n}_{1} + u}{2^{k_{1}}}, \frac{\tilde{n}_{2} + v}{2^{k_{2}}} \right) \\
\times d \left(\frac{P_{m_{1}+2}(u) - P_{m_{1}}(u)}{2m_{1} + 3} - \frac{P_{m_{1}}(u) - P_{m_{1}-2}(u)}{2m_{1} - 1} \right) dv \\
= \sqrt{\frac{1}{2^{k_{1}+1}(2m_{1} + 1)} \frac{2m_{2} + 1}{2^{k_{2}+1}}} \int_{-1}^{1} P_{m_{2}}(v) \int_{-1}^{1} D_{x}^{\alpha+2} f \left(\frac{\tilde{n}_{1} + u}{2^{k_{1}}}, \frac{\tilde{n}_{2} + v}{2^{k_{2}}} \right) \\
\times \left(\frac{P_{m_{1}+2}(u) - P_{m_{1}}(u)}{2m_{1} + 3} - \frac{P_{m_{1}}(u) - P_{m_{1}-2}(u)}{2m_{1} - 1} \right) dudv,
\]

and by the same way for \(p_{m_{2}}(v) \) we obtain

\[
c_{n_{1}m_{1}n_{2}m_{2}} = \sqrt{\frac{1}{2^{k_{1}+1}(2m_{1} + 1)} \frac{2m_{2} + 1}{2^{k_{2}+1}(2m_{2} + 1)}} \\
\times \int_{-1}^{1} \int_{-1}^{1} D_{x}^{\alpha+2} D_{y}^{2} f \left(\frac{\tilde{n}_{1} + u}{2^{k_{1}}}, \frac{\tilde{n}_{2} + v}{2^{k_{2}}} \right) \left(\frac{P_{m_{1}+2}(u) - P_{m_{1}}(u)}{2m_{1} + 3} - \frac{P_{m_{1}}(u) - P_{m_{1}-2}(u)}{2m_{1} - 1} \right) dvdu.
\]

\[\Box\]

Theorem 4.2. Let the assumptions of Lemma 4.1 hold and there exists a positive constant \(\bar{M} \), such that

\[|D_{x}^{\alpha+2} D_{y}^{2} f(x, y)| \leq \bar{M}, \quad \forall (x, y) \in D.\]

Then

\[\| D_{x}^{\alpha} f(x, y) - D_{x}^{\alpha} f_{k_{1}, k_{2}, M_{1}, M_{2}}(x, y) \|_{E} \leq \left(\frac{\bar{M}^{2}}{2^{2k_{1}+2k_{2}} k_{1} k_{2}} \psi''(M_{1} - 1.5) \psi''(M_{2} - 1.5) \right)^{1/2}\]

where \(\| f(x, y) \|_{E} = (\int_{0}^{1} \int_{0}^{1} f^{2}(x, y)dydx)^{1/2} \) and \(\psi(x) \) is the digamma function.
Proof. The orthonormality of the sequence \(\{\psi_{n_1m_1n_2m_2}\} \) on \(D \) implies that
\[
\int_0^1 \int_0^1 \Psi(x,y)\Psi^T(x,y)dx dy = I,
\]
where \(I \) is the identity matrix. Therefore, we get
\[
\left\| D_y^n f(x,y) - D_x^n f_{k_1,k_2,M_1,M_2}(x,y) \right\|_E^2 = \sum_{n_1=2^{k_1-1}+1}^\infty \sum_{m_1=M_1}^\infty \sum_{n_2=2^{k_2-1}+1}^\infty \sum_{m_2=M_2}^\infty c_{n_1m_1n_2m_2}^2.
\]
By Lemma 4.1 and relations (2.2) and (2.3), we have
\[
c_{n_1m_1n_2m_2}^2 \leq \frac{1}{2^{4k_1+1}(2m_1+1)} \frac{1}{2^{4k_2+1}(2m_2+1)} \times \int_{-1}^1 \int_{-1}^1 \left| D_y^n D_x^n f \left(\frac{n_1 + u}{2^{k_1}}, \frac{n_2 + v}{2^{k_2}} \right) \right|^2 du dv \times \int_{-1}^1 \int_{-1}^1 \left| (2m_1 - 1)P_{m_1+2}(u) - (4m_1 + 2)P_{m_1}(u) + (2m_1 + 3)P_{m_1-2}(u) \right|^2 \frac{(2m_1 + 3)(2m_1 - 1)}{(2m_2 + 3)(2m_2 - 1)} du dv \times \left| (2m_2 - 1)P_{m_2+2}(v) - (4m_2 + 2)P_{m_2}(v) + (2m_2 + 3)P_{m_2-2}(v) \right|^2 \frac{(2m_2 + 3)(2m_2 - 1)}{(2m_2 + 3)(2m_2 - 1)} du dv \times \frac{2^{4k_1}(2m_1 + 1)2^{4k_2}(2m_2 + 1)(2m_1 + 3)^2(2m_1 - 1)^2(2m_2 + 3)^2(2m_2 - 1)^2}{(2m_1 + 5)^2 + (4m_1 + 2)^2 + 2 - (2m_1 + 3)^2} \times \frac{2^{4k_1}(2m_1 + 1)2^{4k_2}(2m_2 + 1)(2m_1 + 3)^2(2m_1 - 1)^2(2m_2 + 3)^2(2m_2 - 1)^2}{(2m_2 + 5)^2 + (4m_2 + 2)^2 + 2 - (2m_2 + 3)^2} \times \frac{12(2m_1 + 3)^2}{2m_1 - 3} \times \frac{12(2m_2 + 3)^2}{2m_2 - 3} \frac{144M^2}{144M^2} = \frac{2^{4k_1}(2m_1 + 1)2^{4k_2}(2m_2 + 1)(2m_1 - 1)^2(2m_2 - 3)^2}{(2m_1 - 3)^2(2m_2 - 3)^2}.
\]
Therefore, we get
\[
\sum_{n_1=2^{k_1-1}+1}^\infty \sum_{m_1=M_1}^\infty \sum_{n_2=2^{k_2-1}+1}^\infty \sum_{m_2=M_2}^\infty c_{n_1m_1n_2m_2}^2 < 144M^2 \sum_{n_1=2^{k_1-1}+1}^\infty \frac{1}{(2n_1)^5} \sum_{m_1=M_1}^\infty \frac{1}{(2m_1 - 3)^4} \sum_{n_2=2^{k_2-1}+1}^\infty \frac{1}{(2n_2)^5}.
\]
we obtain
\[
\times \sum_{m_2=M_2}^{\infty} \frac{1}{(2m_2 - 3)^4} \leq \frac{\hat{M}^2}{225} \frac{1}{2^{4k_1}2^{4k_2}} \psi'''(M_1 - 1.5) \psi'''(M_2 - 1.5).
\]
Then, we obtain
\[
\|D^\alpha_x f(x,y) - D^\alpha_x f_{k_1,M_1,k_2,M_2}(x,y)\|_E^2 \leq \frac{\hat{M}^2}{225} \frac{1}{2^{4k_1}2^{4k_2}} \psi'''(M_1 - 1.5) \psi'''(M_2 - 1.5),
\]
which implies
\[
\|D^\alpha_x f(x,y) - D^\alpha_x f_{k_1,M_1,k_2,M_2}(x,y)\|_E \leq \left(\frac{\hat{M}^2}{225} \frac{1}{2^{4k_1}2^{4k_2}} \psi'''(M_1 - 1.5) \psi'''(M_2 - 1.5) \right)^{1/2}.
\]
It completes the proof. □

Note that \(\|D^\alpha_x f(x,y) - D^\alpha_x f_{k_1,M_1,k_2,M_2}(x,y)\|_E = O(N_1^{-1}N_2^{-1})\) with \(N_1 = 2^{2k_1}\) and \(N_2 = 2^{2k_2}\).

Corollary 4.3. Under the assumptions of Theorem 4.2, we have
\[
\|D^\alpha_x f(x,y) - D^\alpha_x f_{k_1,M_1,k_2,M_2}(x,y)\|_E \to 0.
\]
Using (2.1), in view of (1.2), we get
\[
\|f(x,y) - f_{k_1,M_1,k_2,M_2}(x,y)\|_E \to 0,
\]
when \(M_1,M_2\) is fixed and \(k_1,k_2 \to \infty\).

5. Numerical results

In this section, we apply the proposed method based on the two-dimensional Legendre wavelets for some examples to show the efficiency and accuracy of the method.

Example 5.1. Consider the linear two-dimensional fractional integro-differential equation (See [11])
\[
D^{0.5}_x f(x,y) - \int_0^y \int_0^x (x^2 y + u) f(u,v)du dv = 4y \sqrt{\frac{x}{\pi}} - \frac{1}{2} x^4 y^3 - \frac{1}{3} x^3 y^2
\]
subject to the initial condition \(f(0,y) = 0\). The exact solution of this equation is \(f(x,y) = 2xy\). The values of absolute errors at some points are shown in Table 1 for different values of \(k_1\) and \(k_2\). According to this table, we observe that the results are improved when the numbers \(k_1\) and \(k_2\) increase.

Example 5.2. Consider the equation
\[
D^{0.75}_x f(x,y) - \int_0^y \int_0^x (y + v) f(u,v)du dv = \frac{6.4}{\Gamma(0.25)} yx^{5/4} - \frac{5}{18} x^3 y^3
\]
such that \(f(0,y) = 0\), with the exact solution \(f(x,y) = x^2 y\). Here, we also use the approximate \(L_2\)-norm of absolute error as
\[
\|e(x,y)\|_2 = \left(\int_0^1 \int_0^1 e(x,y)^2 dx dy \right)^{1/2}.
\]
Solving 2D-FIDEs by Legendre wavelets

Table 1. Numerical results of example 5.1

<table>
<thead>
<tr>
<th>(x, t)</th>
<th>(k_1 = 3, k_2 = 3)</th>
<th>(k_1 = 4, k_2 = 4)</th>
<th>(k_1 = 5, k_2 = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1,0.8)</td>
<td>0.8074e-2</td>
<td>0.1173e-3</td>
<td>0.1250e-3</td>
</tr>
<tr>
<td>(0.2,0.6)</td>
<td>0.2026e-3</td>
<td>0.1805e-3</td>
<td>0.2751e-4</td>
</tr>
<tr>
<td>(0.3,0.8)</td>
<td>0.6235e-3</td>
<td>0.9276e-4</td>
<td>0.1189e-4</td>
</tr>
</tbody>
</table>

The value of error at some points together with \(L_2\)-norm errors are reported in Table 2.

Table 2. Numerical results of Example 5.2

<table>
<thead>
<tr>
<th>(x, t)</th>
<th>(k_1 = 3, k_2 = 3)</th>
<th>(k_1 = 4, k_2 = 4)</th>
<th>(k_1 = 5, k_2 = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0.7)</td>
<td>0.5624e-2</td>
<td>0.1404e-2</td>
<td>0.3508e-3</td>
</tr>
<tr>
<td>(0.1,0.3)</td>
<td>0.2124e-2</td>
<td>0.1636e-2</td>
<td>0.1342e-3</td>
</tr>
<tr>
<td>(0.3,0.8)</td>
<td>0.1688e-2</td>
<td>0.1456e-2</td>
<td>0.1099e-3</td>
</tr>
<tr>
<td>(0.4,0.2)</td>
<td>0.1429e-2</td>
<td>0.1087e-2</td>
<td>0.8962e-4</td>
</tr>
<tr>
<td>(0.6,0.6)</td>
<td>0.4400e-2</td>
<td>0.3248e-3</td>
<td>0.2700e-3</td>
</tr>
<tr>
<td>(0.7,0.5)</td>
<td>0.1222e-2</td>
<td>0.8878e-3</td>
<td>0.6759e-4</td>
</tr>
<tr>
<td>(0.8,0.4)</td>
<td>0.8837e-2</td>
<td>0.7061e-3</td>
<td>0.5285e-4</td>
</tr>
<tr>
<td>(0.9,0.9)</td>
<td>0.7037e-2</td>
<td>0.5898e-3</td>
<td>0.4090e-3</td>
</tr>
<tr>
<td>(L_2)-norm</td>
<td>0.3133e-2</td>
<td>0.7745e-3</td>
<td>0.1974e-3</td>
</tr>
</tbody>
</table>

The plots of the absolute errors for Example 5.2 are also shown in Figure 1.

Example 5.3. Consider the equation

\[
D_x^{0.5} f(x, y) - \int_0^y \int_0^x (x\cos(u) + yv)f(u, v)dudv = \frac{2\sin(y)\sqrt{\pi}}{\Gamma(0.5)} + x - x\cos(x) - x^2\sin(x) - x\cos(y) + x^2\sin(x)\cos(y) - \frac{1}{2}x^2y\sin(y) + \frac{1}{2}x^2y^2\cos(y)
\]

with initial condition \(f(0, y) = 0\) and exact solution \(f(x, y) = x\sin(y)\). We solve this problem for \(M_1 = M_2 = 4\) and \(k_1 = k_2 = 2, 3, 4\). The numerical results are reported in Table 3 and plotted in Figure 2. Clearly, the accuracy is very satisfactory. Moreover, higher accuracy can be achieved by taking higher-order approximations.
Figure 1. The plots of the absolute errors of example 5.2 for different values of k_1, k_2 and $M_1 = M_2 = 2$
Figure 2. The plots of the absolute errors of example 5.3 for different values of k_1, k_2 and $M_1 = M_2 = 4$
Example 5.4. Consider the equation
\[D_2^\alpha f(x, y) - \int_0^y \int_0^x f(u, v) dudv = e^{2y} + \frac{1}{4} x^2 - \frac{1}{4} x^2 e^{2y} \]
subject to the initial condition \(f(0, y) = 0 \). The exact solution of this problem for \(\alpha = 1 \) is \(f(x, y) = xe^{2y} \). The numerical results are given in Table 4. We see that the numerical solution is very close to the exact solution when \(\alpha = 1 \). Also, results of Table 4 illustrate that, when \(\alpha \), the approximate solution, tends to the exact solution \(\alpha \to 0 \).

Table 3. Numerical results of example 5.3

<table>
<thead>
<tr>
<th>((x, t))</th>
<th>(k_1 = 2, k_2 = 2)</th>
<th>(k_1 = 3, k_2 = 3)</th>
<th>(k_1 = 4, k_2 = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1,0.1)</td>
<td>0.6417e-3</td>
<td>0.1599e-3</td>
<td>0.5398e-4</td>
</tr>
<tr>
<td>(0.2,0.2)</td>
<td>0.6384e-3</td>
<td>0.2155e-3</td>
<td>0.5185e-4</td>
</tr>
<tr>
<td>(0.3,0.3)</td>
<td>0.8544e-3</td>
<td>0.1566e-3</td>
<td>0.6503e-4</td>
</tr>
<tr>
<td>(0.4,0.4)</td>
<td>0.8798e-3</td>
<td>0.2122e-3</td>
<td>0.7688e-4</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>0.4962e-3</td>
<td>0.2477e-3</td>
<td>0.8809e-4</td>
</tr>
<tr>
<td>(0.6,0.6)</td>
<td>0.7754e-3</td>
<td>0.2971e-3</td>
<td>0.9899e-4</td>
</tr>
<tr>
<td>(0.7,0.7)</td>
<td>0.1021e-2</td>
<td>0.3662e-3</td>
<td>0.1226e-3</td>
</tr>
<tr>
<td>(0.8,0.8)</td>
<td>0.1311e-2</td>
<td>0.4738e-3</td>
<td>0.1599e-3</td>
</tr>
<tr>
<td>(0.9,0.9)</td>
<td>0.5624e-2</td>
<td>0.6344e-3</td>
<td>0.2246e-3</td>
</tr>
</tbody>
</table>

Table 4. Numerical results of example 5.4

<table>
<thead>
<tr>
<th>((x, t))</th>
<th>(\alpha = 0.7)</th>
<th>(\alpha = 0.8)</th>
<th>(\alpha = 0.9)</th>
<th>(\alpha = 1)</th>
<th>Exact solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1,0.1)</td>
<td>0.26601</td>
<td>0.20659</td>
<td>0.15935</td>
<td>0.12214</td>
<td>0.12214</td>
</tr>
<tr>
<td>(0.2,0.2)</td>
<td>0.53239</td>
<td>0.44194</td>
<td>0.36432</td>
<td>0.29836</td>
<td>0.29836</td>
</tr>
<tr>
<td>(0.3,0.3)</td>
<td>0.86665</td>
<td>0.74817</td>
<td>0.64156</td>
<td>0.54663</td>
<td>0.54663</td>
</tr>
<tr>
<td>(0.4,0.4)</td>
<td>1.29938</td>
<td>1.15276</td>
<td>1.01614</td>
<td>0.89021</td>
<td>0.89021</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>1.86431</td>
<td>1.68793</td>
<td>1.51904</td>
<td>1.35913</td>
<td>1.35914</td>
</tr>
<tr>
<td>(0.6,0.6)</td>
<td>2.60016</td>
<td>2.39255</td>
<td>2.18912</td>
<td>1.99205</td>
<td>1.99207</td>
</tr>
<tr>
<td>(0.7,0.7)</td>
<td>3.55669</td>
<td>3.31648</td>
<td>3.07616</td>
<td>2.83857</td>
<td>2.83864</td>
</tr>
<tr>
<td>(0.8,0.8)</td>
<td>4.79588</td>
<td>4.52245</td>
<td>4.24337</td>
<td>3.96219</td>
<td>3.96242</td>
</tr>
<tr>
<td>(0.9,0.9)</td>
<td>6.39578</td>
<td>6.08985</td>
<td>5.77115</td>
<td>5.44400</td>
<td>5.44468</td>
</tr>
</tbody>
</table>

6. Conclusion

In this paper, the two-dimensional Legendre wavelets are developed for solving two-dimensional fractional integro-differential equations. The convergence results also are investigated. Numerical results confirm convergency of the method, too. It seems that, the presented method can be applied for solving multi-order partial fractional integro-differential equations.
Acknowledgement

The authors would like to thank Professor S. Shahmorad and the anonymous referees for their valuable comments and suggestions which improved the quality of the paper.

References

(Mansureh Mojahedfar) Department of Mathematics, Shahed University, Tehran, Iran.

E-mail address: m.mojahedfar@shahed.ac.ir and m.mojahedfar@yahoo.com

(Abolfazl Tari Marzabad) Department of Mathematics, Shahed University, Tehran, Iran.

E-mail address: tari@shahed.ac.ir and at4932@gmail.com