
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 3, pp. 951–974

.

Title:

.

Normal edge-transitive Cayley graphs on the non-
abelian groups of order 4p2, where p is a prime number

.

Author(s):

.

Y. Pakravesh and A. Iranmanesh

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 3, pp. 951–974
Online ISSN: 1735-8515

NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS ON THE

NON-ABELIAN GROUPS OF ORDER 4p2, WHERE p IS A

PRIME NUMBER

Y. PAKRAVESH AND A. IRANMANESH∗

(Communicated by Cheryl E. Praeger)

Abstract. In this paper, we determine all of connected normal edge-

transitive Cayley graphs on non-abelian groups with order 4p2, where p
is a prime number.
Keywords: Cayley graph, normal edge-transitive, vertex-transitive, edge-
transitive.

MSC(2010): Primary: 20D60; Secondary: 05B25.

1. Introduction

Let Γ = (V,E) be a simple graph, where V is the set of vertices and E is
the set of edges of Γ. An edge joining the vertices u and v is denoted by {u, v}.
The group of automorphisms of Γ is denoted by Aut(Γ), which acts on vertices,
edges and arcs of Γ. If Aut(Γ) acts transitively on vertices, edges or arcs of Γ,
then Γ is called vertex-transitive, edge-transitive or arc-transitive respectively.
If Γ is vertex and edge-transitive but not arc-transitive, then Γ is called 1/2-arc-
transitive. Let G be a finite group and S be an inverse closed subset of G, i.e.,
S = S−1, such that 1 /∈ S. The Cayley graph Γ = Cay(G,S) on G with respect
to S is a graph with vertex set G and edge set {{g, sg}|g ∈ G, s ∈ S}. This
graph is connected if and only if G =< S >. For g ∈ G, define the mapping
ρg : G → G by ρg(x) = xg, x ∈ G. We have ρg ∈ Aut(Γ) for every g ∈ G, thus
R(G) = {ρg|g ∈ G} is a regular subgroup of Aut(Γ) isomorphic to G, forcing Γ
to be a vertex-transitive graph. Let Γ = Cay(G,S) be the Cayley graph of a
finite group G on S. Let Aut(G,S) = {σ ∈ Aut(G)|Sσ = S} and A = Aut(Γ).
Then the normalizer of R(G) in A is equal to NA(R(G)) = R(G)⋊Aut(G,S),
where ⋊ denotes the semi-direct product of two groups. In [13], the graph Γ is
called normal if R(G) is a normal subgroup of Aut(Γ). Therefore, according to
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[4], Γ = Cay(G,S) is normal if and only if A := Aut(Γ) = R(G) ⋊ Aut(G,S),
and in this case A1 = Aut(G,S), where A1 is the stabilizer of the identity
element of G under A. The normality of Cayley graphs has been extensively
studied from different points of views by many authors. In [12] all disconnected
normal Cayley graphs are obtained.

Definition 1.1. A Cayley graph Γ is called normal edge-transitive or normal
arc-transitive if NA(R(G)) acts transitively on the set of edges or arcs of Γ,
respectively. If Γ is normal edge-transitive, but not normal arc-transitive, then
it is called a normal 1/2-arc-transitive Cayley graph.

Edge-transitivity of Cayley graphs of small valency have received attention
in the literature. A relation between regular maps and edge-transitive Cayley
graphs of valency 4 is studied in [9], and in [7] Li et al., characterized edge-
transitive Cayley graphs of valency four and odd order. Houlis in [6], classified
normal edge-transitive Cayley graphs of groups Zpq, where p and q are distinct
primes. In [1], normal edge-transitive Cayley graphs on some abelian groups
of valency at most 5 are studied. And in [3], edge-transitive Cayley graphs
of valency 4 on non-abelian simple groups are studied. The normal edge-
transitivity of dihedral group of order 2n is studied in [11]. In this paper,
we investigate the normal edge-transitive Cayley graphs on the non-abelian
groups of order 4p2.

2. Preliminaries

Keeping fixed terminologies used in Section 1, we mention a few results
whose proofs can be found in the literature. The following result is proved in
[13] and [4].

Proposition 2.1. Let Γ = Cay(G,S). Then the following hold:
1. NA(R(G)) = R(G)⋊Aut(G,S);
2. R(G)⊴A if and only if A = R(G)⋊Aut(G,S);
3. Γ is normal if and only if A1 = Aut(G,S).

The following proposition is very useful for our work (see [10]).

Proposition 2.2. Let Γ = Cay(G,S) be a connected Cayley graph (undirected)
on S. Then Γ is normal edge-transitive if and only if Aut(G,S) is either
transitive on S, or has two orbits in S in the form of T and T−1, where T is
a non-empty subset of S such that S = T ∪ T−1.

In the action of Aut(G,S) on S, every element of each orbit has the same
order. Therefore, we have following proposition (see [2])

Proposition 2.3. Let Γ = Cay(G,S) and H be the subset of all involutions
of the group G. If < H > ̸= G and Γ is connected normal edge-transitive, then
its valency is even.
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For a general graph Γ = (V,E), if v is a vertex in Γ, then Γ(v) denotes the
set of the neighbors of v, i.e., Γ(v) = {u ∈ V |{u, v} ∈ E}. The following result
which can be deduced from a result in [5], characterize normal arc-transitive
Cayley graphs in terms of the action of Aut(G,S) on S.

Proposition 2.4. Let Γ = Cay(G,S) be a connected Cayley graph (undirected)
on S. Then Γ is normal arc-transitive if and only if Aut(G,S) acts transitively
on S.

We can extract the following corollary from Proposition 2.2 and 2.4 and the
fact that if G is an abelian group, then σ : G → G defined by σ(x) = x−1, for
all x ∈ G, is an automorphism.

Corollary 2.5. If Γ is a Cayley graph of an abelian group, then Γ is not a
normal 1/2-arc-transitive Cayley graph.

The following result is obtained in [11].

Proposition 2.6. Let Γ = Cay(G,S) be a connected normal edge-transitive
Cayley graph of the dihedral group D2n. Then Aut(D2n, S) is transitive on S.

Corollary 2.7. If Γ = Cay(G,S) is a Cayley graph of a dihedral group D2n,
then Γ is not a normal 1/2-arc-transitive Cayley graph.

The following result is mentioned in [10].

Proposition 2.8. Let Γ be a connected Cayley graph of a non-abelian simple
group with valency 3. If Γ is normal edge-transitive, then it is normal.

The following result is mentioned in [2].

Proposition 2.9. Let S be a generating set of group G. Then the action of
Aut(G,S) on S is faithful.

In [8], the groups of order 4p2 are classified. When p ≡ 1 (mod 4), −1 is
a quadratic residue modulo p and also modulo p2. Let λ be an integer so that
λ2 ≡ −1 (mod p2). The non-abelian group of order 4p2 is isomorphic to one
of the following groups which are given by generators and relations:

1. G1 =< a, b|ap2

= b4 = 1, b−1ab = a−1 >

2. G2 =< a, b|ap2

= b4 = 1, b−1ab = aλ > (p ≡ 1 (mod 4))

3. G3 =< a, b, c|ap2

= b2 = c2 = 1, ac = ca, bc = cb, b−1ab = aλ >∼= D4p2

4. G4 =< a, b, c, d|ap = bp = c2 = d2 = 1, ab = ba, ad = da, bc = cb, dbd =
b−1, cd = dc >∼=< a, b, c|a2p = bp = c2 = 1, ab = ba, ac = ca, cbc = b−1 >
5. G5 =< a, b, c, d|ap = bp = c2 = d2 = 1, ab = ba, ac = ca, dad =
a−1, bc = cb, dbd = b−1, cd = dc >∼=< a, b, c|a2p = bp = c2 = 1, ab =
ba, cac = a−1, cbc = b−1 >
6. G6 =< a, b, c, d|ap = bp = c2 = d2 = 1, ab = ba, cac = a−1, ad =
da, bc = cb, dbd = b−1, cd = dc > ∼= D2p ×D2p
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7. G7 =< a, b, c|ap = bp = c4 = 1, ab = ba, ac = ca, c−1bc = b−1 >
8. G8 =< a, b, c|ap = bp = c4 = 1, ab = ba, c−1ac = a−1, c−1bc = b−1 >
9. G9 =< a, b, c|ap = bp = c4 = 1, ab = ba, c−1ac = b−1, c−1bc = a >
where p ̸≡ 1 (mod 4). When p ≡ 1 (mod 4) this group is presented by
G′

9 =< a, b, c|ap = bp = c4 = 1, ab = ba, c−1ac = aλ, c−1bc = b−λ >
10. G10 =< a, b, c|ap = bp = c4 = 1, ab = ba, ac = ca, c−1bc = bλ >
11. G11 =< a, b, c|ap = bp = c4 = 1, ab = ba, c−1ac = a−1, c−1bc = bλ >
12. G12 =< a, b, c|ap = bp = c4 = 1, ab = ba, c−1ac = aλ, c−1bc = bλ >
Since the dihedral group G3 = D4p2 is studied in [11], we study the other groups
and obtain connected normal edge-transitive Cayley graphs on this groups.

3. Normal edge-transitive Cayley graphs on group G1

Elements of G1 can be written uniquely in the form aibj , 0 ≤ i < p2,
0 ≤ j < 4. The order of elements of G1 are as follows:

O(ai) =
p2

(i, p2)
=

{
p if (i, p2) = p
p2 if (i, p2) = 1

O(aib2) =

{
2p if (i, p2) = p
2p2 if (i, p2) = 1

where 1 ≤ i < p2. We have O(b2) = 2, O(aibk) = 4, 0 ≤ i < p2, k = 1, 3.
Using the above facts, we can find Aut(G1).
Let Un be the set of units in Zn, n ≥ 1. Then Un is a group under multiplication
mod n.

Lemma 3.1. For prime number p, Aut(G1) ∼= Zp2 ⋊ (Up2 ×Z2), and it has the
following orbits on G1 : {1}, {ai|1 ≤ i < p2, (i, p2) = 1}, {b2}, {amp|1 ≤ m <
p}, {aibk|0 ≤ i < p2, k = 1, 3}, {aib2|0 ≤ i < p2, (i, p2) = 1} and {ampb2|1 ≤
m < p}.

Proof. Any σ ∈ Aut(G1) is determined by its effect on a and b. Taking orders
into account, we have σ(a) = ai, where 1 ≤ i < p2, (i, p2) = 1 and σ(b) =
ajbk, 0 ≤ j < p2, k = 1, 3. It can be verified that σ = fi,j,k defined as above can
be extended to an automorphism of G1. Therefore, Aut(G1) = {fi,j,k|1 ≤ i <
p2, (i, p2) = 1, 0 ≤ j < p2, k = 1, 3} is a group of order 2p2ϕ(p2) = 2p2(p2 − p).
We have fi,j,kofi′,j′,k′ = fii′,ij′+j,kk′ and f−1

i,j,k = fi0,−ji0,k0 where i0 and k0 are

numbers such that i0i ≡ 1 (mod p2) and k0k ≡ 1 (mod 4), hence if we define
A = {f1,j,1|0 ≤ j < p2} and B = {fi,0,k|1 ≤ i < p2, (i, p2) = 1, k = 1, 3}, then
Aut(G1) = A×B, A∩B = id and A⊴Aut(G1). So Aut(G1) ∼= Zp2⋊(Up2×Z2)
and the lemma is proved. □
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Lemma 3.2. If Cay(G1, S) is a connected normal edge-transitive Cayley graph
on S, then S consists of elements of order 4. Moreover, |S| > 2 is even.

Proof. By Proposition 2.2, elements in S have the same order. Since < S >=
G1, the set S cannot contain elements of order p2, 2p, 2, p or 2p2, and should
contain elements of order 4 only. By Proposition 2.3, |S| > 2 and it is even. □
Lemma 3.3. Let i ̸= j. The set S = {aib, aib3, ajb, ajb3} generates G1 if and
only if 0 ≤ i, j < p2, i ̸≡ j (mod p), Moreover, in this case, Aut(G1, S) ∼=
Z2 × Z2.

Proof. Generating condition of S comes from the relations (akb)−1 = akb3 for
0 ≤ k < p2, aibajb3 = ai−j . If i ̸≡ j (mod p), then we can conclude that
a ∈< S > and so b ∈< S >. Now let S = {x, x−1, y, y−1} and G = Aut(G1, S).
Then by Proposition 2.9, G acts on S faithfully, and so is a subgroup of S4. But
G does not have elements of order 3 or 4, because if f ∈ G has order 3, then it
should fix an element on S such as s, thus f(s−1) = s−1, contradiction with the
order of f . Also if f is an element of order 4, then its cycle structure on S have
the form (x y x−1 y−1) or (x y−1 x−1 y), where x = aib, y = ajb and f = fr,s,k
(as mentioned in Lemma 3.1, (r, p2) = 1, 1 ≤ r < p2, 0 ≤ s < p2, k = 1, 3))
and we may assume i > j. In the first case, we have ri + s ≡ j (mod p2),
k ≡ 3 (mod 4) and rj + s ≡ i (mod p2), 3k ≡ 3 (mod 4). But in this case we
obtain k ≡ 3 (mod 4) and 3k ≡ 3 (mod 4) that is impossible. In the second
case, we have k ≡ 3 (mod 4) and k ≡ 1 (mod 4) that is impossible. Therefore,
G is a subgroup of S4 which does not have any element of order 3 or 4, but
at least it has two elements of order 2 such as f−1,i+j,3 and f1,0,3, imply that
G ∼= Z2 × Z2. □
Lemma 3.4. Let Γ = Cay(G1, S) be a Cayley graph of valency 4. The Γ is a
connected normal edge-transitive Cayley graph if and only if S = {aib, aib3, ajb,
ajb3} where 0 ≤ i, j < p2, i ̸≡ j (mod p). Moreover, in this case, Γ is not a
normal Cayley graph, i.e., there is a connected normal edge-transitive Cayley
graph which is not normal Cayley graph.

Proof. It is enough to show that Aut(G1, S) acts transitively on S. The ele-
ments f−1,i+j,1, f1,0,3, f−1,i+j,3 are in Aut(G1, S) and send aib to ajb, aib3,
ajb3, respectively. So Aut(G1, S) acts transitively on S and Γ is a connected
normal edge-transitive Cayley graph. The set S is equivalent to S′ = {b, b3, ab,
ab3}, since (S′)fj−i,i,1 = S. For the second part, it is enough to check the case
S′. We have Γ(b) = {b2, ab2, a, 1} = Γ(b3) thus σ = (b b3) ∈ (AutΓ)1, but
f1,0,3, f−1,1,1, f−1,1,3 ∈ Aut(G1, S) and Lemma 3.3 show that σ /∈ Aut(G1, S),
i.e., (AutΓ)1 ̸= Aut(G1, S) and by Proposition 2.1, Γ is not a normal Cayley
graph. □

In the next theorem, we present the main condition under which the Cayley
graph of group G1 becomes connected normal edge-transitive.
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Theorem 3.5. Γ = Cay(G1, S) is a connected normal edge-transitive Cayley
graph if and only if its valency is even, greater than two, S ⊆ {aib, ajb3| 0 ≤
i, j < p2, i ̸≡ j (mod p)}, S = S−1 and Aut(G1, S) acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Propo-
sition 2.3, its valency should be even. Since < S >= G1, then by Lemma
3.3 and Lemma 3.4, S ⊆ {aib, ajb3|i ̸≡ j (mod p)}, the graph is undirected,
S = S−1. Hence S ⊆ {aib, ajb3| forsome 0 ≤ i, j < p2, i ̸≡ j (mod p)}. From
Proposition 2.2, either Aut(G1, S) acts on S transitively, or S = T ∪ T−1,
where T and T−1 are orbits of the action of Aut(G1, S) on S. But we observe
f1,0,3 ∈ Aut(G1, S), which implies both of aib and (aib)−1 = aib3 belong to the
same orbit for 0 ≤ i < p2 in which aib ∈ S, and that contradiction with the
assumption S = T ∪ T−1. Hence Aut(G1, S) acts transitively on S. □

Corollary 3.6. If Γ is a connected Cayley graph of the group G1, then Γ is
not normal 1/2-arc-transitive.

Theorem 3.7. Let Γ = Cay(G1, S) be a normal edge-transitive Cayley graph
of valency 2d. Then either d = p2 or d|p(p− 1) and d ̸= p. Moreover, for each
of the above numbers, there is, up to isomorphism, one normal edge-transitive
Cayley graph of valency 2d.

Proof. By Theorem 3.5, S ⊆ {aib, ajb3| 0 ≤ i, j < p2, i ̸≡ j (mod p)}. Set U =
{aib, aib3| 0 ≤ i < p2}, in this case, U is an orbit of the action of Aut(G1) on G1

and so Cay(G1, U) is a connected normal edge-transitive graph of valency 2p2.
Now suppose S ⊆ {aib, ajb3| 0 ≤ i, j < p2, i ̸≡ j (mod p)}, < S >= G1 and Γ
is a Cayley graph of valency 2d. Since Aut(G1, S) ≤ Aut(G1) and Aut(G1, S)
is transitive on S (Theorem 3.5), we have |S| = 2d | |Aut(G1, S)| | |Aut(G1)| =
2p3(p − 1), implying d|p3(p − 1). On the other hand, we have d ≤ p2, hence
either d = p2 or d|p(p− 1) proving the first assertion of the theorem. To prove
the existence and uniqueness part in the theorem, if d = p2, then as mentioned
above, Cay(G1, U) is the unique normal maximal edge-transitive Cayley graph
of valency 2p2. Now suppose d|p(p − 1), d > 1. The stabilizer of b under
A = Aut(G1) is the group Ab = {fi,0,1|1 ≤ i < p2, i ̸≡ 0 (mod p)} ∼= Up2 . Let t
be a generator of Up2 , so that Ab =< ft,0,1 >. Since d|p(p− 1), the group Up2

contains a unique subgroup of order d, and if we set u = t
p−1
d , then < fu,0,1 >

is a subgroup of Ab with order d. Now consecutive effects of fu,0,1 on ab yields

the set T = {ab, aub, ..., au(d−1)

b} whose size is d and is invariant under fu,0,1.

Let us set T−1 = {x−1|x ∈ T} = {ab3, aub3, ..., au(d−1)

b3} and S = T ∪T−1. We
claim that Cay(G1, S) is a connected normal edge-transitive Cayley graph. By
the argument used in Lemma 3.4, where d ̸= p, we have < S >= G1. It is easy
to see that fu,0,3 interchanges elements of T and T−1, also the automorphism
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group of Cay(G1, S) is < fu,0,1, fu,0,3 >, implying Cay(G1, S) is connected
normal edge-transitive of valency 2d. □

4. Normal edge-transitive Cayley graphs on group G2

We consider the group G2, which is defined in the section 2 and we will prove
that its Cayley graph on some set can be connected normal 1/2-arc-transitive
Cayley graph. Recall that we assume p is an odd prime. The existence of λ
satisfying the condition (λ)2 ≡ −1 (mod p2) implies that 4|(p − 1), hence p
must be a prime of the form p = 1+ 4k. The order of non-identity elements of
G2 are as follows:

O(ai) =
p2

(i, p2)
=

{
p if (i, p2) = p
p2 if (i, p2) = 1

We have O(aib2) = 2, O(aibk) = 4, 0 ≤ i < p2, k = 1, 3. Using the above
facts, we can find Aut(G2). Thus if σ ∈ Aut(G2), then σ(a) = ai and either
σ(b) = ajb or σ(b) = ajb3 for 1 ≤ i < p2, (i, p2) = 1 and 0 ≤ j < p2, but we
also have σ(b−1ab) = σ(a), thus in the latter case we obtain a contradiction.
Therefore, we have:

Aut(G2) = {gi,j | gi,j(a) = ai, gi,j(b) = ajb, 1 ≤ i < p2, (i, p2) = 1

and 0 ≤ j < p2} ∼= Zp2 ⋊ Up2

and it has the following orbits onG2 : {1}, {ai|1 ≤ i < p2, (i, p2) = 1}, {amp|1 ≤
m < p}, {aib3|0 ≤ i < p2}, {aib|0 ≤ i < p2} and {aib2|0 ≤ i < p2, (i, p2) = 1}.

Theorem 4.1. Γ = Cay(G2, S) is a connected normal edge-transitive Cayley
graph if and only if it has even valency, S = T ∪T−1, where T ⊆ {aib, ajb| 0 ≤
i, j < p2, i ̸≡ j (mod p)} and Aut(G2, S) acts transitively on T . Moreover, if
Γ = Cay(G2, S) is a normal edge-transitive Cayley graph of valency 2d, Then
either d = p2 or d|p(p−1) and d ̸= p. Moreover, for each of the above numbers,
there is, up to isomorphism, one normal edge-transitive Cayley graph of valency
2d.

Proof. At first we assume that Γ is a connected normal edge-transitive Cayley
graph. The fact that Γ has even valency follows from Proposition 2.3. By
Proposition 2.2, in the action of Aut(G2, S) on S, we can deduce either S is
an orbit or S = T ∪ T−1, where T is an orbit. We have (aib2)−1 = aib2,
thus if aib2 ∈ S for some 0 ≤ i < p2, the case S = T ∪ T−1 cannot occur, i.e.,
Aut(G2, S) acts transitively on S, but Γ is connected, i.e., < S >= G, therefore
S should contain some element other than ajb2, 0 ≤ j < p2, say x, such that
its order is not 2. Hence, there is no gr,s ∈ Aut(G2, S) ⊆ Aut(G2) such that
gr,s(x) = aib2, a contradiction. Suppose y = ai ∈ S for some 1 ≤ i < p2.
Since Γ is connected, i.e., < S >= G2, S should contain an element x, where
x = ajb or x = ajb3 for some 0 ≤ j < p2. But since (x)−1 ̸= y, without loss
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of generality, we can assume x and y are contained in the same orbit. But
there is no gr,s ∈ Aut(G2, S) ⊆ Aut(G2) such that gr,s(x) = y, a contradiction.
Therefore, S contains only elements of types aib and ajb3 for 0 ≤ i, j < p2, i ̸≡ j
(mod p). But S = S−1 and for each 0 ≤ j < p2, there is some 0 ≤ i < p2,
where (ajb)−1 = aib3, hence S contains not only aib but also ajb3 for 0 ≤ i, j <
p2. Therefore, Aut(G2) and consequently Aut(G2, S) is not transitive on S,
hence S = T ∪ T−1, where T ⊆ {aib, ajb| 0 ≤ i, j < p2, i ̸≡ j (mod p)}, and
Aut(G2, S) acts transitively on T . The second part of the theorem is similar
to the proof of Theorem 3.7. □

Example 4.2. Let Γ = Cay(G2, S) be a Cayley graph of valency 4. Γ is a con-
nected normal edge-transitive Cayley graph if and only if S = {aib, ajb, a−iλb3,
a−jλb3} for some 0 ≤ i, j < p2, i ̸≡ j (mod p) and in this case |Aut(G2, S)| = 2.
By Theorem 4.1, it is sufficient to put T = {aib, ajb} and consider g−1.i+j ∈
Aut(G2, S).

5. Normal edge-transitive Cayley graphs on group G4

The order of non-identity elements of G4 are as follows:

O(aibj) =

 p if 0 ≤ i < 2p, i is even, 0 ≤ j < p
2p if 0 ≤ i < 2p, i is odd, 0 ≤ j < p
2 if i = p, j = 0

and

O(aibjc) =

{
2 if i = 0 or p, 0 ≤ j < p
2p if 1 ≤ i < 2p, i ̸= p, 0 ≤ j < p

Using the above facts, we can find Aut(G4). If σ ∈ Aut(G4), then σ(a) ∈
{aibj , akbjc|i is odd, 0 < i, k < 2p, 0 ≤ j < p}, σ(b) ∈ {aibj |i is even, 0 ≤
i < 2p, 0 ≤ j < p} and σ(c) ∈ {aibjc|i = 0 or p, 0 ≤ j < p}, but we also have
σ(ab) = σ(ba), σ(ac) = σ(ca) and σ(cbc) = σ(b−1). According to this relations,
we have:

Aut(G4) = {fi,j,l,k| fi,j,l,k(a) = ai, fi,j,l,k(b) = bj , fi,j,l,k(c) = albkc,

1 ≤ i < 2p, (i, 2p) = 1, 1 ≤ j < p, k = 0, p, 0 ≤ k < p}
∼= (Z2 × Zp)⋊ (U2p × Up)

and it has the following orbits on G4 : {1}, {ai|1 ≤ i < 2p, (i, 2p) = 1}, {ai|1 ≤
i < 2p, (i, 2p) = 2}, ap, {bk|1 ≤ k < p}, {aibjc|1 ≤ i < 2p, i ̸= p, 0 ≤ j <
p}, {aibjc|i = 0, p, 0 ≤ j < p}, {aibj |1 ≤ i < 2p, (i, 2p) = 1, 1 ≤ j < p},
{aibj |1 ≤ i < 2p, (i, 2p) = 2, 1 ≤ j < p} and {apbj |1 ≤ j < p}.

Theorem 5.1. Γ = Cay(G4, S) is a connected normal edge-transitive Cayley
graph if and only if its valency is even, greater than two, S ⊆ {aibjc, akblc|
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0 < i, k < 2p, 0 ≤ j, l < p, j ̸= l, i + k is odd}, S = S−1 and Aut(G4, S) acts
transitively on S.

Proof. At first, we assume that Γ is a connected normal edge-transitive Cayley
graph. The fact that Γ has even valency follows from Proposition 2.3. Since
G4 =< S > and the elements of S have same order, so S consist of elements of
order 2p. Thus if aibj ∈ S for some 0 ≤ i < 2p and 0 ≤ j < p, S should contain
some element other than aibj ∈ S, say x, such that its order is 2p. If x = akbl,
for some k, l, then < S >< G4, a contradiction. So x must be akblc but in this
case, there is no fi,j,l,k ∈ Aut(G4, S) ⊆ Aut(G4) such that fi,j,l,k(x) = aibj , a
contradiction. If aibjc and akblc are in S for some 0 ≤ i, k < 2p and 0 ≤ j, l < p,
then we have (aibjc)2 = a2i and (aibjcakblc)p = ap(i+j), if i + j is odd, then
ap+2 ∈ S implying a ∈ S and by i ̸= j, we can conclude that b ∈ S and so c ∈ S.
So we have S ⊆ {aibjc, akblc|0 ≤ i, k < 2p, 0 ≤ j, l < p, j ̸= l, i + k is odd}.
By Proposition 2.2, in the action of Aut(G4, S) on S, we can deduce either S
is an orbit or S = T ∪ T−1, where T is an orbit. But we observe f−1,1,0,0 ∈
Aut(G4, S), which implies both of aibjc and (aibjc)−1 = a−ibjc belong to
the same orbit for 0 ≤ i < 2p and 0 ≤ j < p in which aibjc ∈ S, and
that contradiction with the assumption S = T ∪ T−1. Hence Aut(G4, S) acts
transitively on S. □

Lemma 5.2. Let Γ = Cay(G4, S) be a Cayley graph of valency 4. Then Γ is a
connected normal edge-transitive Cayley graph if and only if S = {aibjc, ai+pblc,
a−ibjc, ap−iblc} or S = {aibjc, akblc, a−ibjc, a−kblc} when p ≡ 1 (mod 4) for
some 0 < i, k < 2p, 0 ≤ j, l < p, j ̸= l. In the first case, Aut(G4, S) ∼= Z2×Z2.

Proof. By Theorem 5.1, we have S = {aibjc, akblc, a−ibjc, a−kblc} such that
i + j is odd number and j ̸= l. In this case, G4 =< S > and then Γ is con-
nected. Now Aut(G4, S) must be transitive on S. Let fm,n,t,s ∈ Aut(G4, S)
and fm,n,t,s(a

ibjc) = akblc. Since i+k is odd number (suppose i is odd number
and k is even number) we must have t = p, then we have one of the following
cases:
case 1: fm,n,t,s(a

kblc) = aibjc.
In this case, we have im+ t ≡ k (mod 2p) and km+ t ≡ i (mod 2p), from this
relations we conclude that k = p+ i, f1,−1,p,l+j , f−1,1,0,0 and f−1,−1,p,l+j are in
Aut(G4, S) implying that Aut(G4, S) is transitive on S. We have Aut(G4, S) ≤
S4 and Aut(G4, S) has no elements of order 3 or 4 but have 3 elements of order
2, then Aut(G4, S) ∼= Z2 × Z2.
case 2: fm,n,t,s(a

kblc) = a−ibjc.
In this case, we have im + t ≡ k (mod 2p) and km + t ≡ −i (mod 2p), from
this relations we conclude that m2 ≡ −1 (mod p) and this equation has an-
swer when p ≡ 1 (mod 4). In this case, fm,−1,p,l+j is in Aut(G4, S) forcing
Aut(G4, S) is transitive on S.
case 3: fm,n,t,s(a

kblc) = a−kbjc.
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In this case we must have km + p ≡ −k (mod 2p), but k is even number and
then km+ p is odd number implying that km+ p ≡ −k (mod 2p) can not be
occur. □

6. Normal edge-transitive Cayley graphs on group G5

The order of non-identity elements of G5 are as follows:

O(aibj) =

 p if 0 ≤ i < 2p, i is even, 0 ≤ j < p
2p if 0 ≤ i < 2p, i is odd, 0 ≤ j < p, i ̸= p
2 if i = p, j = 0

and
O(aibjc) = 2, 0 ≤ i < 2p, 0 ≤ j < p.

Using the above facts, we can find Aut(G5).

Aut(G5) = {fk,t,l,n,i,j | fk,t,l,n,i,j(a) = akbt, fk,t,l,n,i,j(b) = albn,

fk,t,l,n,i,j(c) = aibjc, 0 ≤ k, l, i < 2p, (k, 2p) = 1, (l, 2p) = 2,

0 ≤ n, t, j < p, and for any 0 ≤ m < 2p

l ̸≡ mk (mod p) or n ̸≡ mt (mod p)}
and it has the following orbits on G5 : {1}, {ap}, {apbk|1 ≤ k < p}, {aibjc|0 ≤
i < 2p, 0 ≤ j < p}, {aibj |1 ≤ i < 2p, (i, 2p) = 1, 0 ≤ j < p}, {aibj |0 ≤ i <
2p, (i, 2p) = 2, 0 ≤ j < p}.

Lemma 6.1. If Cay(G5, S) is a connected normal edge-transitive Cayley graph
on S, then S consists of elements of order 2.

Proof. Proof of this lemma is similar to the proof of Lemma 3.2. □

Lemma 6.2. Let 0 ≤ i, k, t < 2p, 0 ≤ j, l, n < p. Then S = {aibjc, akblc,
atbnc} generates G5 if and only if,
1. j = l = n do not occur.
2. i, k, t are not all even or all odd.
3. If there exist m such that (j − l)m ≡ j − n (mod p), then (i− k)m ̸≡ i− t
(mod p).

Proof. Proof of this lemma is similar to the proof of Lemma 3.3. □

Example 6.3. Let S = {aibjc, aic, bjc, c}. Then Γ = Cay(G5, S) is a con-
nected normal edge-transitive Cayley of valency 4 and Aut(G5, S) ∼= Z2 × Z2.

By Lemma 6.2, we have G5 =< S > so Γ is connected. The set S is
equivalent to S′ = {abc, ac, bc, c} since S′fi,0,0,j,0,0 = S. Therefore, it is sufficient
to check it for S′. f1,0,0,−1,0,1, f−1,0,0,−1,1,1, f−1,0,0,1,1,0 are all in Aut(G5, S

′)
and send abc to ac, c, bc respectively, so Cay(G5, S

′) is a connected normal
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edge-transitive Cayley of valency 4. Since Aut(G5, S) has no elements of order
3 or 4 while it has 3 elements of order 2, so Aut(G5, S) ∼= Z2 × Z2.

Theorem 6.4. Γ = Cay(G5, S) is a connected normal edge-transitive Cayley
graph if and only if S ⊆ {aibjc, akblc, atbnc|0 ≤ i, k, t < 2p, 0 ≤ j, l, n < p}, S
satisfy the conditions of Lemma 6.2, S = S−1 and Aut(G5, S) acts transitively
on S.

Proof. Proof of this theorem is similar to the proof of Theorem 5.1. □

7. Normal edge-transitive Cayley graphs on group G6

Elements of G6 can be written uniquely in the form {aibjckdl, 0 ≤ i <
p, 0 ≤ j < p, 0 ≤ k, l < 2}. The order of elements of G6 are as follows:
O(aibj) = p,O(aibjcd) = O(aic) = O(bjd) = 2 where 0 ≤ i, j < p. For
1 ≤ i < p, 0 ≤ j < p, we have O(ajbic) = O(aibjd) = 2p. Using the above
facts, we can find Aut(G6). Any σ ∈ Aut(G6) is determined by its effect on a,
b, c and d. For 1 ≤ i, j < p, 0 ≤ l, k < p, we have:

Aut(G6) = {fi,j,l,k| fi,j,l,k(a) = ai, fi,j,l,k(b) = bj , fi,j,l,k(c) = alc, fi,j,l,k(d) =

bkd} ∪ {gi,j,l,k| gi,j,l,k(a) = bi, gi,j,l,k(b) = aj , gi,j,l,k(c) = bld, fi,j,l,k(d) = akc}

Lemma 7.1. If Cay(G6, S) is a connected normal edge-transitive Cayley graph
on S, then S consists of elements of order 2p or 2.

Next, we can express the main condition under which the Cayley graph of
group G6 becomes connected normal edge-transitive.

Theorem 7.2. Γ = Cay(G6, S) is a connected normal edge-transitive Cayley
graph if and only if, S ⊆ {aibjc, akblc} or S ⊆ {aic, ajc, bkd, bld, 1 ≤ j, k <
p, 0 ≤ i, l < p}, S = S−1 and Aut(G6, S) acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Lemma
7.1, elements of S have order 2 or 2p. First assume elements of S hava order
2 and let aibjcd ∈ S. Since (aibjcd)Aut(G6) = atbmcd for some 1 ≤ t,m < p,
so S ⊆ {aibjcd}. But in this case < S >< G6 and Cay(G6, S) can not be
connected. Therefore assume that aic, bkd ∈ S. Since < S >= G6, so S must
contain some element other than aic, bkd ∈ S, such that its order is 2. If
S = {aic, bkd, bld}, then b, d ∈ S but a /∈ S, therefore S must have another
element of the form ajc, hence S ⊆ {aic, ajc, bkd, bld}, 1 ≤ j, k < p, 0 ≤
i, l < p. From Proposition 2.2, either Aut(G6, S) acts on S transitively, or
S = T ∪ T−1, where T and T−1 are orbits of the action of Aut(G6, S) on
S. But we observe that T = T−1, therefore, Aut(G6, S) acts transitively on
S. Now assume that elements of S have order 2p and let aibjc ∈ S. Since
< S >= G6, so S must contain some element other than aibjc ∈ S, such that
its order is 2p. If S = {aibjc, akbld} such that j, k ̸= 0, then G6 =< S >
and therefore S ⊆ {aibjc, akbld}. From Proposition 2.2, either Aut(G6, S) acts
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on S transitively, or S = T ∪ T−1, where T and T−1 are orbits of the action
of Aut(G6, S) on S. But we know that that T = T−1, hence Aut(G6, S) acts
transitively on S. But we observe f−1,−1,2i,2l ∈ Aut(G6, S), which implies both
of aibjc, akbld and (aibjc)−1 = aib−jc, (akbld)−1 = a−kbld belong to the same
orbit for 0 ≤ i, j, k, l < p in which aibjc, akbld ∈ S, and that contradiction with
the assumption S = T ∪ T−1. Hence Aut(G6, S) acts transitively on S. □

Corollary 7.3. If Γ is a connected Cayley graph of the group G6, then Γ is
not normal 1/2-arc-transitive.

Lemma 7.4. Let Γ = Cay(G6, S) be a Cayley graph of valency 4 and elements
of S has order 2. The Γ is a connected normal edge-transitive Cayley graph
if and only if S = {aic, ajc, bkd, bld} where 0 ≤ i, j, k, l < p, i ̸= j, l ̸= k.
Moreover, in this case Aut(G6, S) ∼= D8.

Proof. By Theorem 7.2, it is enough to show that Aut(G6, S) acts transitively
on S. The set S is equivalent to S′ = {c, d, ac, bd}, since S′fj−i,k−l,i,l = S.
Therefore, it is sufficient to check it for S′. But g1,1,0,0, f−1,−1,1,1, g−1,−1,1,1 ∈
Aut(G6, S) and send c to d, ac, bd, respectively. Moreover, Aut(G6, S

′) has no
elements of order 3 and has 2 elements of order 4 (g1,−1,0,1, g−1,1,1,0) and 5 ele-
ments of order 2 (f−1,−1,1,1, g−1,−1,1,1, g1,1,0,0, f−1,1,1,0, f1,−1,0,1), soAut(G6, S

′)
∼= D8. □

Lemma 7.5. Let Γ = Cay(G6, S) be a Cayley graph of valency 4 and elements
of S has order 2p. Then Γ is a connected normal edge-transitive Cayley graph
if and only if S = {aibjc, aib−jc, akbld, a−kbld} where 0 ≤ i, l < p, 1 ≤ j, k < p.
Moreover, in this case Aut(G6, S) ∼= D8.

Proof. Proof of this lemma is similar to the proof of Lemma 7.4. □

Example 7.6. If S = {aibjck|1 ≤ i < p, 0 ≤ j < p, k = 1, 3}, then Cay(G6, S)
is a connected normal edge-transitive Cayley graph of valency 2p(p− 1).

8. Normal edge-transitive Cayley graphs on group G7

Elements of G7 can be written uniquely in the form {aibjck, 0 ≤ i < p, 0 ≤
j < p, 0 ≤ k < 4}. The order of elements of G7 are as follows:
O(aibj) = p where 0 ≤ i, j < p. For 1 ≤ i < p, 0 ≤ j < p, k = 1, 3, we have
O(c2) = 2, O(bjck) = 4, O(aibjck) = 4p and O(aibjc2) = 2p. Using the above
facts, we can find Aut(G7).

Lemma 8.1. Aut(G7) ∼= (Z2×Zp)⋊(Up×Up), and it has the following orbits on
G7 : {1}, {ai|1 ≤ i < p}, {bj |1 ≤ i < p}, {aibj |1 ≤ i, j < p}, {aic2|1 ≤ i < p},
{aibjck|1 ≤ i < p, 0 ≤ j < p, k = 1, 3}, {aibjc2|1 ≤ i < p, 1 ≤ j < p},
{bjc2|1 ≤ j < p} and {bjck|0 ≤ j < p, k = 1, 3}.
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Proof. Any σ ∈ Aut(G7) is determined by its effect on a, b and c. For 1 ≤ i <
p, 0 ≤ j < p, k = 1, 3, σ(a) ∈ {aibj}, σ(b) ∈ {aibj} and σ(c) ∈ {bjck}, but we
also have σ(c−1bc) = σ(b−1), σ(ab) = σ(ba) and σ(ac) = σ(ca), thus according
to this relations we have:

Aut(G7) = {hi,j,l,k| hi,j,l,k(a) = ai, hi,j,l,k(b) = bj , hi,j,l,k(c) = blck|
1 ≤ i, j < p, 0 ≤ l < p, k = 1, 3}

and we have:
(hi,j,l,k)o(hi′,j′,l′,k′) = hii′,jj′,jl′+l,kk′

h−1
i,j,l,k = hi1,j1,−j1l,k.

In the above relations, i1 and j1 are the numbers such that ii1 ≡ 0 (mod p)
and jj1 ≡ 0 (mod p).
Define A = {h1,1,l,k| k = 1, 3, 0 ≤ l < p} and B = {hi,j,0,1| 1 ≤ i, j < p}, so
A⊴Aut(G4), A ∩B = id and Aut(G7) = AB. Therefore we have:

Aut(G7) ∼= (Z2 × Zp)⋊ (Up × Up).

□

Lemma 8.2. If Cay(G7, S) is a connected normal edge-transitive Cayley graph
on S, then S consists of elements of order 4p and |S| > 2 is even. Moreover,
for odd prime number p, S = {aibjc, akblc, a−kblc3, a−ibjc3|1 ≤ i, k < p, 0 ≤
j, l < p} is generate G7 if and only if j ̸= l.

Proof. Proof of the first part is similar to Lemma 3.2. Generating condition
of S comes from the relations, (aibjc)4 = a4i, (aibjc)2 = a2ic2 and blcbjc =
bl−jc2. □

Lemma 8.3. Let Γ = Cay(G7, S) be a Cayley graph of valency 4. Then Γ is a
connected normal edge-transitive Cayley graph if and only if S = {aibjc, a±iblc,
a−ibjc3, a∓iblc3} where 1 ≤ i, j < p, 0 ≤ l < p, j ̸= l. Moreover, in this case
Aut(G7, S) ∼= Z2 × Z2.

Proof. According to Lemma 8.2, S have elements of order 4p. First set S′ =
{ac, abc, a−1c3, a−1bc3}. In this case h1,−1,1,1, h−1,1,0,3, h−1,−1,1,3 ∈ Aut(G7,
S) and (ac)h1,−1,1,1 = abc, (ac)h−1,1,0,3 = a−1c3 and (ac)h−1,−1,1,3 = a−1bc3,
so Aut(G7, S

′) is transitive on S and Cay(G7, S
′) is connected normal edge-

transitive Cayley graph. Moreover, Aut(G7, S
′) ∼= Z2 × Z2. Similarly, if

S′′ = {ac, a−1bc, a−1c3, abc3}, then Cay(G7, S
′′) is connected normal edge-

transitive Cayley graph. Now hi,l−j,j,1 ∈ Aut(G7), (S
′)hi,l−j,j,1 = {aibjc, aiblc,

a−ibjc3, a−iblc3} and (S′′)hi,l−j,j,1 ={aibjc, a−iblc, a−ibjc3, aiblc3}. So Γ = Cay(G7,
S) is connected normal edge-transitive Cayley graph. Now set S = {x, y, x−1, y−1},
if x = aibjc, then since G7 =< S >, y must be either akblc or akblc3 such that j ̸= l.
Suppose Γ = Cay(G7, S) is a connected normal edge-transitive Cayley graph. By
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Proposition 2.2, in the action of Aut(G7, S) on S, we can deduce either S is an orbit or
S = T∪T−1, where T is an orbit. In the last case we have T = {x, y} or T = {x, y−1},
but h−1,1,0,3 ∈ Aut(G7, S), T

h−1,1,0,3 = T−1, therefore Aut(G7, S) must be transitive
on S. Since Aut(G7, S) is transitive on S, so there exist hm,n,t,s ∈ Aut(G7, S), such
that hm,n,t,s(x) = y and hm,n,t,s(y) = x or x−1 or y−1. First suppose hm,n,t,s(x) = y
and hm,n,t,s(y) = x. In this case we must have im ≡ k (mod p) and km ≡ i (mod p),
therefore p|(i − k)(m + 1). Since 1 ≤ i, k,m < p, we have i = k or m = −1. So
S = {aibjc, aiblc, a−ibjc3, a−iblc3} or S = {aibjc, a−iblc, a−ibjc3, aiblc3}.
Now suppose hm,n,t,s(x) = y and hm,n,t,s(y) = x−1, in this case we must have s ≡ 1
(mod 4) and s ≡ 3 (mod 4) that is impossible.
In the last case suppose hm,n,t,s(x) = y and hm,n,t,s(y) = y−1, in this case we
must have s ≡ 1 (mod 4) and s ≡ 3 (mod 4) that is impossible. So we have
S = {aibjc, a±iblc, a−ibjc3, a∓iblc3} and Aut(G7, S) ∼= Z2 × Z2. □

Next, we can express the main condition under which the Cayley graph of
group G7 becomes connected normal edge-transitive.

Theorem 8.4. Γ = Cay(G7, S) is a connected normal edge-transitive Cayley
graph if and only if its valency is even, greater than two, S ⊆ {aibjc, akblc3|
1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l}, S = S−1 and Aut(G7, S) acts transitively on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Propo-
sition 2.3, its valency should be even. By Lemma 8.2 and Lemma 8.3, S ⊆
{aibjc, akblc3|1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l} and S = S−1. From Propo-
sition 2.2, either Aut(G7, S) acts on S transitively, or S = T ∪ T−1, where
T and T−1 are orbits of the action of Aut(G7, S) on S. But we observe
h−1,1,0,3 ∈ Aut(G7, S), which implies both of aibjc and (aibjc)−1 = a−ibjc3

belong to the same orbit for 1 ≤ i < p, 0 ≤ j < p in which aibjc ∈ S, and that
contradicts the assumption S = T ∪ T−1. Hence Aut(G7, S) acts transitively
on S. □

Corollary 8.5. If Γ is a connected Cayley graph of the group G7, then Γ is
not normal 1/2-arc-transitive.

Example 8.6. If S = {aibjck|1 ≤ i < p, 0 ≤ j < p, k = 1, 3}, then Cay(G7, S)
is a connected normal edge-transitive Cayley graph of valency 2p(p− 1).

Theorem 8.7. Let Γ = Cay(G7, S) be a normal edge-transitive Cayley graph
of valency 2d. Then d = p or d|p(p−1) or d|(p−1)2. Moreover, for each of the
above numbers, there is, up to isomorphism, one normal edge-transitive Cayley
graph of valency 2d.

Proof. By Theorem 8.4, S ⊆ {aibjc, akblc3|1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l}
and by Example 8.6, Cay(G7, U) is a connected normal edge-transitive graph
of valency 2p(p − 1), where U = {aibjck|1 ≤ i < p, 0 ≤ j < p, k = 1, 3}.
Now suppose S ⊆ {aibjc, akblc3|1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l} and Γ is a
Cayley graph of valency 2d. Since Aut(G7, S) ≤ Aut(G7) and Aut(G7, S) is
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transitive on S (Theorem 8.4), we have |S| = 2d | |Aut(G7, S)| | |Aut(G7)| =
2p(p − 1)2, implying d|p(p − 1)2. On the other hand, d ≤ p(p − 1), hence
d = p or d|(p − 1) or d|p(p − 1) or d ∤ (p − 1) but d|(p − 1)2, proving the
first assertion of the theorem. To prove the existence and uniqueness part in
the theorem, if d = p(p − 1), then as mentioned above, Cay(G7, U) is the
unique normal maximal edge-transitive Cayley graph of valency 2p(p − 1).
Now suppose d = p. Consecutive application of h1,1,1,1 on ac yields the set

T = {ac, abc, ab2c, ..., ab(p−1)c} whose size is p and is invariant under h1,1,1,1.

Let us set T−1 = {x−1|x ∈ T} = {a−1c3, a−1b3, a−1b2c3, ..., a−1b(p−1)c3} and
S = T ∪ T−1. By the argument used in Lemma 8.2, we have < S >= G7. It is
easy to see that h−1,1,0,3 interchanges elements of T and T−1, also Aut(G7, S)
is transitive on S, implying Cay(G7, S) is connected normal edge-transitive
of valency 2p. Now let d|(p − 1), d > 1. The stabilizer of a and c under
A = Aut(G7) is the group Aa,c = {h1,i,0,1|1 ≤ i < p} ∼= Up. Let t be a gener-
ator of Up, so that Aa,c =< h1,t,0,1 >. Since d|(p − 1), the group Up contains

a unique subgroup of order d, and if we set u = t
p−1
d , then < h1,u,0,1 > is

a subgroup of Aa,c with order d. Now consecutive application of h1,u,0,1 on

abc yields the set T = {abc, abuc, ..., abud−1

c} whose size is d and is invariant
under h1,u,0,1. Let us set T−1 = {x−1|x ∈ T} and S = T ∪ T−1. We claim
that Cay(G7, S) is a connected normal edge-transitive Cayley graph. Similar
to the above, < S >= G7 and h−1,1,0,3 interchanges elements of T and T−1,
also the automorphism group of Cay(G7, S) is < h1,u,0,1, h−1,1,0,3 >, implying
Cay(G7, S) is connected normal edge-transitive of valency 2d. Now let d ∤ p−1
and d ̸= p but d|p(p−1), in this case we have d = tp such that t | p−1. Set E =
{hu,1,i,1| ut ≡ 1 (mod p), 0 ≤ i < p} ≤ Aut(G7), consecutive effects of hu,1,i,1

on ac yields the set T = {ac, auc, ..., aut−1

c, abc, aubc, ..., au
t−1

bc, ..., au
t−1

bp−1c}
whose size is d and is invariant under E and set S = T ∪ T−1, similar to the
above, Cay(G7, S) is connected normal edge-transitive of valency 2d. Finally
let d ∤ (p − 1) but d|(p − 1)2, in this case d = ms such that m | p − 1
and s | p − 1. Set H =< hu,1,0,1, h1,t,0,1 > such that tm ≡ 1 (mod p)
and us ≡ 1 (mod p). Consecutive application of H on abc yields the set

T = {abc, aubc, ..., aus−1

bc, abtc, aubtc, ..., au
s−1

btc, , ..., abt
k−1

c, ..., au
s−1

bt
k−1

c}
whose size is d and is invariant under H and set S = T ∪T−1, hence Cay(G7, S)
is connected normal edge-transitive of valency 2d. □

9. Normal edge-transitive Cayley graphs on group G8

Elements of G8 can be written uniquely in the form {aibjck, 0 ≤ i < p, 0 ≤
j < p, 0 ≤ k < 4}. The order of elements of G8 are as follows:
for 0 ≤ i < p, 0 ≤ j < p, k = 1, 3, we have O(aibj) = p, O(c2) = 2,
O(aibjck) = 4 and O(aibjc2) = 2p. Using the above facts, we can find Aut(G8).
Let us choose 0 ≤ i, j, k, l < p with following properties:
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1. If there exist 1 ≤ s < p such that si ≡ k (mod p)), then sj ̸≡ l (mod p).
2. i = j = 0 and k = l = 0 do not occur.
With this condition we set fi,j,k,l,m,n,t(a) = aibj , fi,j,k,l,m,n,t(b) = akbl and
fi,j,k,l,m,n,t(c) = ambnct, then we have:

Aut(G8) = {fi,j,k,l,m,n,t| 0 ≤ i, j, k, l,m, n < p, t = 1, 3}

and for 0 ≤ i, j < p, it has the following orbits on G8 : {1}, {aibj}, {aibjc2| i
and j are not zero in same time}, {c2} and {aibjck|k = 1, 3}.

Lemma 9.1. If Cay(G8, S) is a connected normal edge-transitive Cayley graph
on S, then S consists of elements of order 4. Moreover, |S| ≥ 6 is even.

Proof. By Proposition 2.2, elements of S have the same order. Since < S >=
G8, the set S cannot contain elements of order p, 2p or 2, and should contain
elements of order 4 only. By Proposition 2.3, |S| is even. Now set |S| = 4, then
S = {aibjc, akblc, aibjc3, akblc3|0 ≤ i, j, k, l < p}. We have:

(aibjc)m =

 c2 m=2
aibjc m=1
aibjc3 m=3

aibjcakblc = ai−kbj−lc2 and aibjcakblc3 = ai−kbj−l. So according to the above
relations, < S >< G8.
Now set |S| = 6, then S = {aibjc, akblc, atbfc, aibjc3, akblc3, atbfc3|0 ≤ i, j, k, l,
t, f < p}. In this case < S >= G8 if and only if 0 ≤ i, j, k, l, t, f < p and if there
exist 1 ≤ s < p such that s(k − i) ≡ (t − i) (mod p), then s(l − j) ̸≡ (f − j)
(mod p). Because we have akblcaibjc3 = ak−ibl−j and atbfcaibjc3 = at−ibf−j .
According to the above relations, bs(l−j)−(f−j) ∈< S > and so b ∈< S >, also
a ∈< S > and c ∈< S >. □

Theorem 9.2. Let Γ = Cay(G8, S) be a Cayley graph of valency 6. Then Γ is
a connected normal edge-transitive Cayley graph if and only if S = {aibjc, akblc,
atbfc, aibjc3, akblc3, atbfc3|0 ≤ i, j, k, l, t, f < p}, where if there exist 1 ≤ s < p
such that s(k − i) ≡ (t− i) (mod p), then s(l − j) ̸≡ (f − j) (mod p).

Proof. Set S′ = {c, ac, bc, c3, ac3, bc3}. First we prove that Cay(G8, S
′) is con-

nected normal edge-transitive. By Lemma 9.1, < S′ >= G8 and so Cay(G8, S
′)

is connected. The automorphisms f0,1,1,0,0,0,1,f−1,0,−1,1,1,0,1, f1,0,0,1,0,0,3,
f0,1,1,0,0,0,3 and f−1,0,−1,1,1,0,3 are all in Aut(G8, S

′) and transfer ac to bc, c,
ac3, bc3 and c3 respectively. So Aut(G8, S

′) is transitive on S′ and Cay(G8, S
′)

is connected normal edge-transitive Cayley graph. Now according to condition
of theorem, fk−i,l−j,t−i,f−j,i,j,1 is in Aut(G8) and S′fk−i,l−j,t−i,f−j,i,j,1 = S and
the proof is completed. □
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10. Normal edge-transitive Cayley graphs on group G9 and G′
9

The order of elements of G9 are as follows:
for 0 ≤ i < p, 0 ≤ j < p, k = 1, 3, we have O(aibj) = p, O(aibjck) = 4 and
O(aibjc2) = 2. Using the above facts, we can find Aut(G9). Set fi,j,k,l(a) =
aibj , fi,j,k,l(b) = a−jbi, fi,j,k,l(c) = akblc, gi,j,k,l(a) = aibj , gi,j,k,l(b) = ajb−i,
gi,j,k,l(c) = akblc3, then we have:

Aut(G9) = {fi,j,k,l, gi,j,k,l| 0 ≤ i, j, k, l < p, and i , j are not both zero}
|Aut(G9)| = 2p2(p2−1) and for 0 ≤ i, j < p, k = 1, 3, Aut(G9) has the following
orbits on G9 : {1}, {aibj}, {aibjc2} and {aibjck}.

Lemma 10.1. If Cay(G9, S) is a connected normal edge-transitive Cayley
graph on S, then S consists of elements of order 4. Moreover, |S| ≥ 4 is
even.

Lemma 10.2. Let Γ = Cay(G9, S) be a Cayley graph of valency 4. Γ is a
connected normal edge-transitive Cayley graph if and only if S = {aibjc, akblc,
a−jbic3, a−lbkc3} where 0 ≤ i, j, k, l < p.

Proof. At first we prove that < S >= G9. We have aibjca−lbkc3 = ai−kbj−l

and a−lbkc3aibjc = aj−lbk−i, so there exist integer m such that m(k−i) ≡ j− l
(mod p) and m(l − j) ̸≡ k − i (mod p). So we have (ai−kbj−l)maj−lbk−i =
bm(j−l)+(k−i), therefore b ∈< S > and also a ∈< S > and c ∈< S >.
Now set S′ = {c, bc, a−1c3, c3}. Then < S′ >= G9 and Cay(G9, S

′) is con-
nected. Also we have f−1,0,0,1, g0,−1,0,0, g0,1,−1,0 ∈ Aut(G9, S

′) and cf−1,0,0,1 =
bc, cg0,−1,0,0 = c3 and cg0,1,−1,0 = a−1c3, implying that Aut(G9, S

′) is tran-
sitive on S′ and so Cay(G9, S

′) is connected normal edge-transitive Cayley
graph. Now we have fl−j,i−k,i,j ∈ Aut(G9) and S′fl−j,i−k,i,j = S, therefore
Γ = Cay(G9, S) is a connected normal edge-transitive Cayley graph. □
Theorem 10.3. Γ = Cay(G9, S) is a connected normal edge-transitive Cayley
graph if and only if its valency is even, greater than two, S ⊆ {aibjct|0 ≤ i, j <
p, t = 1, 3}, S = S−1 and Aut(G9, S) acts transitively on S. Moreover, if Γ
is a normal edge-transitive Cayley graph of valency 2d, then d = p2, d = p,
d|(p−1), d|p(p−1) or d ∤ (p−1) but d|(p2−1). For each of the above numbers,
there is, up to isomorphism, one normal edge-transitive Cayley graph of valency
2d.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Propo-
sition 2.3, its valency should be even. By Lemma 10.1, S ⊆ {aibjct|0 ≤ i, j <
p, t = 1, 3}, since the graph is undirected, S = S−1, and by Lemma 10.2, if
|S| > 2, then < S >= G9. From Proposition 2.2, either Aut(G9, S) acts on
S transitively, or S = T ∪ T−1, where T and T−1 are orbits of the action of
Aut(G9, S) on S. But we observe that g−1,0,i−j,i−j ∈ Aut(G9, S), which implies
both of aibjc and (aibjc)−1 = a−jbic3 belong to the same orbit for 0 ≤ i, j < p
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in which aibjc ∈ S, and that contradiction with the assumption S = T ∪ T−1.
Hence Aut(G9, S) acts transitively on S.
If U = {aibjct|0 ≤ i, j < p, t = 1, 3}, then U is an orbit of Aut(G9), therefore
in this case, Aut(G9, U) is a connected normal edge-transitive Cayley graph of
valency 2p2. Now suppose S ⊆ {aibjct|0 ≤ i, j < p, t = 1, 3}, < S >= G9 and
Γ is a Cayley graph of valency 2d. Since Aut(G9, S) ≤ Aut(G9) and Aut(G9, S)
is transitive on S, we have |S| = 2d | |Aut(G9, S)| | |Aut(G9)| = 2p2(p2 − 1),
implying d|p2(p2 − 1). On the other hand, we have d ≤ p2, hence d = p2 or
d = p or d|(p − 1) or d|p(p − 1) or d ∤ (p − 1) but d|(p2 − 1), proving the first
assertion of the theorem. To prove the existence and uniqueness part in the
theorem, if d = p2, then as mentioned above, Cay(G9, U) is the unique nor-
mal maximal edge-transitive Cayley graph of valency 2p2. Now suppose d = p
and set S = {c, ac, a2c, ..., ap−1c, c3, bc3, ..., bp−1c3} whose size is 2p. We have
f−1,0,i,0, g0,1,0,i ∈ Aut(G9, S), c

f−1,0,i,0 = aic and cg0,1,0,i = bic. So Aut(G9, S)
is transitive on S, implying Cay(G9, S) is connected normal edge-transitive of
valency 2p.
Now let d|(p−1), d > 1. Define E = {fi,0,0,0|1 ≤ i < p}. Then E is a subgroup
of Aut(G9) and E ∼= Up. Let t be a generator of Up, so that E =< ft,0,0,0 >.
Since d|(p − 1), the group Up contains a unique subgroup of order d, and if

we set u = t
p−1
d , then < fu,0,0,0 > is a subgroup of E with order d. Now

consecutive application of fu,0,0,0 on ac yields the set T = {ac, auc, ..., aud−1

c}
whose size is d and is invariant under fu,0,0,0. Let us set T−1 = {x−1|x ∈ T}
and S = T ∪ T−1. We claim that Cay(G9, S) is a connected normal edge-
transitive Cayley graph. Similar to the above < S >= G9 and g0,1,0,0 inter-
changes elements of T and T−1. Also the automorphism group of Cay(G9, S) is
< fu,0,0,0, g0,1,0,0 >, implying Cay(G9, S) is connected normal edge-transitive
of valency 2d.
Now let d ∤ p − 1 and d ̸= p but d|p(p − 1). In this case, we have d = tp
such that t | p − 1. Let s be a number such that st ≡ 1 (mod p) and set T =

{ac, asc, ..., ast−1

c, abc, asbc, ..., as
t−1

bc, ..., as
t−1

bp−1c} whose size is d and is in-
variant under F = {fs,0,0,i, f1,0,0,1| st ≡ 1 (mod p), 0 ≤ i < p} ≤ Aut(G9, T ).
Set S = T ∪ T−1, similar to the above, Cay(G9, S) is connected normal edge-
transitive of valency 2d.
Finally let d|(p2 − 1). The stabilizer of c under A = Aut(G9) is the abelian
group Ac = {fi,j,0,0|0 ≤ i, j < p, i, j are not both zero} and |Ac| = p2 − 1.
Since d|(p2 − 1), the group Ac contains a unique element of order d, say σ.
Now consecutive application of σ on ac yields the set T whose size is d and is
invariant under σ. Let us set T−1 = {x−1|x ∈ T} and S = T ∪ T−1. In this
case Cay(G9, S) is a connected normal edge-transitive Cayley graph of valency
2d. □
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Next we consider G′
9.

Elements of G′
9 can be written uniquely in the form {aibjck, 0 ≤ i < p, 0 ≤

j < p, 0 ≤ k < 4}. The order of elements of G′
9 are as follows:

for 0 ≤ i, j < p, k = 1, 3, We have O(aibj) = p, O(aibjck) = 4 and O(aibjc2) =
2. Using the above facts, we can find Aut(G′

9). Set fi,j,k,l(a) = ai, fi,j,k,l(b) =
bj , fi,j,k,l(c) = akblc, gi,j,k,l(a) = bi, gi,j,k,l(b) = aj , gi,j,k,l(c) = akblc3, then we
have:

Aut(G′
9) = {fi,j,k,l, gi,j,k,l| 0 ≤ k, l < p, 1 ≤ i, j < p}

|Aut(G′
9)| = 2p2(p − 1)2 and for 0 ≤ i, j < p, k = 1, 3, Aut(G′

9) has the
following orbits on G′

9 : {1},{ai|1 ≤ i < p},{bj |1 ≤ j < p}, {aibj |1 ≤ i, j < p},
{aibjc2|0 ≤ i, j < p} and {aibjck|0 ≤ i, j < p, k = 1, 3}.

Lemma 10.4. If Cay(G′
9, S) is a connected normal edge-transitive Cayley

graph on S, then S consists of elements of order 4. Moreover, |S| ≥ 4 is
even.

Lemma 10.5. Let Γ = Cay(G′
9, S) be a Cayley graph of valency 4. Then Γ is a

connected normal edge-transitive Cayley graph if and only if S = {aibjc, akblc,
a−iλbjλc3, a−kλblλc3} where 0 ≤ i, j, k, l < p and j ̸= l, i ̸= k.

Proof. At first we prove that < S >= G′
9. We have aibjca−kλblλc3 = ai−kbj−l

and aibjcakblc = ai−kλbj+lλc2, (aibjc)2 = ai−iλbj+jλc2,
ai−kλbj+lλc2ai−iλbj+jλc2 = aiλ−kλblλ−jλ. So b2(l−j)λ ∈< S >, since j ̸= l,
then b ∈< S >. From condition i ̸= k and above relations, we conclude that
a ∈< S > and c ∈< S >.
Now let m and n be the integers such that mn ≡ 1 (mod p), mλ(i− k) ≡ j− l
(mod p) and nλ(l− j) ≡ i− k (mod p), then f−1,−1,i+k,j+l, gm,n,−kλ−jn,lλ−im

∈ Aut(G′
9, S). We have (aibjc)f−1,−1,i+k,j+l = akblc, (aibjc)gm,n,−kλ−jn,lλ−im =

a−kλblλc3 and (aibjc)f−1,−1,i+k,j+logm,n,−kλ−jn,lλ−im = a−iλbjλc3. Therefore
Aut(G′

9, S) is transitive on S and Γ is a connected normal edge-transitive Cay-
ley graph. □

11. Normal edge-transitive Cayley graphs on group G10

The order of elements of G10 are as follows:
O(aibj) = p(0 ≤ i, j < p) and for 1 ≤ i < p, 0 ≤ j < p, k = 1, 3, we have
O(bjck) = 4, O(bjc2) = 2, O(aibjck) = 4p and O(aibjc2) = 2p. Using the
above facts, we can find Aut(G10).

Lemma 11.1. For odd prime p, Aut(G10) ∼= Zp ⋊ (Up × Up), and it has the
following orbits on G10 : {1}, {ai|1 ≤ i < p},{bj |1 ≤ j < p}, {aibj |1 ≤ i, j <
p},{bjc|0 ≤ j < p}, {bjc2|0 ≤ j < p},{bjc3|0 ≤ j < p}, {aibjc|1 ≤ i < p, 0 ≤
j < p}, {aibjc2|1 ≤ i < p, 0 ≤ j < p} and{aibjc3|1 ≤ i < p, 0 ≤ j < p}.

Proof. Any σ ∈ Aut(G10) is determined by its effect on a, b and c. Tak-
ing orders into account and by relations σ(ab) = σ(ba), σ(ac) = σ(ca) and
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σ(c−1bc) = σ(bλ), we have σ(a) = ai, σ(b) = bj and σ(c) = bkc, where
1 ≤ i, j < p, 0 ≤ k < p. It can be verified that σ = fi,j,k defined as above, can
be extended to an automorphism of G10. Therefore, Aut(G10) = {fi,j,k|1 ≤
i, j < p, 0 ≤ k < p} is a group of order p(p − 1)2. We have fi,j,kofi′,j′,k′ =

fii′,jj′,jk′+k and f−1
i,j,k = fi1,j1,−kj1 , hence if we define A = {f1,1,k|0 ≤ k < p}

and B = {fi,j,0|1 ≤ i, j < p}, then Aut(G10) = A × B, A ∩ B = id and
A⊴Aut(G10). So Aut(G10) ∼= Zp ⋊ (Up × Up) and the lemma is proved. □

Lemma 11.2. If Cay(G10, S) is a connected normal edge-transitive Cayley
graph on S, then S consists of elements of order 4p. Moreover, |S| > 2 is even.

Lemma 11.3. S = {aibjc, akblc3, a−ib−jλc3, a−kblλc} generates G10 if and
only if 1 ≤ i, k < p, 0 ≤ j, l < p, j ̸≡ lλ (mod p).

Proof. Generating condition of S comes from the relations (aibjc)4 = a4i,
aibjcakblc3 = ai+kbj−lλ. Since p is odd, then we can conclude that a ∈< S >
and so b ∈< S > and c ∈< S >. □

Theorem 11.4. Γ = Cay(G10, S) is a connected normal edge-transitive Cayley
graph if and only if it has even valency, S = T ∪T−1, where T ⊆ {aibjc, akblc| 1
≤ i, k < p, 0 ≤ j, l < p, j ̸= l} and Aut(G10, S) acts transitively on T . More-
over, if Γ is a normal edge-transitive Cayley graph of valency 2d, then d = p,
d|(p − 1), d|p(p − 1) or d ∤ (p − 1) but d|(p − 1)2. For each of the above num-
bers, there is, up to isomorphism, one normal edge-transitive Cayley graph of
valency 2d.

Proof. Assume that Γ is a connected normal edge-transitive Cayley graph.
The fact that Γ has even valency follows from Proposition 2.3. By Proposition
2.2, in the action of Aut(G10, S) on S, we can deduce either S is an orbit or
S = T ∪T−1, where T is an orbit. By Lemma 11.2 and Lemma 11.3, S contains
only elements of types aibjc and akblc3 for 1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= lλ.
But in the action of Aut(G10) on G10, a

ibjc and akblc3 belongs to the two
separated orbits and since Aut(G10, S) ≤ Aut(G10) then Aut(G10, S) is not
transitive on S. Therefore S = T ∪ T−1, where T ⊆ {aibjc, akblc| 1 ≤ i, k <
p, 0 ≤ j, l < p, j ̸= l}, and Aut(G10, S) acts transitively on T . The second part
of the theorem is similar to the proof of Theorem 10.3. □

Lemma 11.5. Let Γ = Cay(G10, S) be a Cayley graph of valency 4. Then Γ is
a connected normal edge-transitive Cayley graph if and only if S = {aibjc, a±iblc,
a−ib−jλc3, a∓ib−lλc3} where 1 ≤ i < p, 0 ≤ j, l < p, j ̸= l.

Proof. By Lemma 11.3, < S >= G10 and by Theorem 11.4, S = T∪T−1, where
T = {aibjc, akblc| for some 1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l} and Aut(G10, S)
acts transitively on T . Since Aut(G10, S) acts transitively on T . Then there
exist fm,n,t ∈ Aut(G10, S) such that (aibjc)fm,n,t = akblc and (akblc)fm,n,t =
aibjc. Therefore, im ≡ k (mod p) and km ≡ i (mod p) implying k = ±i. In
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the case k = i, f1,−1,l+j ∈ Aut(G10, S) and T is invariant under f1,−1,l+j . In
the case k = −i, f−1,−1,l+j ∈ Aut(G10, S) and T is invariant under f−1,−1,l+j .
Therefore in both cases, Γ is a connected normal edge-transitive Cayley graph.

□

12. Normal edge-transitive Cayley graphs on group G11

The order of elements of G11 are as follows:
For 0 ≤ i, j < p, k = 1, 3 we have O(aibj) = p, O(aibjck) = 4 and for 1 ≤ i <
p, 0 ≤ j < p, we have O(bjc2) = 2, and O(aibjc2) = 2p. Using the above facts,
we can find Aut(G11).

Lemma 12.1. For odd prime p, Aut(G11) ∼= (Zp × Zp) ⋊ (Up × Up), and it
has the following orbits on G11 : {1}, {ai|1 ≤ i < p},{bj |1 ≤ j < p}, {aibj |1 ≤
i, j < p}, {bjc2|0 ≤ j < p}, {aibjc|0 ≤ i, j < p}, {aibjc2|1 ≤ i < p, 0 ≤ j < p}
and {aibjc3|0 ≤ i, j < p}.
Proof. Any σ ∈ Aut(G11) is determined by its effect on a, b and c. Tak-
ing orders into account and by relations σ(ab) = σ(ba), σ(c−1ac) = σ(a−1)
and σ(c−1bc) = σ(bλ), we have σ(a) = ai, σ(b) = bj and σ(c) = akblc,
where 1 ≤ i, j < p, 0 ≤ k, l < p. It can be verified that σ = fi,j,k,l
defined as above can be extended to an automorphism of G11. Therefore,
Aut(G11) = {fi,j,k,l|1 ≤ i, j < p, 0 ≤ k, l < p} is a group of order (p(p − 1))2.

We have fi,j,k,lofi′,j′,k′,l′ = fii′,jj′,ik′+k,jl′+l and f−1
i,j,k,l = fi1,j1,−ki1,−lj1 , hence

if we define A = {f1,1,k,l|0 ≤ k, l < p} and B = {fi,j,0,0|1 ≤ i, j < p},
then Aut(G11) = A × B, A ∩ B = id and A ⊴ Aut(G11). So Aut(G11) ∼=
(Zp × Zp)⋊ (Up × Up) and the lemma is proved. □
Lemma 12.2. If Cay(G11, S) is a connected normal edge-transitive Cayley
graph on S, then S consists of elements of order 4. Moreover, |S| > 2 is even.

Lemma 12.3. S = {aibjc, akblc, aib−jλc3, akb−lλc3} generates G11 if and only
if 0 ≤ i, j, l, k < p, j ̸= l and k ̸= i.

Proof. Proof of this lemma is similar to the proof of Lemma 11.3. □
Theorem 12.4. Γ = Cay(G11, S) is a connected normal edge-transitive Cayley
graph if and only if it has even valency, S = T ∪T−1, where T ⊆ {aibjc, akblc| 0
≤ i, j, l, k < p, k ̸= i, j ̸= l} and Aut(G11, S) acts transitively on T . Moreover,
if Γ is a normal edge-transitive Cayley graph of valency 2d, then d = p2, d|(p−
1), d|p(p−1) or d ∤ (p−1) but d|(p−1)2. For each of the above numbers, there
is, up to isomorphism, one normal edge-transitive Cayley graph of valency 2d.

Proof. Proof of this theorem is similar to the proof of Theorem 11.4. □
Lemma 12.5. Let Γ = Cay(G11, S) be a Cayley graph of valency 4. Then Γ is
a connected normal edge-transitive Cayley graph if and only if S = {aibjc, akblc,
aib−jλc3, akb−lλc3} where 0 ≤ i, j, l, k < p, j ̸= l and k ̸= i.
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Proof. By Lemma 12.3, < S >= G11 and by Theorem 12.4, S = T ∪ T−1,
where T = {aibjc, akblc| for some 1 ≤ i, k < p, 0 ≤ j, l < p, j ̸= l, i ̸= k} and
we have f−1,−1,i+k,j+l ∈ Aut(G11) such that (aibjc)f−1,−1,i+k,j+l = akblc. So
Aut(G11, S) acts transitively on T and Γ is a connected normal edge-transitive
Cayley graph. □

13. Normal edge-transitive Cayley graphs on group G12

The order of elements of G12 are as follows:
For 0 ≤ i, j < p, k = 1, 3 we have O(aibj) = p, O(aibjck) = 4 and O(aibjc2) =
2. Using the above facts, we can find Aut(G12). Any σ ∈ Aut(G12) is deter-
mined by its effect on a, b and c. Using the above facts, we can find Aut(G12).
Let us choose 0 ≤ i, j, k, l < p with following properties:
1. If there exist 1 ≤ s < p such that si ≡ k (mod p), then sj ̸≡ l (mod p).
2. i = j = 0 and k = l = 0 do not occur.
With this conditions, we set fi,j,k,l,m,n(a) = aibj , fi,j,k,l,m,n,t(b) = akbl and
fi,j,k,l,m,n,t(c) = ambnc, then we have:

Aut(G12) = {fi,j,k,l,m,n| 0 ≤ i, j, k, l,m, n < p}

and it has the following orbits on G12 : {1}, {aibj}, {aibjc2}, {aibjc} and
{aibjc3} where 0 ≤ i, j < p.

Lemma 13.1. If Cay(G12, S) is a connected normal edge-transitive Cayley
graph on S, then S consists of elements of order 4. Moreover, |S| ≥ 6 is even.

Proof. By Proposition 2.2, elements in S have the same order. Since < S >=
G12, the set S cannot contain elements of order p or 2, and should contain
elements of order 4 only. By Proposition 2.3, |S| is even. Now set |S| = 4, then
S = {aibjc, akblc, a−iλb−jλc3, a−kλb−lλc3|0 ≤ i, j, k, l < p}. We have:

(aibjc)m =

 ai−iλbj−jλc2 m=2
a−iλb−jλc3 m=3
1 m=4

aibjcakblc = ai−kλbj−lλc2 and aibjca−kλb−lλc3 = ai−kbj−l. So according to
above relations < S >< G12.
Now set |S| = 6, then S = {aibjc, akblc, atbfc, a−iλb−jλc3, a−kλb−lλc3,
a−tλb−fλc3|0 ≤ i, j, k, l, t, f < p}. In this case < S >= G12 if and only if 0 ≤
i, j, k, l, t, f < p and if there exist 1 ≤ s < p such that s(k−i) ≡ (t−i) (mod p),
then s(l− j) ̸≡ (f − j) (mod p). Because we have akblca−iλb−jλc3 = ak−ibl−j

and atbfca−iλb−jλc3 = at−ibf−j . According to above relations, bs(l−j)−(f−j) ∈<
S > and so b ∈< S >, also a ∈< S > and c ∈< S >. □

Theorem 13.2. Let Γ = Cay(G12, S) be a Cayley graph of valency 6. Γ is a
connected normal edge-transitive Cayley graph if and only if S = {aibjc, akblc,
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atbfc, aibjc3, akblc3, atbfc3|0 ≤ i, j, k, l, t, f < p} such that if there exist 1 ≤
s < p such that s(k − i) ≡ (t− i) (mod p), then s(l − j) ̸≡ (f − j) (mod p).

Proof. Set S′ = {c, ac, bc, c3, a−λc3, b−λc3}. With Lemma 13.1, < S′ >= G12

and so Cay(G12, S
′) is connected. Set T = {c, ac, bc}, the automorphisms

f0,1,1,0,0,0 and f−1,0,−1,1,1,0 are in Aut(G12, S
′) and transfers ac to bc, c. So

Aut(G12, S
′) is transitive on T , therefore Cay(G12, S

′) is connected normal
edge-transitive Cayley graph. Now according to the conditions of theorem,
fk−i,l−j,t−i,f−j,i,j is in Aut(G12) and S′fk−i,l−j,t−i,f−j,i,j = S and the proof is
completed. □

According to the above results, we can state the following theorem.

Theorem 13.3. Let Γ be a connected Cayley graph of order 4p2, where p is a
prime number. Then Γ is normal 1

2 -arc-transitive if and only if Γ is a normal
edge-transitive Cayley graph of a group isomorphic to one of the groups G2,
G10, G11 or G12.
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