ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 3, pp. 951-974

Title:

Normal edge-transitive Cayley graphs on the nonabelian groups of order $4p^2$, where p is a prime number

Author(s):

Y. Pakravesh and A. Iranmanesh

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 3, pp. 951–974 Online ISSN: 1735-8515

NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS ON THE NON-ABELIAN GROUPS OF ORDER $4p^2$, WHERE p IS A PRIME NUMBER

Y. PAKRAVESH AND A. IRANMANESH*

(Communicated by Cheryl E. Praeger)

ABSTRACT. In this paper, we determine all of connected normal edgetransitive Cayley graphs on non-abelian groups with order $4p^2$, where p is a prime number.

 $\label{eq:constraint} {\bf Keywords:} \ {\rm Cayley \ graph, \ normal \ edge-transitive, \ vertex-transitive, \ edge-transitive.}$

MSC(2010): Primary: 20D60; Secondary: 05B25.

1. Introduction

Let $\Gamma = (V, E)$ be a simple graph, where V is the set of vertices and E is the set of edges of Γ . An edge joining the vertices u and v is denoted by $\{u, v\}$. The group of automorphisms of Γ is denoted by $Aut(\Gamma)$, which acts on vertices, edges and arcs of Γ . If $Aut(\Gamma)$ acts transitively on vertices, edges or arcs of Γ , then Γ is called vertex-transitive, edge-transitive or arc-transitive respectively. If Γ is vertex and edge-transitive but not arc-transitive, then Γ is called 1/2-arctransitive. Let G be a finite group and S be an inverse closed subset of G, i.e., $S = S^{-1}$, such that $1 \notin S$. The Cayley graph $\Gamma = Cay(G, S)$ on G with respect to S is a graph with vertex set G and edge set $\{\{g, sg\} | g \in G, s \in S\}$. This graph is connected if and only if $G = \langle S \rangle$. For $g \in G$, define the mapping $\rho_g: G \to G$ by $\rho_g(x) = xg, x \in G$. We have $\rho_g \in Aut(\Gamma)$ for every $g \in G$, thus $R(G) = \{\rho_g | g \in G\}$ is a regular subgroup of $Aut(\Gamma)$ isomorphic to G, forcing Γ to be a vertex-transitive graph. Let $\Gamma = Cay(G, S)$ be the Cayley graph of a finite group G on S. Let $Aut(G, S) = \{\sigma \in Aut(G) | S^{\sigma} = S\}$ and $A = Aut(\Gamma)$. Then the normalizer of R(G) in A is equal to $N_A(R(G)) = R(G) \rtimes Aut(G, S)$, where \rtimes denotes the semi-direct product of two groups. In [13], the graph Γ is called normal if R(G) is a normal subgroup of $Aut(\Gamma)$. Therefore, according to

©2017 Iranian Mathematical Society

Article electronically published on 30 June, 2017.

Received: 2 March 2015, Accepted: 21 September 2015.

^{*}Corresponding author.

[4], $\Gamma = Cay(G, S)$ is normal if and only if $A := Aut(\Gamma) = R(G) \rtimes Aut(G, S)$, and in this case $A_1 = Aut(G, S)$, where A_1 is the stabilizer of the identity element of G under A. The normality of Cayley graphs has been extensively studied from different points of views by many authors. In [12] all disconnected normal Cayley graphs are obtained.

Definition 1.1. A Cayley graph Γ is called normal edge-transitive or normal arc-transitive if $N_A(R(G))$ acts transitively on the set of edges or arcs of Γ , respectively. If Γ is normal edge-transitive, but not normal arc-transitive, then it is called a normal 1/2-arc-transitive Cayley graph.

Edge-transitivity of Cayley graphs of small valency have received attention in the literature. A relation between regular maps and edge-transitive Cayley graphs of valency 4 is studied in [9], and in [7] Li et al., characterized edgetransitive Cayley graphs of valency four and odd order. Houlis in [6], classified normal edge-transitive Cayley graphs of groups Z_{pq} , where p and q are distinct primes. In [1], normal edge-transitive Cayley graphs on some abelian groups of valency at most 5 are studied. And in [3], edge-transitive Cayley graphs of valency 4 on non-abelian simple groups are studied. The normal edgetransitivity of dihedral group of order 2n is studied in [11]. In this paper, we investigate the normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$.

2. Preliminaries

Keeping fixed terminologies used in Section 1, we mention a few results whose proofs can be found in the literature. The following result is proved in [13] and [4].

Proposition 2.1. Let $\Gamma = Cay(G, S)$. Then the following hold: 1. $N_A(R(G)) = R(G) \rtimes Aut(G, S);$ 2. $R(G) \trianglelefteq A$ if and only if $A = R(G) \rtimes Aut(G, S);$ 3. Γ is normal if and only if $A_1 = Aut(G, S).$

The following proposition is very useful for our work (see [10]).

Proposition 2.2. Let $\Gamma = Cay(G, S)$ be a connected Cayley graph (undirected) on S. Then Γ is normal edge-transitive if and only if Aut(G, S) is either transitive on S, or has two orbits in S in the form of T and T^{-1} , where T is a non-empty subset of S such that $S = T \cup T^{-1}$.

In the action of Aut(G, S) on S, every element of each orbit has the same order. Therefore, we have following proposition (see [2])

Proposition 2.3. Let $\Gamma = Cay(G, S)$ and H be the subset of all involutions of the group G. If $\langle H \rangle \neq G$ and Γ is connected normal edge-transitive, then its valency is even.

For a general graph $\Gamma = (V, E)$, if v is a vertex in Γ , then $\Gamma(v)$ denotes the set of the neighbors of v, i.e., $\Gamma(v) = \{u \in V | \{u, v\} \in E\}$. The following result which can be deduced from a result in [5], characterize normal arc-transitive Cayley graphs in terms of the action of Aut(G, S) on S.

Proposition 2.4. Let $\Gamma = Cay(G, S)$ be a connected Cayley graph (undirected) on S. Then Γ is normal arc-transitive if and only if Aut(G, S) acts transitively on S.

We can extract the following corollary from Proposition 2.2 and 2.4 and the fact that if G is an abelian group, then $\sigma: G \to G$ defined by $\sigma(x) = x^{-1}$, for all $x \in G$, is an automorphism.

Corollary 2.5. If Γ is a Cayley graph of an abelian group, then Γ is not a normal 1/2-arc-transitive Cayley graph.

The following result is obtained in [11].

Proposition 2.6. Let $\Gamma = Cay(G, S)$ be a connected normal edge-transitive Cayley graph of the dihedral group D_{2n} . Then $Aut(D_{2n}, S)$ is transitive on S.

Corollary 2.7. If $\Gamma = Cay(G, S)$ is a Cayley graph of a dihedral group D_{2n} , then Γ is not a normal 1/2-arc-transitive Cayley graph.

The following result is mentioned in [10].

Proposition 2.8. Let Γ be a connected Cayley graph of a non-abelian simple group with valency 3. If Γ is normal edge-transitive, then it is normal.

The following result is mentioned in [2].

Proposition 2.9. Let S be a generating set of group G. Then the action of Aut(G,S) on S is faithful.

In [8], the groups of order $4p^2$ are classified. When $p \equiv 1 \pmod{4}$, -1 is a quadratic residue modulo p and also modulo p^2 . Let λ be an integer so that $\lambda^2 \equiv -1 \pmod{p^2}$. The non-abelian group of order $4p^2$ is isomorphic to one of the following groups which are given by generators and relations:

1. $G_1 = \langle a, b | a^{p^2} = b^4 = 1, b^{-1}ab = a^{-1} \rangle$

2. $G_2 = \langle a, b | a^{p^2} = b^4 = 1, b^{-1}ab = a^{\lambda} > (p \equiv 1 \pmod{4})$

3. $G_3 = \langle a, b, c | a^{p^2} = b^2 = c^2 = 1, ac = ca, bc = cb, b^{-1}ab = a^{\lambda} \geq D_{4p^2}$

4. $G_4 = \langle a, b, c, d | a^p = b^p = c^2 = d^2 = 1$, ab = ba, ad = da, bc = cb, $dbd = b^{-1}$, $cd = dc > \cong \langle a, b, c | a^{2p} = b^p = c^2 = 1$, ab = ba, ac = ca, $cbc = b^{-1} > 5$. $G_5 = \langle a, b, c, d | a^p = b^p = c^2 = d^2 = 1$, ab = ba, ac = ca, $dad = a^{-1}$, bc = cb, $dbd = b^{-1}$, $cd = dc > \cong \langle a, b, c | a^{2p} = b^p = c^2 = 1$, ab = ba, $ac = c^2 = 1$, ab = ba, $ac = c^2 = 1$, ab = ba, $ac = c^2 = 1$, ab = ba, $ac = c^2 = 1$, ab = ba, $cac = a^{-1}$, $cbc = b^{-1} > b^{-1}$

6. $G_6 = \langle a, b, c, d | a^p = b^p = c^2 = d^2 = 1$, ab = ba, $cac = a^{-1}$, ad = da, bc = cb, $dbd = b^{-1}$, $cd = dc > \cong D_{2p} \times D_{2p}$

7. $G_7 = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, ac = ca, $c^{-1}bc = b^{-1} > 8$. $G_8 = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = a^{-1}$, $c^{-1}bc = b^{-1} > 9$. $G_9 = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = b^{-1}$, $c^{-1}bc = a > where <math>p \neq 1 \pmod{4}$. When $p \equiv 1 \pmod{4}$ this group is presented by $G'_9 = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = a^{\lambda}$, $c^{-1}bc = b^{-\lambda} > 10$. $G_{10} = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, ac = ca, $c^{-1}bc = b^{-\lambda} > 11$. $G_{11} = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = a^{-1}$, $c^{-1}bc = b^{\lambda} > 12$. $G_{12} = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = a^{\lambda}$, $c^{-1}bc = b^{\lambda} > 12$. $G_{12} = \langle a, b, c | a^p = b^p = c^4 = 1$, ab = ba, $c^{-1}ac = a^{\lambda}$, $c^{-1}bc = b^{\lambda} > 12$. Given the dihedral group $G_3 = D_{4p^2}$ is studied in [11], we study the other groups and obtain connected normal edge-transitive Cayley graphs on this groups.

3. Normal edge-transitive Cayley graphs on group G_1

Elements of G_1 can be written uniquely in the form $a^i b^j$, $0 \le i < p^2$, $0 \le j < 4$. The order of elements of G_1 are as follows:

$$O(a^{i}) = \frac{p^{2}}{(i,p^{2})} = \begin{cases} p & \text{if } (i,p^{2}) = p \\ p^{2} & \text{if } (i,p^{2}) = 1 \end{cases}$$

$$O(a^{i}b^{2}) = \begin{cases} 2p & \text{if } (i, p^{2}) = p \\ 2p^{2} & \text{if } (i, p^{2}) = 1 \end{cases}$$

where $1 \leq i < p^2$. We have $O(b^2) = 2$, $O(a^i b^k) = 4$, $0 \leq i < p^2$, k = 1, 3. Using the above facts, we can find $Aut(G_1)$.

Let U_n be the set of units in Z_n , $n \ge 1$. Then U_n is a group under multiplication mod n.

Lemma 3.1. For prime number p, $Aut(G_1) \cong Z_{p^2} \rtimes (U_{p^2} \times Z_2)$, and it has the following orbits on $G_1 : \{1\}, \{a^i | 1 \le i < p^2, (i, p^2) = 1\}, \{b^2\}, \{a^{mp} | 1 \le m < p\}, \{a^i b^k | 0 \le i < p^2, k = 1, 3\}, \{a^i b^2 | 0 \le i < p^2, (i, p^2) = 1\}$ and $\{a^{mp} b^2 | 1 \le m < p\}$.

Proof. Any *σ* ∈ *Aut*(*G*₁) is determined by its effect on *a* and *b*. Taking orders into account, we have *σ*(*a*) = *aⁱ*, where $1 \le i < p^2$, $(i, p^2) = 1$ and *σ*(*b*) = $a^j b^k$, $0 \le j < p^2$, k = 1, 3. It can be verified that $\sigma = f_{i,j,k}$ defined as above can be extended to an automorphism of *G*₁. Therefore, $Aut(G_1) = \{f_{i,j,k} | 1 \le i < p^2, (i, p^2) = 1, 0 \le j < p^2, k = 1, 3\}$ is a group of order $2p^2 φ(p^2) = 2p^2(p^2 - p)$. We have $f_{i,j,k}of_{i',j',k'} = f_{ii',ij'+j,kk'}$ and $f_{i,j,k}^{-1} = f_{i_0,-ji_0,k_0}$ where i_0 and k_0 are numbers such that $i_0i \equiv 1 \pmod{p^2}$ and $k_0k \equiv 1 \pmod{4}$, hence if we define $A = \{f_{1,j,1} | 0 \le j < p^2\}$ and $B = \{f_{i,0,k} | 1 \le i < p^2, (i, p^2) = 1, k = 1, 3\}$, then $Aut(G_1) = A \times B$, $A \cap B = id$ and $A \trianglelefteq Aut(G_1)$. So $Aut(G_1) \cong Z_{p^2} \rtimes (U_{p^2} \times Z_2)$ and the lemma is proved. □

Lemma 3.2. If $Cay(G_1, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, |S| > 2 is even.

Proof. By Proposition 2.2, elements in S have the same order. Since $\langle S \rangle = G_1$, the set S cannot contain elements of order p^2 , 2p, 2, p or $2p^2$, and should contain elements of order 4 only. By Proposition 2.3, |S| > 2 and it is even. \Box

Lemma 3.3. Let $i \neq j$. The set $S = \{a^i b, a^j b^3, a^j b, a^j b^3\}$ generates G_1 if and only if $0 \leq i, j < p^2$, $i \not\equiv j \pmod{p}$, Moreover, in this case, $Aut(G_1, S) \cong Z_2 \times Z_2$.

Proof. Generating condition of S comes from the relations $(a^k b)^{-1} = a^k b^3$ for $0 \leq k < p^2, a^i b a^j b^3 = a^{i-j}$. If $i \not\equiv j \pmod{p}$, then we can conclude that $a \in S > and so b \in S >.$ Now let $S = \{x, x^{-1}, y, y^{-1}\}$ and $G = Aut(G_1, S)$. Then by Proposition 2.9, G acts on S faithfully, and so is a subgroup of S_4 . But G does not have elements of order 3 or 4, because if $f \in G$ has order 3, then it should fix an element on S such as s, thus $f(s^{-1}) = s^{-1}$, contradiction with the order of f. Also if f is an element of order 4, then its cycle structure on S have the form $(x y x^{-1} y^{-1})$ or $(x y^{-1} x^{-1} y)$, where $x = a^i b$, $y = a^j b$ and $f = f_{r,s,k}$ (as mentioned in Lemma 3.1, $(r, p^2) = 1, 1 \le r < p^2, 0 \le s < p^2, k = 1, 3$)) and we may assume i > j. In the first case, we have $ri + s \equiv j \pmod{p^2}$, $k \equiv 3 \pmod{4}$ and $rj + s \equiv i \pmod{p^2}$, $3k \equiv 3 \pmod{4}$. But in this case we obtain $k \equiv 3 \pmod{4}$ and $3k \equiv 3 \pmod{4}$ that is impossible. In the second case, we have $k \equiv 3 \pmod{4}$ and $k \equiv 1 \pmod{4}$ that is impossible. Therefore, G is a subgroup of S_4 which does not have any element of order 3 or 4, but at least it has two elements of order 2 such as $f_{-1,i+j,3}$ and $f_{1,0,3}$, imply that $G \cong Z_2 \times Z_2.$ \square

Lemma 3.4. Let $\Gamma = Cay(G_1, S)$ be a Cayley graph of valency 4. The Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b, a^i b^3, a^j b, a^j b^3\}$ where $0 \leq i, j < p^2, i \not\equiv j \pmod{p}$. Moreover, in this case, Γ is not a normal Cayley graph, i.e., there is a connected normal edge-transitive Cayley graph which is not normal Cayley graph.

Proof. It is enough to show that $Aut(G_1, S)$ acts transitively on S. The elements $f_{-1,i+j,1}, f_{1,0,3}, f_{-1,i+j,3}$ are in $Aut(G_1, S)$ and send $a^i b$ to $a^j b, a^i b^3$, $a^j b^3$, respectively. So $Aut(G_1, S)$ acts transitively on S and Γ is a connected normal edge-transitive Cayley graph. The set S is equivalent to $S' = \{b, b^3, ab, ab^3\}$, since $(S')^{f_{j-i,i,1}} = S$. For the second part, it is enough to check the case S'. We have $\Gamma(b) = \{b^2, ab^2, a, 1\} = \Gamma(b^3)$ thus $\sigma = (b \ b^3) \in (Aut\Gamma)_1$, but $f_{1,0,3}, f_{-1,1,1}, f_{-1,1,3} \in Aut(G_1, S)$ and Lemma 3.3 show that $\sigma \notin Aut(G_1, S)$, i.e., $(Aut\Gamma)_1 \neq Aut(G_1, S)$ and by Proposition 2.1, Γ is not a normal Cayley graph.

In the next theorem, we present the main condition under which the Cayley graph of group G_1 becomes connected normal edge-transitive.

Theorem 3.5. $\Gamma = Cay(G_1, S)$ is a connected normal edge-transitive Cayley graph if and only if its valency is even, greater than two, $S \subseteq \{a^i b, a^j b^3 | 0 \le i, j < p^2, i \not\equiv j \pmod{p}\}$, $S = S^{-1}$ and $Aut(G_1, S)$ acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Proposition 2.3, its valency should be even. Since $\langle S \rangle = G_1$, then by Lemma 3.3 and Lemma 3.4, $S \subseteq \{a^i b, a^j b^3 | i \neq j \pmod{p}\}$, the graph is undirected, $S = S^{-1}$. Hence $S \subseteq \{a^i b, a^j b^3 | for some 0 \leq i, j < p^2, i \neq j \pmod{p}\}$. From Proposition 2.2, either $Aut(G_1, S)$ acts on S transitively, or $S = T \cup T^{-1}$, where T and T^{-1} are orbits of the action of $Aut(G_1, S)$ on S. But we observe $f_{1,0,3} \in Aut(G_1, S)$, which implies both of $a^i b$ and $(a^i b)^{-1} = a^i b^3$ belong to the same orbit for $0 \leq i < p^2$ in which $a^i b \in S$, and that contradiction with the assumption $S = T \cup T^{-1}$. Hence $Aut(G_1, S)$ acts transitively on S. □

Corollary 3.6. If Γ is a connected Cayley graph of the group G_1 , then Γ is not normal 1/2-arc-transitive.

Theorem 3.7. Let $\Gamma = Cay(G_1, S)$ be a normal edge-transitive Cayley graph of valency 2d. Then either $d = p^2$ or d|p(p-1) and $d \neq p$. Moreover, for each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. By Theorem 3.5, $S \subseteq \{a^i b, a^j b^3 | 0 \le i, j < p^2, i \ne j \pmod{p}\}$. Set U = $\{a^i b, a^i b^3 | 0 \le i < p^2\}$, in this case, U is an orbit of the action of $Aut(G_1)$ on G_1 and so $Cay(G_1, U)$ is a connected normal edge-transitive graph of valency $2p^2$. Now suppose $S \subseteq \{a^i b, a^j b^3 \mid 0 \le i, j < p^2, i \ne j \pmod{p}\}, < S >= G_1 \text{ and } \Gamma$ is a Cayley graph of valency 2d. Since $Aut(G_1, S) \leq Aut(G_1)$ and $Aut(G_1, S)$ is transitive on S (Theorem 3.5), we have $|S| = 2d | |Aut(G_1, S)| | |Aut(G_1)| =$ $2p^3(p-1)$, implying $d|p^3(p-1)$. On the other hand, we have $d \leq p^2$, hence either $d = p^2$ or d|p(p-1) proving the first assertion of the theorem. To prove the existence and uniqueness part in the theorem, if $d = p^2$, then as mentioned above, $Cay(G_1, U)$ is the unique normal maximal edge-transitive Cayley graph of valency $2p^2$. Now suppose d|p(p-1), d > 1. The stabilizer of b under $A = Aut(G_1)$ is the group $A_b = \{f_{i,0,1} | 1 \le i < p^2, i \ne 0 \pmod{p}\} \cong U_{p^2}$. Let t be a generator of U_{p^2} , so that $A_b = \langle f_{t,0,1} \rangle$. Since d|p(p-1), the group U_{p^2} contains a unique subgroup of order d, and if we set $u = t^{\frac{p-1}{d}}$, then $\langle f_{u,0,1} \rangle$ is a subgroup of A_b with order d. Now consecutive effects of $f_{u,0,1}$ on ab yields the set $T = \{ab, a^ub, ..., a^{u^{(d-1)}}b\}$ whose size is d and is invariant under $f_{u,0,1}$. Let us set $T^{-1} = \{x^{-1} | x \in T\} = \{ab^3, a^ub^3, ..., a^{u^{(d-1)}}b^3\}$ and $S = T \cup T^{-1}$. We claim that $Cay(G_1, S)$ is a connected normal edge-transitive Cayley graph. By the argument used in Lemma 3.4, where $d \neq p$, we have $\langle S \rangle = G_1$. It is easy to see that $f_{u,0,3}$ interchanges elements of T and T^{-1} , also the automorphism

Pakravesh and Iranmanesh

group of $Cay(G_1, S)$ is $\langle f_{u,0,1}, f_{u,0,3} \rangle$, implying $Cay(G_1, S)$ is connected normal edge-transitive of valency 2d.

4. Normal edge-transitive Cayley graphs on group G_2

We consider the group G_2 , which is defined in the section 2 and we will prove that its Cayley graph on some set can be connected normal 1/2-arc-transitive Cayley graph. Recall that we assume p is an odd prime. The existence of λ satisfying the condition $(\lambda)^2 \equiv -1 \pmod{p^2}$ implies that 4|(p-1), hence pmust be a prime of the form p = 1 + 4k. The order of non-identity elements of G_2 are as follows:

$$O(a^{i}) = \frac{p^{2}}{(i,p^{2})} = \begin{cases} p & \text{if } (i,p^{2}) = p \\ p^{2} & \text{if } (i,p^{2}) = 1 \end{cases}$$

We have $O(a^i b^2) = 2$, $O(a^i b^k) = 4$, $0 \le i < p^2$, k = 1, 3. Using the above facts, we can find $Aut(G_2)$. Thus if $\sigma \in Aut(G_2)$, then $\sigma(a) = a^i$ and either $\sigma(b) = a^j b$ or $\sigma(b) = a^j b^3$ for $1 \le i < p^2$, $(i, p^2) = 1$ and $0 \le j < p^2$, but we also have $\sigma(b^{-1}ab) = \sigma(a)$, thus in the latter case we obtain a contradiction. Therefore, we have:

$$Aut(G_2) = \{g_{i,j} | g_{i,j}(a) = a^i, g_{i,j}(b) = a^j b, \ 1 \le i < p^2, (i, p^2) = 1$$

and $0 \le j < p^2\} \cong Z_{p^2} \rtimes U_{p^2}$

and it has the following orbits on $G_2: \{1\}, \{a^i | 1 \le i < p^2, (i, p^2) = 1\}, \{a^{mp} | 1 \le m < p\}, \{a^i b^3 | 0 \le i < p^2\}, \{a^i b | 0 \le i < p^2\} \text{ and } \{a^i b^2 | 0 \le i < p^2, (i, p^2) = 1\}.$

Theorem 4.1. $\Gamma = Cay(G_2, S)$ is a connected normal edge-transitive Cayley graph if and only if it has even valency, $S = T \cup T^{-1}$, where $T \subseteq \{a^i b, a^j b | 0 \le i, j < p^2, i \not\equiv j \pmod{p}\}$ and $Aut(G_2, S)$ acts transitively on T. Moreover, if $\Gamma = Cay(G_2, S)$ is a normal edge-transitive Cayley graph of valency 2d, Then either $d = p^2$ or d|p(p-1) and $d \neq p$. Moreover, for each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. At first we assume that Γ is a connected normal edge-transitive Cayley graph. The fact that Γ has even valency follows from Proposition 2.3. By Proposition 2.2, in the action of $Aut(G_2, S)$ on S, we can deduce either S is an orbit or $S = T \cup T^{-1}$, where T is an orbit. We have $(a^i b^2)^{-1} = a^i b^2$, thus if $a^i b^2 \in S$ for some $0 \leq i < p^2$, the case $S = T \cup T^{-1}$ cannot occur, i.e., $Aut(G_2, S)$ acts transitively on S, but Γ is connected, i.e., $\langle S \rangle = G$, therefore S should contain some element other than $a^j b^2, 0 \leq j < p^2$, say x, such that its order is not 2. Hence, there is no $g_{r,s} \in Aut(G_2, S) \subseteq Aut(G_2)$ such that $g_{r,s}(x) = a^i b^2$, a contradiction. Suppose $y = a^i \in S$ for some $1 \leq i < p^2$. Since Γ is connected, i.e., $\langle S \rangle = G_2$, S should contain an element x, where $x = a^j b$ or $x = a^j b^3$ for some $0 \leq j < p^2$. But since $(x)^{-1} \neq y$, without loss of generality, we can assume x and y are contained in the same orbit. But there is no $g_{r,s} \in Aut(G_2, S) \subseteq Aut(G_2)$ such that $g_{r,s}(x) = y$, a contradiction. Therefore, S contains only elements of types $a^i b$ and $a^j b^3$ for $0 \le i, j < p^2, i \ne j$ (mod p). But $S = S^{-1}$ and for each $0 \le j < p^2$, there is some $0 \le i < p^2$, where $(a^j b)^{-1} = a^i b^3$, hence S contains not only $a^i b$ but also $a^j b^3$ for $0 \le i, j < p^2$. p^2 . Therefore, $Aut(G_2)$ and consequently $Aut(G_2, S)$ is not transitive on S, hence $S = T \cup T^{-1}$, where $T \subseteq \{a^i b, a^j b | \ 0 \le i, j < p^2, i \ne j \pmod{p}\}$, and $Aut(G_2, S)$ acts transitively on T. The second part of the theorem is similar to the proof of Theorem 3.7.

Example 4.2. Let $\Gamma = Cay(G_2, S)$ be a Cayley graph of valency 4. Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^{i}b, a^{j}b, a^{-i\lambda}b^{3}, a^{-j\lambda}b^{3}\}$ for some $0 \leq i, j < p^{2}, i \neq j \pmod{p}$ and in this case $|Aut(G_2, S)| = 2$. By Theorem 4.1, it is sufficient to put $T = \{a^{i}b, a^{j}b\}$ and consider $g_{-1,i+j} \in Aut(G_2, S)$.

5. Normal edge-transitive Cayley graphs on group G_4

The order of non-identity elements of G_4 are as follows:

$$O(a^{i}b^{j}) = \begin{cases} p & \text{if } 0 \le i < 2p, i \text{ is } even, 0 \le j < p \\ 2p & \text{if } 0 \le i < 2p, i \text{ is } odd, 0 \le j < p \\ 2 & \text{if } i = p, j = 0 \end{cases}$$

and

$$O(a^{i}b^{j}c) = \begin{cases} 2 & \text{if } i = 0 \text{ or } p, 0 \le j$$

Using the above facts, we can find $Aut(G_4)$. If $\sigma \in Aut(G_4)$, then $\sigma(a) \in \{a^i b^j, a^k b^j c | i \text{ is } odd, 0 < i, k < 2p, 0 \le j < p\}$, $\sigma(b) \in \{a^i b^j | i \text{ is } even, 0 \le i < 2p, 0 \le j < p\}$ and $\sigma(c) \in \{a^i b^j c | i = 0 \text{ or } p, 0 \le j < p\}$, but we also have $\sigma(ab) = \sigma(ba), \sigma(ac) = \sigma(ca)$ and $\sigma(cbc) = \sigma(b^{-1})$. According to this relations, we have:

$$Aut(G_4) = \{ f_{i,j,l,k} | f_{i,j,l,k}(a) = a^i, f_{i,j,l,k}(b) = b^j, f_{i,j,l,k}(c) = a^l b^k c$$
$$1 \le i < 2p, (i, 2p) = 1, 1 \le j < p, \ k = 0, p, \ 0 \le k < p \}$$
$$\cong (Z_2 \times Z_p) \rtimes (U_{2p} \times U_p)$$

and it has the following orbits on G_4 : {1}, { $a^i | 1 \le i < 2p, (i, 2p) = 1$ }, { $a^i | 1 \le i < 2p, (i, 2p) = 2$ }, a^p , { $b^k | 1 \le k < p$ }, { $a^i b^j c | 1 \le i < 2p, i \ne p, 0 \le j < p$ }, { $a^i b^j c | i = 0, p, 0 \le j < p$ }, { $a^i b^j (1 \le i < 2p, (i, 2p) = 1, 1 \le j < p$ }, { $a^i b^j | 1 \le i < 2p, (i, 2p) = 2, 1 \le j < p$ } and { $a^p b^j | 1 \le j < p$ }.

Theorem 5.1. $\Gamma = Cay(G_4, S)$ is a connected normal edge-transitive Cayley graph if and only if its valency is even, greater than two, $S \subseteq \{a^i b^j c, a^k b^l c |$

 $0 < i, k < 2p, 0 \leq j, l < p, j \neq l, i + k \text{ is odd}\}, S = S^{-1} \text{ and } Aut(G_4, S) \text{ acts transitively on } S.$

Proof. At first, we assume that Γ is a connected normal edge-transitive Cayley graph. The fact that Γ has even valency follows from Proposition 2.3. Since $G_4 = \langle S \rangle$ and the elements of S have same order, so S consist of elements of order 2p. Thus if $a^i b^j \in S$ for some $0 \le i < 2p$ and $0 \le j < p$, S should contain some element other than $a^i b^j \in S$, say x, such that its order is 2p. If $x = a^k b^l$, for some k, l, then $\langle S \rangle \langle G_4$, a contradiction. So x must be $a^k b^l c$ but in this case, there is no $f_{i,j,l,k} \in Aut(G_4, S) \subseteq Aut(G_4)$ such that $f_{i,j,l,k}(x) = a^i b^j$, a contradiction. If $a^i b^j c$ and $a^k b^l c$ are in S for some $0 \le i, k < 2p$ and $0 \le j, l < p$, then we have $(a^i b^j c)^2 = a^{2i}$ and $(a^i b^j c a^k b^l c)^p = a^{p(i+j)}$, if i+j is odd, then $a^{p+2} \in S$ implying $a \in S$ and by $i \neq j$, we can conclude that $b \in S$ and so $c \in S$. So we have $S \subseteq \{a^i b^j c, a^k b^l c | 0 \le i, k < 2p, 0 \le j, l < p, j \ne l, i + k \text{ is odd} \}.$ By Proposition 2.2, in the action of $Aut(G_4, S)$ on S, we can deduce either S is an orbit or $S = T \cup T^{-1}$, where T is an orbit. But we observe $f_{-1,1,0,0} \in$ $Aut(G_4, S)$, which implies both of $a^i b^j c$ and $(a^i b^j c)^{-1} = a^{-i} b^j c$ belong to the same orbit for $0 \leq i < 2p$ and $0 \leq j < p$ in which $a^i b^j c \in S$, and that contradiction with the assumption $S = T \cup T^{-1}$. Hence $Aut(G_4, S)$ acts transitively on S.

Lemma 5.2. Let $\Gamma = Cay(G_4, S)$ be a Cayley graph of valency 4. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^{i+p} b^l c, a^{-i} b^j c, a^{p-i} b^l c\}$ or $S = \{a^i b^j c, a^k b^l c, a^{-i} b^j c, a^{-k} b^l c\}$ when $p \equiv 1 \pmod{4}$ for some $0 < i, k < 2p, 0 \le j, l < p, j \ne l$. In the first case, $Aut(G_4, S) \cong Z_2 \times Z_2$.

Proof. By Theorem 5.1, we have $S = \{a^i b^j c, a^k b^l c, a^{-i} b^j c, a^{-k} b^l c\}$ such that i + j is odd number and $j \neq l$. In this case, $G_4 = \langle S \rangle$ and then Γ is connected. Now $Aut(G_4, S)$ must be transitive on S. Let $f_{m,n,t,s} \in Aut(G_4, S)$ and $f_{m,n,t,s}(a^i b^j c) = a^k b^l c$. Since i + k is odd number (suppose i is odd number and k is even number) we must have t = p, then we have one of the following cases:

case 1: $f_{m,n,t,s}(a^k b^l c) = a^i b^j c.$

In this case, we have $im + t \equiv k \pmod{2p}$ and $km + t \equiv i \pmod{2p}$, from this relations we conclude that k = p+i, $f_{1,-1,p,l+j}$, $f_{-1,1,0,0}$ and $f_{-1,-1,p,l+j}$ are in $Aut(G_4, S)$ implying that $Aut(G_4, S)$ is transitive on S. We have $Aut(G_4, S) \leq S_4$ and $Aut(G_4, S)$ has no elements of order 3 or 4 but have 3 elements of order 2, then $Aut(G_4, S) \cong Z_2 \times Z_2$.

case 2: $f_{m,n,t,s}(a^k b^l c) = a^{-i} b^j c.$

In this case, we have $im + t \equiv k \pmod{2p}$ and $km + t \equiv -i \pmod{2p}$, from this relations we conclude that $m^2 \equiv -1 \pmod{p}$ and this equation has answer when $p \equiv 1 \pmod{4}$. In this case, $f_{m,-1,p,l+j}$ is in $Aut(G_4, S)$ forcing $Aut(G_4, S)$ is transitive on S.

case 3: $f_{m,n,t,s}(a^k b^l c) = a^{-k} b^j c.$

In this case we must have $km + p \equiv -k \pmod{2p}$, but k is even number and then km + p is odd number implying that $km + p \equiv -k \pmod{2p}$ can not be occur.

6. Normal edge-transitive Cayley graphs on group G_5

The order of non-identity elements of G_5 are as follows:

$$O(a^{i}b^{j}) = \begin{cases} p & \text{if } 0 \le i < 2p, i \text{ is } even, 0 \le j < p\\ 2p & \text{if } 0 \le i < 2p, i \text{ is } odd, 0 \le j < p, i \ne p\\ 2 & \text{if } i = p, j = 0 \end{cases}$$

and

$$O(a^i b^j c) = 2, \ 0 \le i < 2p, 0 \le j < p$$

Using the above facts, we can find $Aut(G_5)$.

$$Aut(G_5) = \{ f_{k,t,l,n,i,j} | f_{k,t,l,n,i,j}(a) = a^k b^t, f_{k,t,l,n,i,j}(b) = a^l b^n, \\ f_{k,t,l,n,i,j}(c) = a^i b^j c, 0 \le k, l, i < 2p, (k, 2p) = 1, (l, 2p) = 2, \\ 0 \le n, t, j < p, \text{ and for any } 0 \le m < 2p \\ l \ne mk \pmod{p} \text{ or } n \ne mt \pmod{p} \}$$

and it has the following orbits on $G_5: \{1\}, \{a^p\}, \{a^pb^k | 1 \le k < p\}, \{a^ib^jc | 0 \le i < 2p, 0 \le j < p\}, \{a^ib^j | 1 \le i < 2p, (i, 2p) = 1, 0 \le j < p\}, \{a^ib^j | 0 \le i < 2p, (i, 2p) = 2, 0 \le j < p\}.$

Lemma 6.1. If $Cay(G_5, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 2.

Proof. Proof of this lemma is similar to the proof of Lemma 3.2. \Box

Lemma 6.2. Let $0 \le i, k, t < 2p, 0 \le j, l, n < p$. Then $S = \{a^i b^j c, a^k b^l c, a^t b^n c\}$ generates G_5 if and only if, 1. j = l = n do not occur. 2. i, k, t are not all even or all odd. 3. If there exist m such that $(j - l)m \equiv j - n \pmod{p}$, then $(i - k)m \not\equiv i - t \pmod{p}$.

Proof. Proof of this lemma is similar to the proof of Lemma 3.3.

Example 6.3. Let $S = \{a^i b^j c, a^i c, b^j c, c\}$. Then $\Gamma = Cay(G_5, S)$ is a connected normal edge-transitive Cayley of valency 4 and $Aut(G_5, S) \cong Z_2 \times Z_2$.

By Lemma 6.2, we have $G_5 = \langle S \rangle$ so Γ is connected. The set S is equivalent to $S' = \{abc, ac, bc, c\}$ since $S'^{f_{i,0,0,j,0,0}} = S$. Therefore, it is sufficient to check it for S'. $f_{1,0,0,-1,0,1}, f_{-1,0,0,-1,1,1}, f_{-1,0,0,1,1,0}$ are all in $Aut(G_5, S')$ and send *abc* to *ac*, *c*, *bc* respectively, so $Cay(G_5, S')$ is a connected normal

edge-transitive Cayley of valency 4. Since $Aut(G_5, S)$ has no elements of order 3 or 4 while it has 3 elements of order 2, so $Aut(G_5, S) \cong Z_2 \times Z_2$.

Theorem 6.4. $\Gamma = Cay(G_5, S)$ is a connected normal edge-transitive Cayley graph if and only if $S \subseteq \{a^i b^j c, a^k b^l c, a^t b^n c | 0 \le i, k, t < 2p, 0 \le j, l, n < p\}$, S satisfy the conditions of Lemma 6.2, $S = S^{-1}$ and $Aut(G_5, S)$ acts transitively on S.

Proof. Proof of this theorem is similar to the proof of Theorem 5.1. \Box

7. Normal edge-transitive Cayley graphs on group G_6

Elements of G_6 can be written uniquely in the form $\{a^i b^j c^k d^l, 0 \leq i < p, 0 \leq j < p, 0 \leq k, l < 2\}$. The order of elements of G_6 are as follows: $O(a^i b^j) = p, O(a^i b^j cd) = O(a^i c) = O(b^j d) = 2$ where $0 \leq i, j < p$. For $1 \leq i < p, 0 \leq j < p$, we have $O(a^j b^i c) = O(a^i b^j d) = 2p$. Using the above facts, we can find $Aut(G_6)$. Any $\sigma \in Aut(G_6)$ is determined by its effect on a, b, c and d. For $1 \leq i, j < p, 0 \leq l, k < p$, we have:

$$Aut(G_6) = \{ f_{i,j,l,k} | f_{i,j,l,k}(a) = a^i, f_{i,j,l,k}(b) = b^j, f_{i,j,l,k}(c) = a^l c, f_{i,j,l,k}(d) = b^k d \} \cup \{ g_{i,j,l,k} | g_{i,j,l,k}(a) = b^i, g_{i,j,l,k}(b) = a^j, g_{i,j,l,k}(c) = b^l d, f_{i,j,l,k}(d) = a^k c \}$$

Lemma 7.1. If $Cay(G_6, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 2p or 2.

Next, we can express the main condition under which the Cayley graph of group G_6 becomes connected normal edge-transitive.

Theorem 7.2. $\Gamma = Cay(G_6, S)$ is a connected normal edge-transitive Cayley graph if and only if, $S \subseteq \{a^i b^j c, a^k b^l c\}$ or $S \subseteq \{a^i c, a^j c, b^k d, b^l d, 1 \leq j, k < p, 0 \leq i, l < p\}, S = S^{-1}$ and $Aut(G_6, S)$ acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Lemma 7.1, elements of S have order 2 or 2p. First assume elements of S hava order 2 and let $a^i b^j cd \in S$. Since $(a^i b^j cd)^{Aut(G_6)} = a^t b^m cd$ for some $1 \leq t, m < p$, so $S \subseteq \{a^i b^j cd\}$. But in this case $\langle S \rangle \langle G_6$ and $Cay(G_6, S)$ can not be connected. Therefore assume that $a^i c, b^k d \in S$. Since $\langle S \rangle = G_6$, so S must contain some element other than $a^i c, b^k d \in S$, such that its order is 2. If $S = \{a^i c, b^k d, b^l d\}$, then $b, d \in S$ but $a \notin S$, therefore S must have another element of the form $a^j c$, hence $S \subseteq \{a^i c, a^j c, b^k d, b^l d\}$, $1 \leq j, k < p, 0 \leq$ i, l < p. From Proposition 2.2, either $Aut(G_6, S)$ acts on S transitively, or $S = T \cup T^{-1}$, where T and T^{-1} are orbits of the action of $Aut(G_6, S)$ on S. But we observe that $T = T^{-1}$, therefore, $Aut(G_6, S)$ acts transitively on S. Now assume that elements of S have order 2p and let $a^i b^j c \in S$. Since $\langle S \rangle = G_6$, so S must contain some element other than $a^i b^j c \in S$, such that its order is 2p. If $S = \{a^i b^j c, a^k b^l d\}$ such that $j, k \neq 0$, then $G_6 = \langle S \rangle$ and therefore $S \subseteq \{a^i b^j c, a^k b^l d\}$. From Proposition 2.2, either $Aut(G_6, S)$ acts on S transitively, or $S = T \cup T^{-1}$, where T and T^{-1} are orbits of the action of $Aut(G_6, S)$ on S. But we know that that $T = T^{-1}$, hence $Aut(G_6, S)$ acts transitively on S. But we observe $f_{-1,-1,2i,2l} \in Aut(G_6, S)$, which implies both of $a^i b^j c, a^k b^l d$ and $(a^i b^j c)^{-1} = a^i b^{-j} c, (a^k b^l d)^{-1} = a^{-k} b^l d$ belong to the same orbit for $0 \le i, j, k, l < p$ in which $a^i b^j c, a^k b^l d \in S$, and that contradiction with the assumption $S = T \cup T^{-1}$. Hence $Aut(G_6, S)$ acts transitively on S. \Box

Corollary 7.3. If Γ is a connected Cayley graph of the group G_6 , then Γ is not normal 1/2-arc-transitive.

Lemma 7.4. Let $\Gamma = Cay(G_6, S)$ be a Cayley graph of valency 4 and elements of S has order 2. The Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i c, a^j c, b^k d, b^l d\}$ where $0 \leq i, j, k, l < p, i \neq j, l \neq k$. Moreover, in this case $Aut(G_6, S) \cong D_8$.

Proof. By Theorem 7.2, it is enough to show that $Aut(G_6, S)$ acts transitively on S. The set S is equivalent to $S' = \{c, d, ac, bd\}$, since $S'^{f_{j-i,k-l,i,l}} = S$. Therefore, it is sufficient to check it for S'. But $g_{1,1,0,0}$, $f_{-1,-1,1,1}, g_{-1,-1,1,1} \in Aut(G_6, S)$ and send c to d, ac, bd, respectively. Moreover, $Aut(G_6, S')$ has no elements of order 3 and has 2 elements of order 4 $(g_{1,-1,0,1}, g_{-1,1,1,0})$ and 5 elements of order 2 $(f_{-1,-1,1,1}, g_{-1,-1,1,1}, g_{1,1,0,0}, f_{-1,1,1,0}, f_{1,-1,0,1})$, so $Aut(G_6, S')$ $\cong D_8$.

Lemma 7.5. Let $\Gamma = Cay(G_6, S)$ be a Cayley graph of valency 4 and elements of S has order 2p. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^i b^{-j} c, a^k b^l d, a^{-k} b^l d\}$ where $0 \le i, l < p, 1 \le j, k < p$. Moreover, in this case $Aut(G_6, S) \cong D_8$.

Proof. Proof of this lemma is similar to the proof of Lemma 7.4.

Example 7.6. If $S = \{a^i b^j c^k | 1 \le i < p, 0 \le j < p, k = 1, 3\}$, then $Cay(G_6, S)$ is a connected normal edge-transitive Cayley graph of valency 2p(p-1).

8. Normal edge-transitive Cayley graphs on group G_7

Elements of G_7 can be written uniquely in the form $\{a^i b^j c^k, 0 \le i < p, 0 \le j < p, 0 \le k < 4\}$. The order of elements of G_7 are as follows: $O(a^i b^j) = p$ where $0 \le i, j < p$. For $1 \le i < p, 0 \le j < p, k = 1, 3$, we have $O(c^2) = 2, O(b^j c^k) = 4, O(a^i b^j c^k) = 4p$ and $O(a^i b^j c^2) = 2p$. Using the above facts, we can find $Aut(G_7)$.

Lemma 8.1. $Aut(G_7) \cong (Z_2 \times Z_p) \rtimes (U_p \times U_p)$, and it has the following orbits on $G_7 : \{1\}, \{a^i | 1 \le i < p\}, \{b^j | 1 \le i < p\}, \{a^i b^j | 1 \le i, j < p\}, \{a^i c^2 | 1 \le i < p\}, \{a^i b^j c^k | 1 \le i < p, 0 \le j < p, k = 1, 3\}, \{a^i b^j c^2 | 1 \le i < p, 1 \le j < p\}, \{b^j c^2 | 1 \le j < p\} and \{b^j c^k | 0 \le j < p, k = 1, 3\}.$

Proof. Any $\sigma \in Aut(G_7)$ is determined by its effect on a, b and c. For $1 \leq i < p$, $0 \leq j < p$, k = 1, 3, $\sigma(a) \in \{a^i b^j\}$, $\sigma(b) \in \{a^i b^j\}$ and $\sigma(c) \in \{b^j c^k\}$, but we also have $\sigma(c^{-1}bc) = \sigma(b^{-1}), \sigma(ab) = \sigma(ba)$ and $\sigma(ac) = \sigma(ca)$, thus according to this relations we have:

$$Aut(G_7) = \{h_{i,j,l,k} | h_{i,j,l,k}(a) = a^i, h_{i,j,l,k}(b) = b^j, h_{i,j,l,k}(c) = b^l c^k |$$

$$1 \le i, j < p, \ 0 \le l < p, \ k = 1,3\}$$

and we have:

$$(h_{i,j,l,k})o(h_{i',j',l',k'}) = h_{ii',jj',jl'+l,kk'}$$

$$h_{i,j,l,k}^{-1} = h_{i_1,j_1,-j_1l,k}$$

In the above relations, i_1 and j_1 are the numbers such that $ii_1 \equiv 0 \pmod{p}$ and $jj_1 \equiv 0 \pmod{p}$.

Define $A = \{h_{1,1,l,k} | k = 1, 3, 0 \le l < p\}$ and $B = \{h_{i,j,0,1} | 1 \le i, j < p\}$, so $A \le Aut(G_4), A \cap B = id$ and $Aut(G_7) = AB$. Therefore we have:

$$Aut(G_7) \cong (Z_2 \times Z_p) \rtimes (U_p \times U_p).$$

Lemma 8.2. If $Cay(G_7, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4p and |S| > 2 is even. Moreover, for odd prime number $p, S = \{a^i b^j c, a^k b^l c, a^{-k} b^l c^3, a^{-i} b^j c^3 | 1 \le i, k < p, 0 \le j, l < p\}$ is generate G_7 if and only if $j \ne l$.

Proof. Proof of the first part is similar to Lemma 3.2. Generating condition of S comes from the relations, $(a^i b^j c)^4 = a^{4i}$, $(a^i b^j c)^2 = a^{2i} c^2$ and $b^l c b^j c = b^{l-j} c^2$.

Lemma 8.3. Let $\Gamma = Cay(G_7, S)$ be a Cayley graph of valency 4. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^{\pm i} b^l c, a^{-i} b^j c^3, a^{\mp i} b^l c^3\}$ where $1 \leq i, j < p, 0 \leq l < p, j \neq l$. Moreover, in this case $Aut(G_7, S) \cong Z_2 \times Z_2$.

Proof. According to Lemma 8.2, S have elements of order 4p. First set $S' = \{ac, abc, a^{-1}c^3, a^{-1}bc^3\}$. In this case $h_{1,-1,1,1}, h_{-1,1,0,3}, h_{-1,-1,1,3} \in Aut(G_7, S)$ and $(ac)^{h_1,-1,1,1} = abc, (ac)^{h_{-1,1,0,3}} = a^{-1}c^3$ and $(ac)^{h_{-1,-1,1,3}} = a^{-1}bc^3$, so $Aut(G_7, S')$ is transitive on S and $Cay(G_7, S')$ is connected normal edge-transitive Cayley graph. Moreover, $Aut(G_7, S') \cong Z_2 \times Z_2$. Similarly, if $S'' = \{ac, a^{-1}bc, a^{-1}c^3, abc^3\}$, then $Cay(G_7, S'')$ is connected normal edge-transitive Cayley graph. Now $h_{i,l-j,j,1} \in Aut(G_7), (S')^{h_{i,l-j,j,1}} = \{a^ib^jc, a^ib^lc, a^{-i}b^jc^3, a^{-i}b^lc^3\}$ and $(S'')^{h_{i,l-j,j,1}} = \{a^ib^jc, a^{-i}b^lc, a^{-i}b^jc^3, a^{i}b^lc^3\}$. So $\Gamma = Cay(G_7, S)$ is connected normal edge-transitive Cayley graph. Now set $S = \{x, y, x^{-1}, y^{-1}\}$, if $x = a^ib^jc$, then since $G_7 = \langle S \rangle, y$ must be either a^kb^lc or $a^kb^lc^3$ such that $j \neq l$. Suppose $\Gamma = Cay(G_7, S)$ is a connected normal edge-transitive Cayley graph. By

Proposition 2.2, in the action of $Aut(G_7, S)$ on S, we can deduce either S is an orbit or $S = T \cup T^{-1}$, where T is an orbit. In the last case we have $T = \{x, y\}$ or $T = \{x, y^{-1}\}$, but $h_{-1,1,0,3} \in Aut(G_7, S)$, $T^{h_{-1,1,0,3}} = T^{-1}$, therefore $Aut(G_7, S)$ must be transitive on S. Since $Aut(G_7, S)$ is transitive on S, so there exist $h_{m,n,t,s} \in Aut(G_7, S)$, such that $h_{m,n,t,s}(x) = y$ and $h_{m,n,t,s}(y) = x$ or x^{-1} or y^{-1} . First suppose $h_{m,n,t,s}(x) = y$ and $h_{m,n,t,s}(y) = x$. In this case we must have $im \equiv k \pmod{p}$ and $km \equiv i \pmod{p}$, therefore p|(i-k)(m+1). Since $1 \leq i, k, m < p$, we have i = k or m = -1. So $S = \{a^i b^j c, a^{-i} b^l c^3, a^{-i} b^l c^3\}$ or $S = \{a^i b^j c, a^{-i} b^l c^3, a^{-i} b^l c^3\}$.

Now suppose $h_{m,n,t,s}(x) = y$ and $h_{m,n,t,s}(y) = x^{-1}$, in this case we must have $s \equiv 1 \pmod{4}$ and $s \equiv 3 \pmod{4}$ that is impossible.

In the last case suppose $h_{m,n,t,s}(x) = y$ and $h_{m,n,t,s}(y) = y^{-1}$, in this case we must have $s \equiv 1 \pmod{4}$ and $s \equiv 3 \pmod{4}$ that is impossible. So we have $S = \{a^i b^j c, a^{\pm i} b^l c, a^{-i} b^j c^3, a^{\mp i} b^l c^3\}$ and $Aut(G_7, S) \cong Z_2 \times Z_2$.

Next, we can express the main condition under which the Cayley graph of group G_7 becomes connected normal edge-transitive.

Theorem 8.4. $\Gamma = Cay(G_7, S)$ is a connected normal edge-transitive Cayley graph if and only if its valency is even, greater than two, $S \subseteq \{a^i b^j c, a^k b^l c^3 | 1 \le i, k < p, 0 \le j, l < p, j \ne l\}$, $S = S^{-1}$ and $Aut(G_7, S)$ acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Proposition 2.3, its valency should be even. By Lemma 8.2 and Lemma 8.3, $S \subseteq \{a^i b^j c, a^k b^l c^3 | 1 \leq i, k < p, 0 \leq j, l < p, j \neq l\}$ and $S = S^{-1}$. From Proposition 2.2, either $Aut(G_7, S)$ acts on S transitively, or $S = T \cup T^{-1}$, where T and T^{-1} are orbits of the action of $Aut(G_7, S)$ on S. But we observe $h_{-1,1,0,3} \in Aut(G_7, S)$, which implies both of $a^i b^j c$ and $(a^i b^j c)^{-1} = a^{-i} b^j c^3$ belong to the same orbit for $1 \leq i < p, 0 \leq j < p$ in which $a^i b^j c \in S$, and that contradicts the assumption $S = T \cup T^{-1}$. Hence $Aut(G_7, S)$ acts transitively on S. □

Corollary 8.5. If Γ is a connected Cayley graph of the group G_7 , then Γ is not normal 1/2-arc-transitive.

Example 8.6. If $S = \{a^i b^j c^k | 1 \le i < p, 0 \le j < p, k = 1, 3\}$, then $Cay(G_7, S)$ is a connected normal edge-transitive Cayley graph of valency 2p(p-1).

Theorem 8.7. Let $\Gamma = Cay(G_7, S)$ be a normal edge-transitive Cayley graph of valency 2d. Then d = p or d|p(p-1) or $d|(p-1)^2$. Moreover, for each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. By Theorem 8.4, $S \subseteq \{a^i b^j c, a^k b^l c^3 | 1 \le i, k < p, 0 \le j, l < p, j \ne l\}$ and by Example 8.6, $Cay(G_7, U)$ is a connected normal edge-transitive graph of valency 2p(p-1), where $U = \{a^i b^j c^k | 1 \le i < p, 0 \le j < p, k = 1, 3\}$. Now suppose $S \subseteq \{a^i b^j c, a^k b^l c^3 | 1 \le i, k < p, 0 \le j, l < p, j \ne l\}$ and Γ is a Cayley graph of valency 2d. Since $Aut(G_7, S) \le Aut(G_7)$ and $Aut(G_7, S)$ is

transitive on S (Theorem 8.4), we have $|S| = 2d | |Aut(G_7, S)| | |Aut(G_7)| =$ $2p(p-1)^2$, implying $d|p(p-1)^2$. On the other hand, $d \leq p(p-1)$, hence d = p or d|(p-1) or d|p(p-1) or $d \nmid (p-1)$ but $d|(p-1)^2$, proving the first assertion of the theorem. To prove the existence and uniqueness part in the theorem, if d = p(p-1), then as mentioned above, $Cay(G_7, U)$ is the unique normal maximal edge-transitive Cayley graph of valency 2p(p-1). Now suppose d = p. Consecutive application of $h_{1,1,1,1}$ on ac yields the set $T = \{ac, abc, ab^2c, \dots, ab^{(p-1)}c\}$ whose size is p and is invariant under $h_{1,1,1,1}$. Let us set $T^{-1} = \{x^{-1} | x \in T\} = \{a^{-1}c^3, a^{-1}b^3, a^{-1}b^2c^3, ..., a^{-1}b^{(p-1)}c^3\}$ and $S = T \cup T^{-1}$. By the argument used in Lemma 8.2, we have $\langle S \rangle = G_7$. It is easy to see that $h_{-1,1,0,3}$ interchanges elements of T and T^{-1} , also $Aut(G_7, S)$ is transitive on S, implying $Cay(G_7, S)$ is connected normal edge-transitive of valency 2p. Now let d|(p-1), d > 1. The stabilizer of a and c under $A = Aut(G_7)$ is the group $A_{a,c} = \{h_{1,i,0,1} | 1 \le i < p\} \cong U_p$. Let t be a generator of U_p , so that $A_{a,c} = \langle h_{1,t,0,1} \rangle$. Since d|(p-1), the group U_p contains a unique subgroup of order d, and if we set $u = t^{\frac{p-1}{d}}$, then $\langle h_{1,u,0,1} \rangle$ is a subgroup of $A_{a,c}$ with order d. Now consecutive application of $h_{1,u,0,1}$ on abc yields the set $T = \{abc, ab^u c, ..., ab^{u^{d-1}}c\}$ whose size is d and is invariant under $h_{1,u,0,1}$. Let us set $T^{-1} = \{x^{-1} | x \in T\}$ and $S = T \cup T^{-1}$. We claim that $Cay(G_7, S)$ is a connected normal edge-transitive Cayley graph. Similar to the above, $\langle S \rangle = G_7$ and $h_{-1,1,0,3}$ interchanges elements of T and T^{-1} , also the automorphism group of $Cay(G_7, S)$ is $\langle h_{1,u,0,1}, h_{-1,1,0,3} \rangle$, implying $Cay(G_7, S)$ is connected normal edge-transitive of valency 2d. Now let $d \nmid p-1$ and $d \neq p$ but d|p(p-1), in this case we have d = tp such that $t \mid p-1$. Set E = $\{h_{u,1,i,1} | u^{t} \equiv 1 \pmod{p}, 0 \le i < p\} \le Aut(G_{7}), \text{ consecutive effects of } h_{u,1,i,1} \text{ on } ac \text{ yields the set } T = \{ac, a^{u}c, ..., a^{u^{t-1}}c, abc, a^{u}bc, ..., a^{u^{t-1}}bc, ..., a^{u^{t-1}}b^{p-1}c\}$ whose size is d and is invariant under E and set $S = T \cup T^{-1}$, similar to the above, $Cay(G_7, S)$ is connected normal edge-transitive of valency 2d. Finally let $d \nmid (p-1)$ but $d \mid (p-1)^2$, in this case d = ms such that $m \mid p-1$ and $s \mid p - 1$. Set $H = \langle h_{u,1,0,1}, h_{1,t,0,1} \rangle$ such that $t^m \equiv 1 \pmod{p}$ and $u^s \equiv 1 \pmod{p}$. Consecutive application of H on abc yields the set $T = \{ abc, a^{u}bc, ..., a^{u^{s-1}}bc, ab^{t}c, a^{u}b^{t}c, ..., a^{u^{s-1}}b^{t}c, ..., ab^{t^{k-1}}c, ..., a^{u^{s-1}}b^{t^{k-1}}c \}$ whose size is d and is invariant under H and set $S = T \cup T^{-1}$, hence $Cay(G_7, S)$ is connected normal edge-transitive of valency 2d. \square

9. Normal edge-transitive Cayley graphs on group G_8

Elements of G_8 can be written uniquely in the form $\{a^i b^j c^k, 0 \le i < p, 0 \le j < p, 0 \le k < 4\}$. The order of elements of G_8 are as follows: for $0 \le i < p, 0 \le j < p, k = 1, 3$, we have $O(a^i b^j) = p, O(c^2) = 2$, $O(a^i b^j c^k) = 4$ and $O(a^i b^j c^2) = 2p$. Using the above facts, we can find $Aut(G_8)$. Let us choose $0 \le i, j, k, l < p$ with following properties: 1. If there exist $1 \le s < p$ such that $si \equiv k \pmod{p}$, then $sj \not\equiv l \pmod{p}$. 2. i = j = 0 and k = l = 0 do not occur.

With this condition we set $f_{i,j,k,l,m,n,t}(a) = a^i b^j$, $f_{i,j,k,l,m,n,t}(b) = a^k b^l$ and $f_{i,j,k,l,m,n,t}(c) = a^m b^n c^t$, then we have:

$$Aut(G_8) = \{ f_{i,j,k,l,m,n,t} | \ 0 \le i, j, k, l, m, n < p, \ t = 1, 3 \}$$

and for $0 \leq i, j < p$, it has the following orbits on $G_8 : \{1\}, \{a^i b^j\}, \{a^i b^j c^2 | i and j are not zero in same time\}, <math>\{c^2\}$ and $\{a^i b^j c^k | k = 1, 3\}$.

Lemma 9.1. If $Cay(G_8, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, $|S| \ge 6$ is even.

Proof. By Proposition 2.2, elements of S have the same order. Since $\langle S \rangle = G_8$, the set S cannot contain elements of order p, 2p or 2, and should contain elements of order 4 only. By Proposition 2.3, |S| is even. Now set |S| = 4, then $S = \{a^i b^j c, a^k b^l c, a^i b^j c^3, a^k b^l c^3 | 0 \leq i, j, k, l < p\}$. We have:

$$(a^{i}b^{j}c)^{m} = \begin{cases} c^{2} & m=2\\ a^{i}b^{j}c & m=1\\ a^{i}b^{j}c^{3} & m=3 \end{cases}$$

 $a^ib^jca^kb^lc=a^{i-k}b^{j-l}c^2$ and $a^ib^jca^kb^lc^3=a^{i-k}b^{j-l}.$ So according to the above relations, $< S>< G_8.$

Now set |S| = 6, then $S = \{a^i b^j c, a^k b^l c, a^i b^j c^3, a^k b^l c^3, a^k b^l c^3 | 0 \le i, j, k, l, t, f < p\}$. In this case $\langle S \rangle = G_8$ if and only if $0 \le i, j, k, l, t, f < p$ and if there exist $1 \le s < p$ such that $s(k - i) \equiv (t - i) \pmod{p}$, then $s(l - j) \not\equiv (f - j) \pmod{p}$. Because we have $a^k b^l c a^i b^j c^3 = a^{k-i} b^{l-j}$ and $a^t b^f c a^i b^j c^3 = a^{t-i} b^{f-j}$. According to the above relations, $b^{s(l-j)-(f-j)} \in \langle S \rangle$ and so $b \in \langle S \rangle$, also $a \in \langle S \rangle$ and $c \in \langle S \rangle$.

Theorem 9.2. Let $\Gamma = Cay(G_8, S)$ be a Cayley graph of valency 6. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^k b^l c, a^i b^j c^3, a^k b^l c^3, a^t b^f c^3 | 0 \le i, j, k, l, t, f < p\}$, where if there exist $1 \le s < p$ such that $s(k-i) \equiv (t-i) \pmod{p}$, then $s(l-j) \not\equiv (f-j) \pmod{p}$.

Proof. Set $S' = \{c, ac, bc, c^3, ac^3, bc^3\}$. First we prove that $Cay(G_8, S')$ is connected normal edge-transitive. By Lemma 9.1, $\langle S' \rangle = G_8$ and so $Cay(G_8, S')$ is connected. The automorphisms $f_{0,1,1,0,0,0,1}, f_{-1,0,-1,1,1,0,1}, f_{1,0,0,1,0,0,3}, f_{0,1,1,0,0,0,3}$ and $f_{-1,0,-1,1,1,0,3}$ are all in $Aut(G_8, S')$ and transfer ac to bc, c, ac^3, bc^3 and c^3 respectively. So $Aut(G_8, S')$ is transitive on S' and $Cay(G_8, S')$ is connected normal edge-transitive Cayley graph. Now according to condition of theorem, $f_{k-i,l-j,t-i,f-j,i,j,1}$ is in $Aut(G_8)$ and $S'^{f_{k-i,l-j,t-i,f-j,i,j,1}} = S$ and the proof is completed. □

10. Normal edge-transitive Cayley graphs on group G_9 and G'_9

The order of elements of G_9 are as follows:

for $0 \leq i < p$, $0 \leq j < p$, k = 1, 3, we have $O(a^i b^j) = p$, $O(a^i b^j c^k) = 4$ and $O(a^i b^j c^2) = 2$. Using the above facts, we can find $Aut(G_9)$. Set $f_{i,j,k,l}(a) = a^i b^j$, $f_{i,j,k,l}(b) = a^{-j} b^i$, $f_{i,j,k,l}(c) = a^k b^l c$, $g_{i,j,k,l}(a) = a^i b^j$, $g_{i,j,k,l}(b) = a^j b^{-i}$, $g_{i,j,k,l}(c) = a^k b^l c^3$, then we have:

 $Aut(G_9) = \{f_{i,j,k,l}, g_{i,j,k,l} | \ 0 \le i, j, k, l < p, \ and \ i \ , \ j \ are \ not \ both \ zero\}$

 $|Aut(G_9)| = 2p^2(p^2-1)$ and for $0 \le i, j < p, k = 1, 3, Aut(G_9)$ has the following orbits on $G_9 : \{1\}, \{a^i b^j\}, \{a^i b^j c^2\}$ and $\{a^i b^j c^k\}$.

Lemma 10.1. If $Cay(G_9, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, $|S| \ge 4$ is even.

Lemma 10.2. Let $\Gamma = Cay(G_9, S)$ be a Cayley graph of valency 4. Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^k b^l c, a^{-j} b^i c^3, a^{-l} b^k c^3\}$ where $0 \leq i, j, k, l < p$.

Proof. At first we prove that $\langle S \rangle = G_9$. We have $a^i b^j c a^{-l} b^k c^3 = a^{i-k} b^{j-l}$ and $a^{-l} b^k c^3 a^i b^j c = a^{j-l} b^{k-i}$, so there exist integer m such that $m(k-i) \equiv j-l$ (mod p) and $m(l-j) \not\equiv k-i \pmod{p}$. So we have $(a^{i-k} b^{j-l})^m a^{j-l} b^{k-i} = b^{m(j-l)+(k-i)}$, therefore $b \in \langle S \rangle$ and also $a \in \langle S \rangle$ and $c \in \langle S \rangle$.

Now set $S' = \{c, bc, a^{-1}c^3, c^3\}$. Then $\langle S' \rangle = G_9$ and $Cay(G_9, S')$ is connected. Also we have $f_{-1,0,0,1}, g_{0,-1,0,0}, g_{0,1,-1,0} \in Aut(G_9, S')$ and $c^{f_{-1,0,0,1}} = bc, c^{g_{0,-1,0,0}} = c^3$ and $c^{g_{0,1,-1,0}} = a^{-1}c^3$, implying that $Aut(G_9, S')$ is transitive on S' and so $Cay(G_9, S')$ is connected normal edge-transitive Cayley graph. Now we have $f_{l-j,i-k,i,j} \in Aut(G_9)$ and $S'^{f_{l-j,i-k,i,j}} = S$, therefore $\Gamma = Cay(G_9, S)$ is a connected normal edge-transitive Cayley graph. \Box

Theorem 10.3. $\Gamma = Cay(G_9, S)$ is a connected normal edge-transitive Cayley graph if and only if its valency is even, greater than two, $S \subseteq \{a^{i}b^{j}c^{t}|0 \leq i, j < p, t = 1, 3\}$, $S = S^{-1}$ and $Aut(G_9, S)$ acts transitively on S. Moreover, if Γ is a normal edge-transitive Cayley graph of valency 2d, then $d = p^2$, d = p, d|(p-1), d|p(p-1) or $d \nmid (p-1)$ but $d|(p^2-1)$. For each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Proposition 2.3, its valency should be even. By Lemma 10.1, $S \subseteq \{a^{i}b^{j}c^{t}|0 \leq i, j < p, t = 1, 3\}$, since the graph is undirected, $S = S^{-1}$, and by Lemma 10.2, if |S| > 2, then $\langle S \rangle = G_9$. From Proposition 2.2, either $Aut(G_9, S)$ acts on S transitively, or $S = T \cup T^{-1}$, where T and T^{-1} are orbits of the action of $Aut(G_9, S)$ on S. But we observe that $g_{-1,0,i-j,i-j} \in Aut(G_9, S)$, which implies both of $a^i b^j c$ and $(a^i b^j c)^{-1} = a^{-j} b^i c^3$ belong to the same orbit for $0 \leq i, j < p$

in which $a^i b^j c \in S$, and that contradiction with the assumption $S = T \cup T^{-1}$. Hence $Aut(G_9, S)$ acts transitively on S.

If $U = \{a^i b^j c^t | 0 \le i, j < p, t = 1, 3\}$, then U is an orbit of $Aut(G_9)$, therefore in this case, $Aut(G_9, U)$ is a connected normal edge-transitive Cayley graph of valency $2p^2$. Now suppose $S \subseteq \{a^i b^j c^t | 0 \le i, j < p, t = 1, 3\}$, $\langle S \rangle = G_9$ and Γ is a Cayley graph of valency 2d. Since $Aut(G_9, S) \le Aut(G_9)$ and $Aut(G_9, S)$ is transitive on S, we have $|S| = 2d \mid |Aut(G_9, S)| \mid |Aut(G_9)| = 2p^2(p^2 - 1)$, implying $d|p^2(p^2 - 1)$. On the other hand, we have $d \le p^2$, hence $d = p^2$ or d = p or d|(p - 1) or d|p(p - 1) or $d \nmid (p - 1)$ but $d|(p^2 - 1)$, proving the first assertion of the theorem. To prove the existence and uniqueness part in the theorem, if $d = p^2$, then as mentioned above, $Cay(G_9, U)$ is the unique normal maximal edge-transitive Cayley graph of valency $2p^2$. Now suppose d = pand set $S = \{c, ac, a^2c, ..., a^{p-1}c, c^3, bc^3, ..., b^{p-1}c^3\}$ whose size is 2p. We have $f_{-1,0,i,0,g_{0,1,0,i}} \in Aut(G_9, S), c^{f_{-1,0,i,0}} = a^i c$ and $c^{g_{0,1,0,i}} = b^i c$. So $Aut(G_9, S)$ is transitive on S, implying $Cay(G_9, S)$ is connected normal edge-transitive of valency 2p.

Now let d|(p-1), d > 1. Define $E = \{f_{i,0,0,0}|1 \le i < p\}$. Then E is a subgroup of $Aut(G_9)$ and $E \cong U_p$. Let t be a generator of U_p , so that $E = \langle f_{t,0,0,0} \rangle$. Since d|(p-1), the group U_p contains a unique subgroup of order d, and if we set $u = t^{\frac{p-1}{d}}$, then $\langle f_{u,0,0,0} \rangle$ is a subgroup of E with order d. Now consecutive application of $f_{u,0,0,0}$ on ac yields the set $T = \{ac, a^uc, ..., a^{u^{d-1}}c\}$ whose size is d and is invariant under $f_{u,0,0,0}$. Let us set $T^{-1} = \{x^{-1}|x \in T\}$ and $S = T \cup T^{-1}$. We claim that $Cay(G_9, S)$ is a connected normal edgetransitive Cayley graph. Similar to the above $\langle S \rangle = G_9$ and $g_{0,1,0,0}$ interchanges elements of T and T^{-1} . Also the automorphism group of $Cay(G_9, S)$ is $\langle f_{u,0,0,0}, g_{0,1,0,0} \rangle$, implying $Cay(G_9, S)$ is connected normal edge-transitive of valency 2d.

Now let $d \nmid p-1$ and $d \neq p$ but d|p(p-1). In this case, we have d = tp such that $t \mid p-1$. Let s be a number such that $s^t \equiv 1 \pmod{p}$ and set $T = \{ac, a^sc, ..., a^{s^{t-1}}c, abc, a^sbc, ..., a^{s^{t-1}}bc, ..., a^{s^{t-1}}b^{p-1}c\}$ whose size is d and is invariant under $F = \{f_{s,0,0,i}, f_{1,0,0,1} \mid s^t \equiv 1 \pmod{p}, 0 \leq i < p\} \leq Aut(G_9, T)$. Set $S = T \cup T^{-1}$, similar to the above, $Cay(G_9, S)$ is connected normal edge-transitive of valency 2d.

Finally let $d|(p^2 - 1)$. The stabilizer of c under $A = Aut(G_9)$ is the abelian group $A_c = \{f_{i,j,0,0} | 0 \leq i, j < p, i, j \text{ are not both zero}\}$ and $|A_c| = p^2 - 1$. Since $d|(p^2 - 1)$, the group A_c contains a unique element of order d, say σ . Now consecutive application of σ on ac yields the set T whose size is d and is invariant under σ . Let us set $T^{-1} = \{x^{-1} | x \in T\}$ and $S = T \cup T^{-1}$. In this case $Cay(G_9, S)$ is a connected normal edge-transitive Cayley graph of valency 2d. Next we consider G'_9 .

Elements of G'_9 can be written uniquely in the form $\{a^i b^j c^k, 0 \le i < p, 0 \le j < p, 0 \le k < 4\}$. The order of elements of G'_9 are as follows:

for $0 \le i, j < p, \ k = 1, 3$, We have $O(a^i b^j) = p, \ O(a^i b^j c^k) = 4$ and $O(a^i b^j c^2) = 2$. Using the above facts, we can find $Aut(G'_9)$. Set $f_{i,j,k,l}(a) = a^i, \ f_{i,j,k,l}(b) = b^j, \ f_{i,j,k,l}(c) = a^k b^l c, \ g_{i,j,k,l}(a) = b^i, \ g_{i,j,k,l}(b) = a^j, \ g_{i,j,k,l}(c) = a^k b^l c^3$, then we have:

$$Aut(G'_9) = \{ f_{i,j,k,l}, g_{i,j,k,l} | \ 0 \le k, l < p, \ 1 \le i, j < p \}$$

 $\begin{array}{ll} |Aut(G_9')| &= 2p^2(p-1)^2 \mbox{ and for } 0 \leq i,j < p,k = 1,3, \ Aut(G_9') \mbox{ has the following orbits on } G_9': \{1\}, \{a^i|1 \leq i < p\}, \{b^j|1 \leq j < p\}, \ \{a^ib^j|1 \leq i,j < p\}, \ \{a^ib^jc^2|0 \leq i,j < p\} \mbox{ and } \{a^ib^jc^k|0 \leq i,j < p,k = 1,3\}. \end{array}$

Lemma 10.4. If $Cay(G'_9, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, $|S| \ge 4$ is even.

Lemma 10.5. Let $\Gamma = Cay(G'_9, S)$ be a Cayley graph of valency 4. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^k b^l c, a^{-i\lambda} b^{j\lambda} c^3, a^{-k\lambda} b^{l\lambda} c^3\}$ where $0 \leq i, j, k, l < p$ and $j \neq l, i \neq k$.

 $\begin{array}{l} \textit{Proof. At first we prove that} < S >= G_9'. \text{ We have } a^i b^j c a^{-k\lambda} b^{l\lambda} c^3 = a^{i-k} b^{j-l} \\ \text{and } a^i b^j c a^k b^l c = a^{i-k\lambda} b^{j+l\lambda} c^2, \ (a^i b^j c)^2 = a^{i-i\lambda} b^{j+j\lambda} c^2, \\ a^{i-k\lambda} b^{j+l\lambda} c^2 a^{i-i\lambda} b^{j+j\lambda} c^2 = a^{i\lambda-k\lambda} b^{l\lambda-j\lambda}. \text{ So } b^{2(l-j)\lambda} \in < S >, \text{ since } j \neq l, \end{array}$

 $a^{i-k\lambda}b^{j+l\lambda}c^2a^{i-i\lambda}b^{j+j\lambda}c^2 = a^{i\lambda-k\lambda}b^{l\lambda-j\lambda}$. So $b^{2(l-j)\lambda} \in \langle S \rangle$, since $j \neq l$, then $b \in \langle S \rangle$. From condition $i \neq k$ and above relations, we conclude that $a \in \langle S \rangle$ and $c \in \langle S \rangle$.

Now let *m* and *n* be the integers such that $mn \equiv 1 \pmod{p}, m\lambda(i-k) \equiv j-l \pmod{p}$ (mod *p*) and $n\lambda(l-j) \equiv i-k \pmod{p}$, then $f_{-1,-1,i+k,j+l}, g_{m,n,-k\lambda-jn,l\lambda-im} \in Aut(G'_9, S)$. We have $(a^i b^j c)^{f_{-1,-1,i+k,j+l}} = a^k b^l c, (a^i b^j c)^{g_{m,n,-k\lambda-jn,l\lambda-im}} = a^{-k\lambda} b^{l\lambda} c^3$ and $(a^i b^j c)^{f_{-1,-1,i+k,j+l} og_{m,n,-k\lambda-jn,l\lambda-im}} = a^{-i\lambda} b^{j\lambda} c^3$. Therefore $Aut(G'_9, S)$ is transitive on *S* and Γ is a connected normal edge-transitive Cayley graph. \Box

11. Normal edge-transitive Cayley graphs on group G_{10}

The order of elements of G_{10} are as follows:

 $O(a^{i}b^{j}) = p(0 \le i, j < p)$ and for $1 \le i < p, 0 \le j < p, k = 1, 3$, we have $O(b^{j}c^{k}) = 4, O(b^{j}c^{2}) = 2, O(a^{i}b^{j}c^{k}) = 4p$ and $O(a^{i}b^{j}c^{2}) = 2p$. Using the above facts, we can find $Aut(G_{10})$.

Lemma 11.1. For odd prime p, $Aut(G_{10}) \cong Z_p \rtimes (U_p \times U_p)$, and it has the following orbits on G_{10} : {1}, $\{a^i | 1 \le i < p\}, \{b^j | 1 \le j < p\}, \{a^i b^j | 1 \le i, j < p\}, \{b^j c | 0 \le j < p\}, \{b^j c^2 | 0 \le j < p\}, \{b^j c^3 | 0 \le j < p\}, \{a^i b^j c | 1 \le i < p, 0 \le j < p\}, \{a^i b^j c^2 | 1 \le i < p, 0 \le j < p\}$ and $\{a^i b^j c^3 | 1 \le i < p, 0 \le j < p\}$.

Proof. Any $\sigma \in Aut(G_{10})$ is determined by its effect on a, b and c. Taking orders into account and by relations $\sigma(ab) = \sigma(ba), \ \sigma(ac) = \sigma(ca)$ and

 $\begin{aligned} &\sigma(c^{-1}bc) = \sigma(b^{\lambda}), \text{ we have } \sigma(a) = a^{i}, \ \sigma(b) = b^{j} \text{ and } \sigma(c) = b^{k}c, \text{ where } \\ &1 \leq i, j < p, \ 0 \leq k < p. \text{ It can be verified that } \sigma = f_{i,j,k} \text{ defined as above, can } \\ &\text{be extended to an automorphism of } G_{10}. \text{ Therefore, } Aut(G_{10}) = \{f_{i,j,k} | 1 \leq i, j < p, 0 \leq k < p\} \text{ is a group of order } p(p-1)^{2}. \text{ We have } f_{i,j,k}of_{i',j',k'} = f_{ii',jj',jk'+k} \text{ and } f_{i,j,k}^{-1} = f_{i_1,j_1,-kj_1}, \text{ hence if we define } A = \{f_{1,1,k} | 0 \leq k < p\} \text{ and } B = \{f_{i,j,0} | 1 \leq i, j < p\}, \text{ then } Aut(G_{10}) = A \times B, \ A \cap B = id \text{ and } \\ A \leq Aut(G_{10}). \text{ So } Aut(G_{10}) \cong Z_p \rtimes (U_p \times U_p) \text{ and the lemma is proved.} \end{aligned}$

Lemma 11.2. If $Cay(G_{10}, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4p. Moreover, |S| > 2 is even.

Lemma 11.3. $S = \{a^i b^j c, a^k b^l c^3, a^{-i} b^{-j\lambda} c^3, a^{-k} b^{l\lambda} c\}$ generates G_{10} if and only if $1 \le i, k < p, 0 \le j, l < p, j \ne l\lambda \pmod{p}$.

Proof. Generating condition of S comes from the relations $(a^i b^j c)^4 = a^{4i}$, $a^i b^j c a^k b^l c^3 = a^{i+k} b^{j-l\lambda}$. Since p is odd, then we can conclude that $a \in \langle S \rangle$ and so $b \in \langle S \rangle$ and $c \in \langle S \rangle$.

Theorem 11.4. $\Gamma = Cay(G_{10}, S)$ is a connected normal edge-transitive Cayley graph if and only if it has even valency, $S = T \cup T^{-1}$, where $T \subseteq \{a^i b^j c, a^k b^l c | 1 \le i, k < p, 0 \le j, l < p, j \ne l\}$ and $Aut(G_{10}, S)$ acts transitively on T. Moreover, if Γ is a normal edge-transitive Cayley graph of valency 2d, then d = p, d|(p-1), d|p(p-1) or $d \nmid (p-1)$ but $d|(p-1)^2$. For each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. Assume that Γ is a connected normal edge-transitive Cayley graph. The fact that Γ has even valency follows from Proposition 2.3. By Proposition 2.2, in the action of $Aut(G_{10}, S)$ on S, we can deduce either S is an orbit or $S = T \cup T^{-1}$, where T is an orbit. By Lemma 11.2 and Lemma 11.3, S contains only elements of types $a^i b^j c$ and $a^k b^l c^3$ for $1 \leq i, k < p, 0 \leq j, l < p, j \neq l\lambda$. But in the action of $Aut(G_{10})$ on G_{10} , $a^i b^j c$ and $a^k b^l c^3$ belongs to the two separated orbits and since $Aut(G_{10}, S) \leq Aut(G_{10})$ then $Aut(G_{10}, S)$ is not transitive on S. Therefore $S = T \cup T^{-1}$, where $T \subseteq \{a^i b^j c, a^k b^l c \mid 1 \leq i, k < p, 0 \leq j, l < p, j \neq l\}$, and $Aut(G_{10}, S)$ acts transitively on T. The second part of the theorem is similar to the proof of Theorem 10.3.

Lemma 11.5. Let $\Gamma = Cay(G_{10}, S)$ be a Cayley graph of valency 4. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^{\pm i} b^l c, a^{-i} b^{-j\lambda} c^3, a^{\mp i} b^{-l\lambda} c^3\}$ where $1 \leq i < p, 0 \leq j, l < p, j \neq l$.

Proof. By Lemma 11.3, $\langle S \rangle = G_{10}$ and by Theorem 11.4, $S = T \cup T^{-1}$, where $T = \{a^i b^j c, a^k b^l c | \text{ for some } 1 \leq i, k < p, 0 \leq j, l < p, j \neq l\}$ and $Aut(G_{10}, S)$ acts transitively on T. Since $Aut(G_{10}, S)$ acts transitively on T. Then there exist $f_{m,n,t} \in Aut(G_{10}, S)$ such that $(a^i b^j c)^{f_{m,n,t}} = a^k b^l c$ and $(a^k b^l c)^{f_{m,n,t}} = a^i b^j c$. Therefore, $im \equiv k \pmod{p}$ and $km \equiv i \pmod{p}$ implying $k = \pm i$. In

the case k = i, $f_{1,-1,l+j} \in Aut(G_{10}, S)$ and T is invariant under $f_{1,-1,l+j}$. In the case k = -i, $f_{-1,-1,l+j} \in Aut(G_{10}, S)$ and T is invariant under $f_{-1,-1,l+j}$. Therefore in both cases, Γ is a connected normal edge-transitive Cayley graph.

12. Normal edge-transitive Cayley graphs on group G_{11}

The order of elements of G_{11} are as follows:

For $0 \le i, j < p, k = 1, 3$ we have $O(a^i b^j) = p$, $O(a^i b^j c^k) = 4$ and for $1 \le i < p$, $0 \le j < p$, we have $O(b^j c^2) = 2$, and $O(a^i b^j c^2) = 2p$. Using the above facts, we can find $Aut(G_{11})$.

Lemma 12.1. For odd prime p, $Aut(G_{11}) \cong (Z_p \times Z_p) \rtimes (U_p \times U_p)$, and it has the following orbits on $G_{11} : \{1\}, \{a^i | 1 \le i < p\}, \{b^j | 1 \le j < p\}, \{a^i b^j | 1 \le i, j < p\}, \{b^j c^2 | 0 \le j < p\}, \{a^i b^j c | 0 \le i, j < p\}, \{a^i b^j c^2 | 1 \le i < p, 0 \le j < p\}$ and $\{a^i b^j c^3 | 0 \le i, j < p\}$.

Proof. Any $\sigma \in Aut(G_{11})$ is determined by its effect on *a*, *b* and *c*. Taking orders into account and by relations $\sigma(ab) = \sigma(ba)$, $\sigma(c^{-1}ac) = \sigma(a^{-1})$ and $\sigma(c^{-1}bc) = \sigma(b^{\lambda})$, we have $\sigma(a) = a^i$, $\sigma(b) = b^j$ and $\sigma(c) = a^k b^l c$, where $1 \leq i, j < p, 0 \leq k, l < p$. It can be verified that $\sigma = f_{i,j,k,l}$ defined as above can be extended to an automorphism of G_{11} . Therefore, $Aut(G_{11}) = \{f_{i,j,k,l} | 1 \leq i, j < p, 0 \leq k, l < p\}$ is a group of order $(p(p-1))^2$. We have $f_{i,j,k,l}of_{i',j',k',l'} = f_{ii',jj',ik'+k,jl'+l}$ and $f_{i,j,k,l}^{-1} = f_{i_1,j_1,-ki_1,-lj_1}$, hence if we define $A = \{f_{1,1,k,l} | 0 \leq k, l < p\}$ and $B = \{f_{i,j,0,0} | 1 \leq i, j < p\}$, then $Aut(G_{11}) = A \times B$, $A \cap B = id$ and $A \leq Aut(G_{11})$. So $Aut(G_{11}) \cong (Z_p \times Z_p) \rtimes (U_p \times U_p)$ and the lemma is proved. □

Lemma 12.2. If $Cay(G_{11}, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, |S| > 2 is even.

Lemma 12.3. $S = \{a^i b^j c, a^k b^l c, a^i b^{-j\lambda} c^3, a^k b^{-l\lambda} c^3\}$ generates G_{11} if and only if $0 \le i, j, l, k < p, j \ne l$ and $k \ne i$.

Proof. Proof of this lemma is similar to the proof of Lemma 11.3. \Box

Theorem 12.4. $\Gamma = Cay(G_{11}, S)$ is a connected normal edge-transitive Cayley graph if and only if it has even valency, $S = T \cup T^{-1}$, where $T \subseteq \{a^{i}b^{j}c, a^{k}b^{l}c| 0 \le i, j, l, k < p, k \neq i, j \neq l\}$ and $Aut(G_{11}, S)$ acts transitively on T. Moreover, if Γ is a normal edge-transitive Cayley graph of valency 2d, then $d = p^{2}, d|(p - 1), d|p(p-1)$ or $d \nmid (p-1)$ but $d|(p-1)^{2}$. For each of the above numbers, there is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. Proof of this theorem is similar to the proof of Theorem 11.4. \Box

Lemma 12.5. Let $\Gamma = Cay(G_{11}, S)$ be a Cayley graph of valency 4. Then Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^k b^l c, a^i b^{-j\lambda} c^3, a^k b^{-l\lambda} c^3\}$ where $0 \leq i, j, l, k < p, j \neq l$ and $k \neq i$. Proof. By Lemma 12.3, $\langle S \rangle = G_{11}$ and by Theorem 12.4, $S = T \cup T^{-1}$, where $T = \{a^i b^j c, a^k b^l c | \text{ for some } 1 \leq i, k < p, 0 \leq j, l < p, j \neq l, i \neq k\}$ and we have $f_{-1,-1,i+k,j+l} \in Aut(G_{11})$ such that $(a^i b^j c)^{f_{-1,-1,i+k,j+l}} = a^k b^l c$. So $Aut(G_{11}, S)$ acts transitively on T and Γ is a connected normal edge-transitive Cayley graph. \Box

13. Normal edge-transitive Cayley graphs on group G_{12}

The order of elements of G_{12} are as follows: For $0 \le i, j < p, k = 1, 3$ we have $O(a^i b^j) = p$, $O(a^i b^j c^k) = 4$ and $O(a^i b^j c^2) = 2$. Using the above facts, we can find $Aut(G_{12})$. Any $\sigma \in Aut(G_{12})$ is determined by its effect on a, b and c. Using the above facts, we can find $Aut(G_{12})$. Let us choose $0 \le i, j, k, l < p$ with following properties:

1. If there exist $1 \le s < p$ such that $si \equiv k \pmod{p}$, then $sj \not\equiv l \pmod{p}$. 2. i = j = 0 and k = l = 0 do not occur.

With this conditions, we set $f_{i,j,k,l,m,n}(a) = a^i b^j$, $f_{i,j,k,l,m,n,t}(b) = a^k b^l$ and $f_{i,j,k,l,m,n,t}(c) = a^m b^n c$, then we have:

$$Aut(G_{12}) = \{ f_{i,j,k,l,m,n} | \ 0 \le i, j, k, l, m, n$$

and it has the following orbits on G_{12} : $\{1\}, \{a^i b^j\}, \{a^i b^j c^2\}, \{a^i b^j c\}$ and $\{a^i b^j c^3\}$ where $0 \le i, j < p$.

Lemma 13.1. If $Cay(G_{12}, S)$ is a connected normal edge-transitive Cayley graph on S, then S consists of elements of order 4. Moreover, $|S| \ge 6$ is even.

Proof. By Proposition 2.2, elements in S have the same order. Since $\langle S \rangle = G_{12}$, the set S cannot contain elements of order p or 2, and should contain elements of order 4 only. By Proposition 2.3, |S| is even. Now set |S| = 4, then $S = \{a^i b^j c, a^k b^l c, a^{-i\lambda} b^{-j\lambda} c^3, a^{-k\lambda} b^{-l\lambda} c^3 | 0 \leq i, j, k, l < p\}$. We have:

$$(a^{i}b^{j}c)^{m} = \begin{cases} a^{i-i\lambda}b^{j-j\lambda}c^{2} & m=2\\ a^{-i\lambda}b^{-j\lambda}c^{3} & m=3\\ 1 & m=4 \end{cases}$$

 $a^i b^j c a^k b^l c = a^{i-k\lambda} b^{j-l\lambda} c^2$ and $a^i b^j c a^{-k\lambda} b^{-l\lambda} c^3 = a^{i-k} b^{j-l}$. So according to above relations $\langle S \rangle \langle G_{12}$.

Now set |S| = 6, then $S = \{a^i b^j c, a^k b^l c, a^t b^f c, a^{-i\lambda} b^{-j\lambda} c^3, a^{-k\lambda} b^{-l\lambda} c^3, a^{-t\lambda} b^{-f\lambda} c^3 | 0 \le i, j, k, l, t, f < p\}$. In this case $\langle S \rangle = G_{12}$ if and only if $0 \le i, j, k, l, t, f < p$ and if there exist $1 \le s < p$ such that $s(k-i) \equiv (t-i) \pmod{p}$, then $s(l-j) \not\equiv (f-j) \pmod{p}$. Because we have $a^k b^l c a^{-i\lambda} b^{-j\lambda} c^3 = a^{k-i} b^{l-j}$ and $a^t b^f c a^{-i\lambda} b^{-j\lambda} c^3 = a^{t-i} b^{f-j}$. According to above relations, $b^{s(l-j)-(f-j)} \in \langle S \rangle$ and so $b \in \langle S \rangle$, also $a \in \langle S \rangle$ and $c \in \langle S \rangle$.

Theorem 13.2. Let $\Gamma = Cay(G_{12}, S)$ be a Cayley graph of valency 6. Γ is a connected normal edge-transitive Cayley graph if and only if $S = \{a^i b^j c, a^k b^l c, \}$

 $a^{t}b^{f}c, a^{i}b^{j}c^{3}, a^{k}b^{l}c^{3}, a^{t}b^{f}c^{3}|0 \leq i, j, k, l, t, f < p\}$ such that if there exist $1 \leq s < p$ such that $s(k-i) \equiv (t-i) \pmod{p}$, then $s(l-j) \not\equiv (f-j) \pmod{p}$.

Proof. Set $S' = \{c, ac, bc, c^3, a^{-\lambda}c^3, b^{-\lambda}c^3\}$. With Lemma 13.1, $\langle S' \rangle = G_{12}$ and so $Cay(G_{12}, S')$ is connected. Set $T = \{c, ac, bc\}$, the automorphisms $f_{0,1,1,0,0,0}$ and $f_{-1,0,-1,1,1,0}$ are in $Aut(G_{12}, S')$ and transfers ac to bc, c. So $Aut(G_{12}, S')$ is transitive on T, therefore $Cay(G_{12}, S')$ is connected normal edge-transitive Cayley graph. Now according to the conditions of theorem, $f_{k-i,l-j,t-i,f-j,i,j}$ is in $Aut(G_{12})$ and $S'^{f_{k-i,l-j,t-i,f-j,i,j}} = S$ and the proof is completed.

According to the above results, we can state the following theorem.

Theorem 13.3. Let Γ be a connected Cayley graph of order $4p^2$, where p is a prime number. Then Γ is normal $\frac{1}{2}$ -arc-transitive if and only if Γ is a normal edge-transitive Cayley graph of a group isomorphic to one of the groups G_2 , G_{10} , G_{11} or G_{12} .

Acknowledgments

The authors would like to thank the anonymous referees for their careful reading and valuable suggestions. Partial support by the Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the authors.

References

- M. Alaeiyan, On normal edge-transitive Cayley graphs of some abelian groups, Southeast Asian Bull. Math. 33 (2009) 13–19.
- [2] M. Darafsheh and A. Assari, Normal edge-transitive Cayley graphs on non-abelian groups of order 4p, where p is a prime number, Sci. China Math. 56 (2013) 213–219.
- [3] X.G. Fang, C.H. Li and M.Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Combin. 25 (2004) 1107–1116.
- [4] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243– 256.
- [5] C.D. Godsil and G. Royle, Algebraic Graph Theory, New York: Springer, 2001.
- [6] P.C. Houlis, Quotients of normal edge-transitive Cayley graphs, MS Thesis, University of Western Australia, 1998.
- [7] C.H. Li, Z.P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B 96 (2006) 164–181.
- [8] J.E. Iiamas, On Difference Sets in Groups of Order 4p², J. Combin. Theory Ser A 72 (1995) 256–276.
- D. Marusic and R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin. 19 (1998) 345–354.
- [10] C.E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc. 60 (1999) 207–220.
- [11] A.A. Talebi, Some normal edge-transitive Cayley graphs on dihedral groups, J. Math. Computer Sci. 2 (2011) 448–452.

- [12] C.Q. Wang, D.J. Wang and M.Y. Xu, On normal Cayley graphs of finite groups, Sci. China Math. 28 (1998) 131–139.
- [13] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309–319.

(Yaghub Pakravesh) DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, TARBIAT MODARES UNIVERSITY P.O. BOX 14115-137, TEHRAN, IRAN. *E-mail address:* y_pakravesh@yahoo.com

(Ali Iranmanesh) Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University P.O. Box 14115-137, Tehran, Iran.

E-mail address: iranmanesh@modares.ac.ir