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Abstract. Using search directions of a recent class of three–term con-
jugate gradient methods, modified versions of the Hestenes–Stiefel and

Polak–Ribière–Polyak methods are proposed which satisfy the sufficient
descent condition. The methods are shown to be globally convergent
when the line search fulfills the (strong) Wolfe conditions. Numerical ex-
periments are done on a set of CUTEr unconstrained optimization test

problems. They demonstrate efficiency of the proposed methods in the
sense of the Dolan–Moré performance profile.
Keywords: Unconstrained optimization, conjugate gradient method,
sufficient descent property, line search, global convergence.
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1. Introduction

Consider the unconstrained optimization problem

(1.1) min
x∈Rn

f(x),

where f : Rn → R is continuously differentiable and analytic expression of
its gradient is available. As practical tools for solving (1.1), iterative methods
define a sequence of approximations that are expected to be closer and closer
to the exact solution in a given norm, stopping the iterations using some pre-
defined criterion, and obtaining a vector which is only an approximation of the
solution. When the dimension n is large, iterative methods which require low
memory storage are more encouraging. Among them there are the conjugate
gradient (CG) methods with the following iterative formula:

(1.2) x0 ∈ Rn, xk+1 = xk + sk, sk = αkdk, k = 0, 1, . . . ,
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Descent extensions of the HS and PRP methods 2438

where αk is a step length to be computed by a line search technique along the
search direction dk defined by

(1.3) d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, . . . ,

in which gk = ∇f(xk) and βk is a scalar called the CG (update) parameter.
Different CG methods correspond to different choices for βk with dissimilar

computational behaviors [1, 13,23]. Two well–known and numerically effective
CG parameters have been proposed by Hestenes and Stiefel [24] (HS), and
Polak, Ribière and Polyak [26,27] (PRP) with

βHS
k =

gTk+1yk

dTk yk
, and βPRP

k =
gTk+1yk

||gk||2
,

where yk = gk+1 − gk, and ||.|| stands for the ℓ2 norm. However, in theoretical
point of view, the methods fail to guarantee the descent property which is
defined as follows:

(1.4) dTk gk < 0, ∀k ≥ 0.

To overcome this defect, efforts have been made to suggest extensions of the
HS and PRP methods with sufficient descent property, i.e.,

(1.5) dTk gk ≤ −c||gk||2, ∀k ≥ 0,

where c is a positive constant, being stronger than the descent condition (1.4).
A brief review of the literature reveals an abundance of such attempts. As
examples, interested readers can study the references [2, 5, 10, 12, 14, 17, 18, 21,
29,32–38].

In a general scheme, recently Narushima et al. [25] proposed a class of three–
term CG methods with the search directions d0 = −g0 and

(1.6) dk+1 = −gk+1 + βk(g
T
k+1pk+1)

† ((gTk+1pk+1)dk − (gTk+1dk)pk+1

)
,

for all k ≥ 0, where βk is an arbitrary CG parameter, pk+1 ∈ Rn is any vector,
and

a† =


1

a
, a ̸= 0,

0, a = 0.

It is worth noting that search directions of the method satisfy the sufficient
descent condition gTk dk = −||gk||2, for all k ≥ 0, independent to the choices
of βk and pk+1, the objective function convexity and the line search. Also, if
gTk+1pk+1 ̸= 0, then (1.6) reduces to

(1.7) dk+1 = −gk+1 + βkdk − βk

gTk+1dk

gTk+1pk+1
pk+1,

or equivalently,
dk+1 = −gk+1 + βkQk+1dk,
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with

Qk+1 = I −
pk+1g

T
k+1

gTk+1pk+1
.

As seen, the matrix Qk+1 is a projection matrix onto the orthogonal com-
plement of Span{gk+1} along Span{pk+1}. If pk+1 = gk+1, then Qk+1 is an
orthogonal projection matrix and, in such situation, (1.7) can be written as
follows:

(1.8) dk+1 = −gk+1 + βkdk − βk

gTk+1dk

||gk+1||2
gk+1,

playing an important role in our approach of modifying the HS and PRP meth-
ods. This work is organized as follows: in Sections 2 and 3, we respectively deal
with two descent extensions of the HS and PRP methods, together with their
global convergence analyses. We present comparative numerical experiments
in Section 4. Finally, we make conclusions in Section 5.

2. A descent adaptive Dai–Liao method

Here, at first we suggest an extension of the HS method which can be con-
sidered as an adaptive version of the CG method proposed in [15]. Then,
we conduct a brief global convergence analysis for uniformly convex objective
functions.

Employing the features of quasi–Newton methods [31], Dai and Liao [15]
(DL) proposed an extended conjugacy condition which yields one of the well–
known extensions of βHS

k as follows:

(2.1) βDL
k = βHS

k − t
gTk+1sk

dTk yk
,

where t is a nonnegative parameter. It can be seen that the efficient CG meth-
ods proposed by Hager and Zhang [21,22], and Dai and Kou [14] can be regarded
as adaptive versions of the DL method with sufficient descent property. How-
ever, generally the DL method fails to guarantee even the descent condition
(1.4). Also, numerical behavior of the DL method is very dependent to the
parameter t for which there is no any optimal choice [3]. Recently, Babaie–
Kafaki and Ghanbari [6, 7, 9, 11], and Fatemi [19] proposed several adaptive
choices for the parameter t in (2.1). Among them, the choices suggested in [9]
and [19] may guarantee the sufficient descent condition (1.5). Here, using (1.8),
we suggest another adaptive choice for the DL parameter which ensures (1.5).

Note that from (1.3), search direction of the DL method can be written as
follows:

(2.2) dDL
k+1 = −gk+1 + βHS

k dk − t
gTk+1sk

dTk yk
dk.
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Also, if we let βk = βHS
k in (1.8), then we achieve a three–term extension of

the HS method, here called TTHS, with the following search direction:

(2.3) dTTHS
k+1 = −gk+1 + βHS

k dk − βHS
k

gTk+1dk

||gk+1||2
gk+1.

As mentioned in Section 1, TTHS satisfies the sufficient descent condition (1.5).
Also, as shown in [25], a truncated version of (2.3) turns out to be numerically
effective. So, motivated by these desirable features, it is reasonable to compute
the DL parameter t in a way to tend dDL

k+1 to dTTHS
k+1 as closer as possible. That

is, similar to the approach of [14], a reasonable choice for t can be achieved by
solving the following least–squares problem:

(2.4) min
t

||dDL
k+1 − dTTHS

k+1 ||2.

After some algebraic manipulations, the solution of (2.4) can be obtained as
follows:

(2.5) t̄∗k1
=

(gTk+1yk)(g
T
k+1sk)

||gk+1||2||sk||2
.

However, although its denominator is positive, t̄∗k1
is not necessarily nonnega-

tive. Moreover, considering the eigenvalue analysis carried out in [9], the DL
method with t = t̄∗k1

may not possesses the descent property. To overcome
these defects, we suggest the following modified adaptive version of (2.5):

(2.6) t∗k1
= max

{
(gTk+1yk)(g

T
k+1sk)

||gk+1||2||sk||2
, θ

||yk||2

sTk yk

}
,

where θ >
1

4
is a real constant. The following theorem is now immediate.

Theorem 2.1. For the DL method with t = t∗k1
given by (2.6) in which θ >

1

4
,

if the line search procedure guarantees that dTk yk > 0, for all k ≥ 0, then the
sufficient descent condition (1.5) holds with

(2.7) c = 1− 1

4θ
.

Proof. Note that from (2.6) we have

dDLT

k+1 gk+1 ≤ dθ
T

k+1gk+1,

where

dθk+1 = −gk+1 + βθ
kdk, βθ

k = βHS
k − θ

||yk||2

sTk yk

gTk+1sk

dTk yk
.

So, since [5, Theorem 1] ensures that dθk+1 satisfies the sufficient descent con-
dition (1.5) with the constant c given by (2.7), the proof is complete. □
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As seen in (2.6), t∗k1
is computed based on an adaptive switch from t̄∗k1

given by (2.5) to θ
||yk||2

sTk yk
with θ >

1

4
when the optimal choice t = t̄∗k1

fails

to guarantee the sufficient descent property. Note that the popular Wolfe line
search conditions, i.e.

f(xk + αkdk)− f(xk) ≤ δαkd
T
k gk,(2.8)

dTk gk+1 ≥ σdTk gk,(2.9)

with 0 < δ < σ < 1, ensure that dTk yk > 0, as supposed in Theorem 2.1. In
what follows, we discuss global convergence of the DL method with t = t∗k1

when the line search fulfills the strong Wolfe conditions consisting of (2.8) and
the following strengthened version of (2.9):

(2.10) |dTk gk+1| ≤ −σdTk gk.

So, we need to consider the following standard assumptions.

Assumption 2.1. The level set L = {x| f(x) ≤ f(x0)} is bounded. Also, in
a neighborhood N of L, f is continuously differentiable and its gradient is
Lipschitz continuous; that is, there exists a positive constant L such that

(2.11) ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ N .

Now, we can establish the following global convergence theorem, using [15,
Theorem 3.3].

Theorem 2.2. Suppose that Assumption 2.1 holds. Consider a CG method in
the form of (1.2)–(1.3) with the CG parameter βDL

k defined by (2.1) in which

t = t∗k1
given by (2.6) with θ >

1

4
. If the objective function f is uniformly

convex on N and the step length αk is determined such that the strong Wolfe
conditions (2.8) and (2.10) are satisfied, then the method converges in the sense
that lim

k→∞
||gk|| = 0.

Proof. At first, note that from Theorem 2.1 and the line search condition (2.8),
the sequence {xk}k≥0 is a subset of the level set L. Also, uniform convexity
of the differentiable function f ensures that there exists a positive constant µ
such that

(2.12) sTk yk ≥ µ||sk||2.
(See [30, Theorem 1.3.16].) So, from Cauchy–Schwarz inequality, (2.11) and
(2.12) we get

t∗k1
≤ max

{
||gk+1||2L||sk||2

||gk+1||2||sk||2
, θ

L2||sk||2

µ||sk||2

}
= max

{
L, θ

L2

µ

}
,

ensuring boundedness of t∗k1
. Remainder of the proof is similar to the proof

of [15, Theorem 3.3] and here is omitted. □
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In order to achieve the global convergence without convexity assumption on
the objective function, we can employ Powell’s nonnegative restriction of the
CG parameters [15, 28] as follows:

(2.13) βDL+
k = max

{
gTk+1yk

dTk yk
, 0

}
− t∗k1

gTk+1sk

dTk yk
,

with t∗k1
given by (2.6). Using [15, Theorem 3.6], global convergence of the

above adaptive version of the DL+ method can be established independent to
the objective function convexity.

3. A descent extension of the Polak–Ribière–Polyak method

Here, we propose an extension of the PRP method which can be regarded
as an adaptive version of the CG method proposed in [8]. Also, we show that
the method is globally convergent under the Wolfe conditions.

In a recent effort to make a modification on the PRP method in order to
achieve the descent property, similar to extension of the HS method proposed
by Dai and Liao [15], Babaie–Kafaki and Ghanbari [8] dealt with an extension
of βPRP

k as follows:

(3.1) βEPRP
k = βPRP

k − t
gTk+1dk

||gk||2
,

where t is a nonnegative parameter. The eigenvalue analysis carried out in [8]
showed that if

(3.2) t = p
||yk||2

||gk||2
+ q

(
1

2

dTk yk
||dk||||gk||

− ||gk||
||dk||

)2

,

with p >
1

4
and q ≥ −1, then EPRP satisfies the descent condition (1.4).

Moreover, for q = 0 the method reduces to the DPRP method proposed by
Yu et al. [32] which satisfies the sufficient descent condition (1.5) (see also [4]).
Nevertheless, finding the optimal value of t in (3.1) can be considered as an
open problem. Next, we propose an adaptive choice for the EPRP parameter
t, similar to the approach of Section 2.

Note that from (1.3) and (3.1) we have

(3.3) dEPRP
k+1 = −gk+1 + βPRP

k dk − t
gTk+1dk

||gk||2
dk.

Furthermore, the choice βk = βPRP
k in (1.8) yields a three–term extension of

the PRP method, namely TTPRP, that its search direction is given by

(3.4) dTTPRP
k+1 = −gk+1 + βPRP

k dk − βPRP
k

gTk+1dk

||gk+1||2
gk+1,
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being theoretically effective, especially because of satisfying the sufficient de-
scent condition (1.5). In addition, a truncated version of (3.4) turns out to be
computationally promising [25]. Hence, it is reasonable to approach dEPRP

k+1 to

dTTPRP
k+1 in the sense of computing the parameter t as a solution of the following

minimization problem:

min
t

||dEPRP
k+1 − dTTPRP

k+1 ||2,

which yields

(3.5) t̄∗k2
=

(gTk+1yk)(g
T
k+1dk)

||gk+1||2||dk||2
,

where is not generally nonnegative and also, considering the inequality (3.2),
may not guarantee the descent condition (1.4). To overcome these defects, we
propose the following modified adaptive version of (3.5):

(3.6) t∗k2
= max

{
(gTk+1yk)(g

T
k+1dk)

||gk+1||2||dk||2
, ξ

||yk||2

||gk||2

}
,

where ξ >
1

4
is a real constant. The following theorem is now immediate.

Theorem 3.1. For the EPRP method with t = t∗k2
given by (3.6) in which

ξ >
1

4
, if gk ̸= 0, then the sufficient descent condition (1.5) holds with

(3.7) c = 1− 1

4ξ
.

Proof. From (3.6) we have

dEPRPT

k+1 gk+1 ≤ dDPRPT

k+1 gk+1,

where, as mentioned before, DPRP is an adaptive version of EPRP with p =

ξ >
1

4
and q = 0 in (3.2) [32], satisfying the sufficient descent condition (1.5)

with the constant c given by (3.7). (See [4, Theorem 2.2] or [32, Theorem 2.1].)
So, the proof is complete. □

As seen in (3.6), by the choice t = t∗k2
the EPRP method adaptively reduces

to the DPRP method of [32] to guarantee the sufficient descent property. Now,
we deal with global convergence of the EPRP method with t = t∗k2

when the
line search fulfills the Wolfe conditions. Similar to the convergence analysis
conducted in Section 2, here we need to consider Assumption 2.1 in order to
establish a convergence result.

Theorem 3.2. Consider a CG method in the form of (1.2)–(1.3) with the CG

parameter βEPRP
k defined by (3.1) in which t = t∗k2

given by (3.6) with ξ >
1

4
,
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and the step length αk is determined such that the Wolfe conditions (2.8) and
(2.9) are satisfied. If there exists a positive constant α∗ such that αk ≥ α∗,
∀k ≥ 0, then lim

k→∞
||gk|| = 0.

Proof. Considering Theorem 3.1, since the sufficient descent condition (1.5)
is satisfied, the proof is similar to the proof of [33, Theorem 3.2] and here is
omitted. □

4. Numerical experiments

Here, we present some numerical results obtained by applying C++ imple-
mentations of the following nonlinear CG methods:

– ADL: the method with the search direction (2.2) in which the parame-
ter t is computed by (2.6), being an adaptive version of the DL method;

– AEPRP: the method with the search direction (3.3) in which the pa-
rameter t is computed by (3.6), being an adaptive version of the EPRP
method;

comparing with the three–term CG methods TTHS and TTPRP, respectively
with the search directions (2.3) and (3.4). The codes were run on a PC with
3.6 GHz Intel I7–4790 of CPU, 4 GB of RAM and Centos 6.2 server Linux
operation system. Since CG methods are appropriate for solving large–scale
problems, the experiments were performed on a set of 64 unconstrained opti-
mization test problems of the CUTEr collection [20] with default dimensions
being at least equal to 1000, as specified in [8]. (See also Hager’s home page:
‘http://www.math.ufl.edu/∼hager/’.)

For all the four methods, we used the approximate Wolfe conditions proposed
by Hager and Zhang [21] in the line search procedure, with the same parameter
values as specified in [22]. Also, we used the steepest descent direction as the
initial search direction of the methods. That is, for all the four methods we
set d0 = −g0. For the ADL and AEPRP methods, we respectively set θ = 1.1
in (2.6) and ξ = 1.6 in (3.6) because of their promising computational results
among the different choices of the set {0.1k}20k=3. In addition, all attempts to
solve the test problems were terminated when ||gk||∞ < 10−6(1 + |f(xk)|).

Efficiency comparisons were made using the Dolan–Moré performance profile
[16] which for every ω ≥ 1 yields the proportion p(ω) of the test problems that
each considered algorithmic variant has a performance within a factor of ω of
the best. Figures 1 and 2 show the results of comparisons. Note that in Figure
1 total number of function and gradient evaluations is equal to Nf + 3Ng

where Nf and Ng respectively stand for the number of function and gradient
evaluations [22].

As shown by the figures, although ADL and AEPRP are approximately com-
petitive, AEPRP is slightly preferable to ADL, especially with respect to the
CPU time, and both of the methods outperform the TTHS method. Moreover,
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Figure 1. Total number of function and gradient evaluations
performance profiles

the figures show that TTHS outperforms TTPRP. Thus, our adaptive choices
for the parameters of the DL and EPRP methods turn out to be practically
effective.

5. Conclusions

We have dealt with the open problem of finding an optimal value for pa-
rameter of the Dai–Liao method by approaching its search directions to the
search directions of a descent three–term extension of the Hestenes–Stiefel
method. Our analysis has led to a choice for the Dai–Liao parameter given
by (2.6) which guarantees the sufficient descent property as well as the global
convergence for uniformly convex objective functions when the line search ful-
fills the strong Wolfe conditions. We have conducted a similar analysis on a
recent extended Polak–Ribière–Polyak method and achieved another globally
convergent one–parameter nonlinear conjugate gradient method with sufficient
descent property in which the parameter is computed by (3.6). Although the
choices (2.6) and (3.6) are not optimal, they are adaptive hybridizations of the
optimal choice and another term which plays an important role to achieve the
effective sufficient descent property as well as to ensure nonnegativity of the
parameter. Preliminary numerical results showed that the proposed methods
are computationally promising.
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Figure 2. CPU time performance profiles
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