Title:
On a Picone’s identity for the $A_{p(x)}$-Laplacian and its applications

Author(s):
S.H. Rasouli
ON A PICONE’S IDENTITY FOR THE $A_{p(x)}$-LAPLACIAN AND ITS APPLICATIONS

S.H. RASOULI

(Communicated by Asadollah Aghajani)

Abstract. We present a Picone’s identity for the $A_{p(x)}$-Laplacian, which is an extension of the classic identity for the ordinary Laplace. Also, some applications of our results in Sobolev spaces with variable exponent are suggested.

Keywords: Picone’s identity, $A_{p(x)}$-Laplacian, nonlinear elliptic problems.

1. Introduction and preliminaries

Since the pioneering work of M. Picone [15], efforts have been made to establish Picone identities for differential equations of various type (see [7,13,19]). Picone identities play an important role in the oscillation theory for ordinary or partial differential equations or systems. Let us recall the classical Picone’s identity:

For differentiable functions $v > 0$ and $u \geq 0$, we have

$$|\nabla u|^2 + \frac{u^2}{v^2} |\nabla v|^2 - 2 \frac{u}{v} \nabla u \nabla v = |\nabla u|^2 - \nabla (\frac{u^2}{v}) \nabla v \geq 0. \quad (1.1)$$

Later Allegreto-Huang [1] presented a Picone’s identity for the p-Laplacian, which is an extension of (1.1). As an immediate consequence, they obtained a wide array of applications including the simplicity of the eigenvalues, Sturmian comparison principles, oscillation theorems and Hardy inequalities to name a few.

Recently in [18] the author established a generalization to Picone’s identity in the nonlinear framework. They showed, as an application of their results, that the Morse index of the zero solution to a semilinear elliptic boundary value
problem is 0 and also established a linear relationship between the components of the solution of a nonlinear elliptic system.

They proved that for differentiable functions \(v > 0 \) and \(u \geq 0 \) we have

\[
(1.2) \quad |\nabla u|^2 + \frac{|\nabla u|^2}{f'(v)} + \left(\frac{u \sqrt{f'(v)} \nabla v}{f(v)} - \frac{\nabla u}{\sqrt{f'(v)}} \right)^2 = |\nabla u|^2 - \nabla \left(\frac{u^2}{f(v)} \right) \cdot \nabla v \geq 0
\]

where \(f(y) \neq 0 \) and \(f'(y) \geq 1 \) for all \(y \neq 0 \); \(f(0) = 0 \).

Moreover, \(|\nabla u|^2 - \nabla (u^2/f(v)) \cdot \nabla v = 0 \) holds if and only if \(u = cv \) for an arbitrary constant \(c \). In a recent paper [3] Bal generalized the main result of [18] for the \(p \)-Laplace operator. The aim of this paper is to prove a generalized analogue of Picone’s identity for the \(\mathcal{A}_{p(x)} \)-Laplacian and, using this, we deal with the problems of the type

\[
(1.3) \quad \begin{cases}
-\mathcal{A}_{p(x)} u = m(x)|u|^{p(x)-2}u, & x \in \Omega, \\
u = 0, & x \in \partial \Omega,
\end{cases}
\]

where \(p \in C(\overline{\Omega}) \) such that \(2 \leq p(x) < \infty \), \(\Omega \) is a bounded smooth domain of \(\mathbb{R}^N \), \(m \in L^\infty(\Omega) \) is a non-negative weight function and \(f : \mathbb{R} \to \mathbb{R} \) is a \(C^1 \) function. Here \(\mathcal{A}_{p(x)} u := \text{div} \left(\omega(x,u) \frac{\omega^{p(x)-2}}{2} A\nabla u \right) \) and will be called \(\mathcal{A}_{p(x)} \)-Laplace operator where \(A: \overline{\Omega} \to \mathbb{R}^{N \times N} \) is a symmetric matrix function with \(a_{ij}(x) \in L^\infty(\Omega) \bigcap C^1(\overline{\Omega}) \) and satisfy:

\[
(1.4) \quad \langle \mathcal{A}\xi, \xi \rangle = \sum_{i,j=1}^{N} a_{ij}(x) \xi_i \xi_j \geq |\xi|^2, \forall x \in \overline{\Omega}, \xi \in \mathbb{R}^N,
\]

where \(\langle ., . \rangle \) denotes the scalar product on \(\mathbb{R}^N \), and \(\alpha: \Omega \times \mathbb{R} \to (0,\infty) \) is a Carathéodory function and for almost every \(x \in \Omega \) and every \(t \in \mathbb{R} \) we have \(\lambda \leq \alpha(x,t) \leq \Lambda \) for some positive \(\lambda \) and \(\Lambda \). The \(\mathcal{A}_{p(x)} \)-Laplace operator represents a generalization of the \(p(x) \)-Laplace operator, i.e. \(\Delta_{p(x)} u = \text{div} (|\nabla u|^{p(x)-2} \nabla u) \), which is obtained in the case when \(A = Id \) and \(\alpha \equiv 1 \).

In the last few decades, special attention has been paid to \(p(x) \)-Laplace type operators since they can model with sufficient accuracy the phenomena arising from the study of electrorheological fluids [16, 17], image restoration [6], mathematical biology [11], dielectric breakdown, electrical resistivity and polycrystal plasticity [4, 5]. In a similar context, we note that a collection of results obtained in the field of partial differential equations involving \(p(x) \)-Laplace type operators can be found in the survey paper by Harjulehto et al. [12]. Finally, we recall that in the case when \(p(x) \) is a constant function, problems involving \(\mathcal{A}_p \)-Laplace type operators have been widely studied. In this regard we point out the papers by Alvino et al. [2] and El Khalil et al. [8].
2451 Rasouli and the references therein. In a recent paper [14], the authors established the existence of solutions for a partial differential equation involving the $A_{p(x)}$-Laplace operator by using the Schauder’s fixed point theorem combined with adequate variational arguments.

To discuss problem (1.3), we need some theory on $W^{1,p(x)}(Ω)$ which is called variable exponent Sobolev space. Firstly we state some basic properties of spaces $W^{1,p(x)}_{0}(Ω)$ which will be used later (for details, see [9, 10]). Denote by $S(Ω)$ the set of all measurable real functions defined on $Ω$. Two functions in $S(Ω)$ are considered as the same element of $S(Ω)$ when they are equal almost everywhere. Write

$$C_{+}(Ω) = \{h : h \in C(Ω), h(x) > 1 \text{ for any } x \in Ω\},$$

$$h^- := \min_{Ω} h(x), \quad h^+ := \max_{Ω} h(x) \quad \text{for every } h \in C_{+}(Ω).$$

Define

$$L^{p(x)}(Ω) = \{u \in S(Ω) : \int_{Ω} |u(x)|^{p(x)} \, dx < +\infty \text{ for } p \in C_{+}(Ω)\}$$

with the norm

$$|u|_{L^{p(x)}(Ω)} = |u|_{p(x)} = \inf\{\lambda > 0 : \int_{Ω} \frac{|u(x)|^{p(x)}}{\lambda} \, dx \leq 1\},$$

and

$$W^{1,p(x)}(Ω) = \{u \in L^{p(x)}(Ω) : |\nabla u| \in L^{p(x)}(Ω)\}$$

with the norm

$$\|u\|_{W^{1,p(x)}(Ω)} = |u|_{L^{p(x)}(Ω)} + |\nabla u|_{L^{p(x)}(Ω)}.$$

Denote by $W^{1,p(x)}_{0}(Ω)$ the closure of $C^{∞}_{0}(Ω)$ in $W^{1,p(x)}(Ω)$.

Theorem 1.1 ([10]). The spaces $L^{p(x)}(Ω)$, $W^{1,p(x)}(Ω)$ and $W^{1,p(x)}_{0}(Ω)$ are separable and reflexive Banach spaces.

2. Main results

Define $\varphi(s) = |s|^{p(x)-1} s$, $s \in \mathbb{R}$ and $\Phi(ξ) = |ξ|^{p(x)-1} ξ$, $ξ \in \mathbb{R}^n$, for $p(x) > 0$. We begin with the following lemma.

Lemma 2.1 ([13]). For $X, Y \in \mathbb{R}^n$, we have

$$F(X,Y) := ⟨X, Φ(X)⟩ + α⟨Y, Φ(Y)⟩ - (α + 1)⟨X, Φ(Y)⟩ ≥ 0,$$

where the equality holds if and only if $X = Y$.

Next we present our main result.
Theorem 2.2. Let \(v > 0 \) and \(u \geq 0 \) be two non-constant differentiable functions in \(\Omega \). For all \(x \in \Omega \) define
\[
L(u, v) = \alpha(x, u) (A\nabla u, \nabla u)^{p(x)} \frac{1}{2} + (p(x) - 1) \alpha(x, v) (A\nabla v, \nabla v)^{p(x) - 2} \langle A\nabla v, \frac{u^{p(x)}}{\nabla v^{p(x)}} \nabla v \rangle
\]
\[
- p(x) \alpha(x, v) (A\nabla v, \nabla v)^{p(x) - 2} \langle A\nabla v, \frac{u^{p(x) - 1}}{\nabla v^{p(x) - 1}} \nabla u \rangle,
\]
\[
R(u, v) = \alpha(x, u) (A\nabla u, \nabla u)^{p(x)} - \alpha(x, v) (A\nabla v, \nabla v)^{p(x) - 2} \langle A\nabla v, \nabla \left(\frac{u^{p(x)}}{\nabla v^{p(x)}} \right) \rangle.
\]
Then \(L(u, v) = R(u, v) \geq 0 \). Moreover \(L(u, v) = 0 \) a.e. in \(\Omega \) if and only if \(\nabla \left(\frac{u}{v} \right) = 0 \) a.e. in \(\Omega \).

Proof. Expanding \(R(u, v) \) by direct calculation one easily sees that \(L(u, v) = R(u, v) \). To show \(L(u, v) = 0 \) we proceed as follow:

For simplicity, we let \(\alpha(x, u) = \alpha(x, v) = 1 \). Since \(A \) is positive definite, there exists a square root \(\sqrt{A} \) of \(A \) which is positive definite. We easily obtain
\[
\langle A\nabla u, \nabla u \rangle = |\sqrt{A}\nabla u|^2.
\]
Hence we get
\[
L(u, v) = |\sqrt{A}\nabla u|^{p(x)} + (p(x) - 1)|\sqrt{A}\frac{u}{v}\nabla v|^{p(x)}
\]
\[
- p(x)|\sqrt{A}\frac{u}{v}\nabla v|^{p(x) - 2} \langle \sqrt{A} u, \sqrt{A} \nabla u \rangle,
\]
which is nonnegative (from Lemma 2.1 and cf. [20, p. 85]). Equality holds if \(\sqrt{A}\frac{u}{v}\nabla v = \sqrt{A}\nabla u \). Since \(\sqrt{A} \) is positive definite, it follows from \(\sqrt{A}\frac{u}{v}\nabla v = \sqrt{A}\nabla u \) that \(\nabla \left(\frac{u}{v} \right) = 0 \).

3. Applications

3.1. Sturmian Theory. First we give a nonlinear version of Sturm-type comparison result for \(A_{p(x)} \)-Laplacian operator. We start by definition of weak solutions of (1.3).

Definition 3.1. By the weak solution of (1.3) we mean any \(u \in W^{1, p(x)}_0(\Omega) \) which satisfies
\[
\int_\Omega \alpha(x, u) (A\nabla u, \nabla u)^{p(x) - 2} \langle A\nabla u, \nabla \phi \rangle dx = \int_\Omega m(x) |u|^{p(x) - 2} u \phi dx,
\]
for any \(\phi \in W^{1, p(x)}_0(\Omega) \).
Theorem 3.2. Let $m_1 < m_2$ be two weight functions of (1.3) and u be a positive solution of (1.3) for $m = m_1$. Then any nontrivial solution v of (1.3) for $m = m_2$, must change sign.

Proof. Suppose the contrary. We may assume that there exists a solution $v > 0$ of (1.3) in Ω. Then by Picone’s identity we have

$$0 \leq \int_{\Omega} L(u,v) = \int_{\Omega} R(u,v)$$

$$= \int_{\Omega} \alpha(x,u)\langle A\nabla u, \nabla u \rangle^{\frac{p(x)-2}{2}} - \alpha(x,v)\langle A\nabla v, \nabla v \rangle^{\frac{p(x)-2}{2}} \langle A\nabla v, \nabla \left(\frac{v^{p(x)}-1}{v^{p(x)}-1} \right) \rangle$$

$$= \int_{\Omega} m_1(x)u^{p(x)} - m_2(x)v^{p(x)}$$

$$= \int_{\Omega} (m_1 - m_2)v^{p(x)} < 0,$$

which is a contradiction. Hence, v changes sign in Ω. \hfill \Box

3.2. Nonlinear elliptic system involving the $A_{p(x)}$-Laplacian. Let us consider the following coupled nonlinear elliptic system:

$$-\text{div} \left(\alpha(x,u)\langle A\nabla u, \nabla u \rangle^{\frac{p(x)-2}{2}} A\nabla u \right) = v^{p(x)-1} \quad \text{in } \Omega \quad (3.1)$$

$$-\text{div} \left(\alpha(x,v)\langle A\nabla v, \nabla v \rangle^{\frac{p(x)-2}{2}} A\nabla v \right) = \frac{\nu^{2(p(x)-1)}}{u^{p(x)-1}} \quad \text{in } \Omega$$

$$u > 0, \quad v > 0 \quad \text{in } \Omega$$

$$u = 0, \quad v = 0 \quad \text{on } \partial \Omega.$$

We will show that Picone’s Identity yields a linear relationship between u and v.

Theorem 3.3. Let (u,v) be a weak solution of (3.1). Then $u = c_1 v$ where c_1 is a constant.

Proof. Let (u,v) be the weak solution of (3.1). Now for any ϕ_1 and ϕ_2 in $W^{1,p(x)}_0(\Omega)$, we have

$$\int_{\Omega} \alpha(x,u)\langle A\nabla u, \nabla u \rangle^{\frac{p(x)-2}{2}} \langle A\nabla u, \nabla \phi_1 \rangle dx = \int_{\Omega} v^{p(x)-1}\phi_1 dx,$$ \hfill (3.2)

$$\int_{\Omega} \alpha(x,v)\langle A\nabla v, \nabla v \rangle^{\frac{p(x)-2}{2}} \langle A\nabla v, \nabla \phi_2 \rangle dx = \int_{\Omega} \frac{\nu^{2(p(x)-1)}}{u^{p(x)-1}} \phi_2 dx.$$ \hfill (3.3)
Choosing $\phi_1 = u$ and $\phi_2 = \frac{u^{p(x)}}{v^{p(x)-1}}$ in (3.2) and (3.3) we obtain

$$
\int_\Omega \alpha(x, u) \langle A\nabla u, \nabla u \rangle^{\frac{p(x)}{2}} dx
= \int_\Omega uv^{p(x)-1} dx
= \int_\Omega \alpha(x, v) \langle A\nabla v, \nabla v \rangle^{\frac{p(x)-2}{2}} \langle A\nabla v, \nabla \left(\frac{u^{p(x)}}{v^{p(x)-1}} \right) \rangle dx.
$$

Hence we have

$$
\int_\Omega R(u, v) dx = \int_\Omega \left(\alpha(x, u) \langle A\nabla u, \nabla u \rangle^{\frac{p(x)}{2}} - \alpha(x, v) \langle A\nabla v, \nabla v \rangle^{\frac{p(x)-2}{2}} \langle A\nabla v, \nabla \left(\frac{u^{p(x)}}{v^{p(x)-1}} \right) \rangle \right) dx = 0.
$$

By the positivity of $R(u, v)$ we have that $R(u, v) = 0$ and hence

$$
\nabla \left(\frac{u}{v} \right) = 0
$$

which gives $u = c_1 v$ where c_1 is a constant. \hfill \qed

Acknowledgements

The author is extremely grateful to the referees for their helpful suggestions for the improvement of the paper.

REFERENCES

(Sayed Hashem Rasouli) DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, BABOL NOSHIRVANI UNIVERSITY OF TECHNOLOGY, BABOL, IRAN.

E-mail address: s.h.rasouli@nit.ac.ir