Bulletin of the Iranian Mathematical Society Vol. 30 No. 1 (2004), pp 1-11.

COMPACT ENDOMORPHISMS OF CERTAIN SUBALGEBRAS OF THE DISC ALGEBRA

F. BEHROUZI AND H. MAHYAR*

ABSTRACT. In this paper we study endomorphisms of the following subalgebras of the disc algebra $A(\mathbb{D})$: The natural uniform subalgebras of $A(\mathbb{D})$, the analytic Lipschitz algebras $Lip_A(\mathbb{D}, \alpha)$ of order α ($0 < \alpha \leq 1$) and the *n*-times differentiable Lipschitz algebras $Lip^n(\mathbb{D}, \alpha)$ of order α ($0 < \alpha \leq 1$). Every nonzero endomorphism T of many commutative semisimple Banach algebras including these subalgebras of $A(\mathbb{D})$ has the form $Tf = f \circ \varphi$ for some $\varphi : \mathbb{D} \longrightarrow \mathbb{D}$ in them. We show that a sufficient condition for φ to induce a compact endomorphism of these algebras is that either φ is constant or $\|\varphi\|_{\mathbb{D}} < 1$. We then show that these conditions are also necessary when $\alpha = 1$.

1. Introduction

In this note we consider endomorphisms of three types of Banach algebras of analytic functions on the open unit disc \mathbb{D} . We recall that a compact endomorphism of a Banach algebra B is a compact linear map from B into B which preserves multiplication. Let Bbe a Banach function algebra on a compact Hausdorff space X,

Keywords: Compact endomorphisms, Lipschitz algebras, Analytic functions Received: 10 May 2004, Revised: 11 September 2004

*Corresponding author.

MSC(2000): Primary 46J10; Secondary 46J15

^{© 2004} Iranian Mathematical Society.

¹

i.e., an algebra of complex-valued continuous functions on X which separates the points of X, contains the constants and is complete under an algebra norm. A Banach function algebra B on X is called natural, if its maximal ideal space is X, i.e., each complex homomorphism on B has the form $f \mapsto f(x)$ for some $x \in X$. It is well known that, if B is a natural Banach function algebra on X and T is a nonzero bounded endomorphism of B, then there exists a self-map φ on X such that $Tf = f \circ \varphi$ for all $f \in B$. Conversely, if φ is a self-map on X such that for every $f \in B$, $f \circ$ $\varphi \in B$, then $T : f \to f \circ \varphi$ is an endomorphism of B. In each case, we say that T is induced by φ . If X is a compact plane set and B contains the coordinate map z, then obviously $\varphi \in B$. It is interesting to see that under what conditions such φ induces compact endomorphisms. For the disc algebra $A(\mathbb{D})$, the uniform algebra of complex-valued functions analytic on the open unit disc \mathbb{D} and continuous on its closure \mathbb{D} , H. Kamowitz [5] showed that if T is a nonzero endomorphism of the disc algebra $A(\mathbb{D})$ induced by a map $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$, then T is compact if and only if φ is either constant or $\|\varphi\|_{\mathbb{D}} = \sup\{|\varphi(z)| : |z| \le 1\} < 1$. H. Kamowitz and S. Scheinberg [6] also showed that an endomorphism T of the Lipschitz algebra Lip(X, d) induced by a map $\varphi : X \longrightarrow X$ is compact if and only if φ is supercontraction, that is $\frac{d(\varphi(x),\varphi(y))}{d(x,y)} \longrightarrow 0$ as $d(x,y) \longrightarrow 0$ where (X,d) is a metric space. In [1] it was shown that an endomorphism of D^n , the algebra of functions on the closed unit disc $\overline{\mathbb{D}}$ with continuous *n*th derivatives, is compact if and only if φ is either constant or $\|\varphi\|_{\mathbb{D}} < 1$. Now we consider the following three types of subalgebras of $A(\mathbb{D})$: The natural uniform subalgebras of $A(\mathbb{D})$, the analytic Lipschitz algebras $Lip_A(\mathbb{D},\alpha)$ of order α (0 < $\alpha \leq 1$), and the *n*-times differentiable Lipschitz algebras $Lip^n(\mathbb{D}, \alpha)$ of order α ($0 < \alpha < 1$). We show that a self-map $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ in any of these subalgebras induces a compact endomorphism of the subalgebra, if φ is either constant or $\|\varphi\|_{\mathbb{D}} < 1$, and in the case that $\alpha = 1$ these conditions are also necessary. In general we have the following:

Proposition 1.1. Let B be a subalgebra of $A(\mathbb{D})$ which is a natural Banach function algebra on $\overline{\mathbb{D}}$ under a norm. If $\varphi \in B$ and $\|\varphi\|_{\mathbb{D}} < 1$, then φ induces an endomorphism of B.

Proof. By the naturality of B, the spectrum $\sigma(\varphi) = \varphi(\overline{\mathbb{D}})$. So $\sigma(\varphi) \subset \mathbb{D}$, since $\|\varphi\|_{\mathbb{D}} < 1$. Therefore, every $f \in B$ is analytic on a neighborhood of $\sigma(\varphi)$, so $f \circ \varphi \in B$, by the Functional Calculus Theorem. That is, φ induces an endomorphism of B. \Box

2. Natural uniform subalgebras of $A(\mathbb{D})$

Let B be a natural uniform subalgebra of $A(\mathbb{D})$ with the uniform norm $||f||_{\mathbb{D}} = \sup\{|f(z)| : |z| \le 1\}, (f \in B)$. Then we have

Theorem 2.1. A nonzero endomorphism T of B induced by φ is compact if and only if, φ is either constant or $\|\varphi\|_{\mathbb{D}} < 1$.

Proof. Obviously, the constant map φ induces a compact endomorphism of B. Let φ be non-constant and $\|\varphi\|_{\mathbb{D}} < 1$. For compactness of T, suppose $\{f_n\}$ is a bounded sequence in B with $\|f_n\|_{\mathbb{D}} \leq 1$. Then by Montel Theorem, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which is uniformly convergent on every compact subset of \mathbb{D} , in particular on $\varphi(\overline{\mathbb{D}})$. So $\|Tf_{n_k} - Tf_{n_j}\|_{\mathbb{D}} = \|f_{n_k} \circ \varphi - f_{n_j} \circ \varphi\|_{\mathbb{D}} = \|f_{n_k} - f_{n_j}\|_{\varphi(\overline{\mathbb{D}})} \to 0$ as $k, j \to \infty$. By completeness of B, $Tf_{n_k} = f_{n_k} \circ \varphi$ is convergent in B. That is, T is compact.

Conversely, let T be a nonzero compact endomorphism of B induced by φ . Suppose for some c, |c| = 1 and $|\varphi(c)| = 1$. Define $f_n(z) = (\frac{z}{\varphi(c)})^n$ on $\overline{\mathbb{D}}$. By the compactness of T, the bounded sequence $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $Tf_{n_k} = f_{n_k} \circ \varphi = (\frac{\varphi}{\varphi(c)})^{n_k}$ converges to a function f in B. Since $f_n(\varphi(c)) = 1$ for each n, f(c) = 1. If φ is not constant, the maximum modulus principle implies that $|\varphi(z)| < 1$ whenever |z| < 1. So $(\varphi(z))^{n_k} \to 0$ when |z| < 1. Therefore, f = 0 on \mathbb{D} and hence on $\overline{\mathbb{D}}$, by the continuity of f, which is a contradiction. \Box

3. The analytic Lipschitz algebras of order α ($0 < \alpha \leq 1$)

Let the analytic Lipschitz algebra $Lip_A(\mathbb{D}, \alpha)$ of order α ($0 < \alpha \leq 1$), be the algebra of all complex-valued functions f on $\overline{\mathbb{D}}$ which are analytic on \mathbb{D} and satisfy the Lipschitz condition $p_{\alpha}(f) = \sup\{\frac{|f(z)-f(w)|}{|z-w|^{\alpha}}: z, w \in \overline{\mathbb{D}}, z \neq w\} < \infty$. The algebra $Lip_A(\mathbb{D}, \alpha)$ is a Banach function algebra on $\overline{\mathbb{D}}$, if it is equipped with the norm $||f|| = ||f||_{\mathbb{D}} + p_{\alpha}(f)$. As it is shown in [1], the maximal ideal space of $Lip_A(\mathbb{D}, \alpha)$ is $\overline{\mathbb{D}}$, i.e., $Lip_A(\mathbb{D}, \alpha)$ is natural.

To give necessary conditions under which φ induces a compact endomorphism of $Lip_A(\mathbb{D}) = Lip_A(\mathbb{D}, 1)$ we need the following lemma [2; Chapter I of Part Six, p 32].

Lemma 3.1. Let f(z) be a non-constant analytic function of bound one in the disc |z| < 1, and consider any triangle in this disc that has one of its vertices at z = 1. Then for any sequence $\{z_n\}$ of points from the interior of the triangle that converges to z = 1, the limit

$$\lim_{n \to \infty} \frac{1 - f(z_n)}{1 - z_n}$$

exists and either always (that is, for every such sequence) equals infinity or always equals a positive number α_0 .

In the second case, we refer to the number α_0 as "the angular derivative" of the function f at z = 1.

Corollary 3.2. If $\varphi \in Lip_A(\mathbb{D})$ is non-constant and $\|\varphi\|_{\mathbb{D}} = |\varphi(c)| = 1$ for some c with |c| = 1, then φ has a nonzero angular derivative at c.

Theorem 3.3. Let T be a nonzero endomorphism of $Lip_A(\mathbb{D}, \alpha)$, $0 < \alpha \le 1$, induced by a map $\varphi : \overline{\mathbb{D}} \longrightarrow \overline{\mathbb{D}}$. Then T is compact, if φ is either constant or $\|\varphi\|_{\mathbb{D}} < 1$. For $\alpha = 1$, these conditions are necessary.

Proof. If φ is constant, clearly T is compact. Let $\|\varphi\|_{\mathbb{D}} < 1$. For the compactness of T, we assume that $\{f_n\}$ is a bounded sequence

in $Lip_A(\mathbb{D}, \alpha)$ with $||f_n|| = ||f_n||_{\mathbb{D}} + p_\alpha(f_n) \leq 1$. Then $\{f_n\}$ is a bounded sequence of analytic functions on \mathbb{D} . By Montel Theorem $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}\}$ and its derivative $\{f'_{n_k}\}$ are uniformly convergent on every compact subset of \mathbb{D} . We claim that $\{f_{n_k} \circ \varphi\}$ is convergent in $Lip_A(\mathbb{D}, \alpha)$. Let $\Delta_r = \{z :$ $|z| \leq r\}$ where $||\varphi||_{\mathbb{D}} < r < 1$. Then Δ_r is a compact subset of \mathbb{D} containing the compact set $\varphi(\overline{\mathbb{D}})$. Hence

$$\|f_{n_k} \circ \varphi - f_{n_j} \circ \varphi\|_{\mathbb{D}} = \|f_{n_k} - f_{n_j}\|_{\varphi(\overline{\mathbb{D}})} \to 0 \ as \ k, j \to \infty,$$

and for all $z, w \in \overline{\mathbb{D}}$, with $z \neq w$ and $k, j \in \mathbb{Z}_+$ we have

$$\frac{|(f_{n_k} \circ \varphi - f_{n_j} \circ \varphi)(w) - (f_{n_k} \circ \varphi - f_{n_j} \circ \varphi)(z)|}{|w - z|^{\alpha}}$$

$$= \frac{|(f_{n_k} - f_{n_j})(\varphi(w)) - (f_{n_k} - f_{n_j})(\varphi(z))|}{|w - z|^{\alpha}}$$

$$\leq \frac{||f'_{n_k} - f'_{n_j}||_{\Delta_r} |\varphi(w) - \varphi(z)|}{|w - z|^{\alpha}} \leq p_{\alpha}(\varphi) ||f'_{n_k} - f'_{n_j}||_{\Delta_r}$$

Hence

$$p_{\alpha}(f_{n_k} \circ \varphi - f_{n_j} \circ \varphi) \le p_{\alpha}(\varphi) ||f'_{n_k} - f'_{n_j}||_{\Delta_r} \to 0 \ as \ k, j \to \infty.$$

Therefore, $\{f_{n_k} \circ \varphi\}$ is a Cauchy sequence in $Lip_A(\mathbb{D}, \alpha)$ and hence T is compact.

Conversely, let $\alpha = 1$ and let $0 \neq T$ be a compact endomorphism of $Lip_A(\mathbb{D})$ induced by φ . Suppose for some c, |c| = 1 and $|\varphi(c)| = 1$. So $||\varphi||_{\mathbb{D}} = 1$. Define $f_n(z) = \frac{z^n}{n}$. Then $||f_n||_{\mathbb{D}} = \frac{1}{n}$ and $p_1(f_n) \leq 1$. Therefore, $\{f_n\}$ is a bounded sequence in $Lip_A(\mathbb{D})$. By the compactness of T, there exists a subsequence $\{f_{n_k}\}$ such that $Tf_{n_k} = f_{n_k} \circ \varphi$ converges in $Lip_A(\mathbb{D})$. Since $f_{n_k} \longrightarrow 0$ uniformly on $\overline{\mathbb{D}}, f_{n_k} \circ \varphi \longrightarrow 0$ in $Lip_A(\mathbb{D})$. Thus

$$p_1(f_{n_k} \circ \varphi) = \sup_{\substack{z, w \in \overline{\mathbb{D}} \\ z \neq w}} \left| \frac{\varphi^{n_k}(w) - \varphi^{n_k}(z)}{n_k(w - z)} \right| \longrightarrow 0, \quad \text{as } k \longrightarrow \infty.$$

Behrouzi and Mahyar

Fix $\epsilon > 0$. Then

$$\sup_{\substack{z,w\in\overline{\mathbb{D}}\\z\neq w}} \left| \frac{\varphi^{n_k}(w) - \varphi^{n_k}(z)}{n_k(w-z)} \right| < \epsilon,$$

for some n_k . In particular,

$$\frac{1}{n_k} \sup_{\substack{z \in \mathbb{D} \\ z \neq c}} \left| \frac{\varphi^{n_k}(z) - \varphi^{n_k}(c)}{z - c} \right| < \epsilon, \tag{1}$$

for some n_k . We note that, the self-map φ is in $Lip_A(\mathbb{D})$, since $Lip_A(\mathbb{D})$ contains the identity map z on $\overline{\mathbb{D}}$. If φ is non-constant, then $\varphi \in Lip_A(\mathbb{D})$ satisfies the hypotheses of Corollary 3.2, so φ has a nonzero angular derivative at c. However, by (1)

$$\frac{1}{n_k} \lim_{\substack{z \to c \\ z \in \Gamma}} \left| \frac{\varphi^{n_k}(z) - \varphi^{n_k}(c)}{z - c} \right| < \epsilon,$$

where Γ is a triangle in \mathbb{D} that has one of its vertices at c. This means that the angular derivative of φ at c is zero and this is a contradiction. \Box

We conjecture that the same conditions are necessary for the compactness of an endomorphism T of $Lip_A(\mathbb{D}, \alpha)$, $0 < \alpha < 1$.

4. The differentiable Lipschitz algebras of order $\alpha \ (\mathbf{0} < \alpha \leq \mathbf{1})$

A complex-valued function f on $\overline{\mathbb{D}}$ is differentiable on $\overline{\mathbb{D}}$ if at each point $a \in \overline{\mathbb{D}}$,

$$f'(a) = \lim_{\substack{z \to a \\ z \in \overline{\mathbb{D}}}} \frac{f(z) - f(a)}{z - a}$$

exists. Note that, every differentiable function on $\overline{\mathbb{D}}$ is analytic on $\mathbb{D}.$

Let the *n*-times differentiable Lipschitz algebra $Lip^n(\mathbb{D}, \alpha)$ of order α ($0 < \alpha \leq 1$), be the algebra of all complex-valued functions f on $\overline{\mathbb{D}}$ whose derivatives up to order n exist and for each k ($0 \leq k \leq n$), $f^{(k)}$ satisfy the Lipschitz condition $p_{\alpha}(f^{(k)}) =$

6

 $\sup\{\frac{|f^{(k)}(z)-f^{(k)}(w)|}{|z-w|^{\alpha}}: z, w \in \overline{\mathbb{D}}, z \neq w\} < \infty.$ These algebras are Banach function algebras on $\overline{\mathbb{D}}$, if they are equipped with the norm

$$||f|| = \sum_{k=0}^{n} \frac{||f^{(k)}||_{\mathbb{D}} + p_{\alpha}(f^{(k)})}{k!}, \quad (f \in Lip^{n}(\mathbb{D}, \alpha)).$$

These algebras were introduced in [3], and it was shown that they are natural Banach function algebras. By Proposition 1.1, every self-map $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ in $Lip^n(\mathbb{D}, \alpha)$ with $\|\varphi\|_{\mathbb{D}} < 1$ induces an endomorphism of $Lip^n(\mathbb{D}, \alpha)$. However, for these algebras this is true without extra condition on φ , that is

Theorem 4.1. Every map $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ in $Lip^n(\mathbb{D}, \alpha)$ induces an endomorphism of $Lip^n(\mathbb{D}, \alpha)$.

Proof. We carry out the proof for the case n = 1; the case n > 1is similar. It is enough to show that $f \circ \varphi \in Lip^1(\mathbb{D}, \alpha)$ for every $f \in Lip^1(\mathbb{D}, \alpha)$. For every $z, w \in \overline{\mathbb{D}}$ with $\varphi(z) \neq \varphi(w)$ (so $z \neq w$) and for every $f \in Lip^1(\mathbb{D}, \alpha)$ we have

$$\frac{|f \circ \varphi(z) - f \circ \varphi(w)|}{|z - w|^{\alpha}} \le ||f'||_{\mathbb{D}} \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} \le ||f'||_{\mathbb{D}} p_{\alpha}(\varphi)$$

and

$$\frac{\left|(f\circ\varphi)'(z)-(f\circ\varphi)'(w)\right|}{|z-w|^{\alpha}} = \frac{\left|f'(\varphi(z))\varphi'(z)-f'(\varphi(w))\varphi'(w)\right|}{|z-w|^{\alpha}} \\
\leq \frac{\left|f'(\varphi(z))-f'(\varphi(w))\right|}{|\varphi(z)-\varphi(w)|^{\alpha}}|\varphi'(z)||\frac{\varphi(z)-\varphi(w)}{z-w}|^{\alpha} \\
+ \frac{\left|\varphi'(z)-\varphi'(w)\right|}{|z-w|^{\alpha}}|f'(\varphi(w))| \\
\leq p_{\alpha}(f')\|\varphi'\|_{\mathbb{D}}^{1+\alpha} + p_{\alpha}(\varphi')\|f'\|_{\mathbb{D}}.$$

This implies that $f \circ \varphi \in Lip^1(\mathbb{D}, \alpha)$. \Box

We now consider sufficient conditions that such φ induces compact endomorphisms of $Lip^n(X, \alpha)$, and we show that in the case $\alpha = 1$, these conditions are also necessary. For this we need the following lemma due to Julia [2, Part Six]. **Lemma 4.2.** Let f be a continuously differentiable complex-valued function on the closed unit disc $\overline{\mathbb{D}}$. If f is non-constant and $f(1) = 1 = ||f||_{\mathbb{D}}$, then f'(1) is a strictly positive number.

Theorem 4.3. Let T be a nonzero endomorphism of $Lip^1(\mathbb{D}, \alpha)$, $0 < \alpha \leq 1$, induced by a map $\varphi : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$. Then T is compact, if φ is either constant or $\|\varphi\|_{\mathbb{D}} < 1$. In the case that $\alpha = 1$, these conditions are necessary.

Proof. When φ is constant, it is clear. Let $\|\varphi\|_{\mathbb{D}} < 1$. For the compactness of T, we assume that $\{f_n\}$ is a bounded sequence in $Lip^1(\mathbb{D}, \alpha)$ with $\|f_n\| = \|f_n\|_{\mathbb{D}} + \|f'_n\|_{\mathbb{D}} + p_\alpha(f_n) + p_\alpha(f'_n) \leq 1$. Then $\{f_n\}$ is a bounded sequence of analytic functions on \mathbb{D} . So by Montel Theorem $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}\}$ and its derivatives $\{f_{n_k}^{(r)}\}$ of each order are uniformly convergent in every compact subset of \mathbb{D} . We denote this subsequence by $\{f_n\}$ again. We want to show that $\{f_n \circ \varphi\}$ is convergent in $Lip^1(\mathbb{D}, \alpha)$. Set $\Delta_r = \{z : |z| \leq r\}$ where $\|\varphi\|_{\mathbb{D}} < r < 1$. So Δ_r is a compact subset of \mathbb{D} and $\varphi(\overline{\mathbb{D}}) \subseteq \Delta_r$. Clearly, $\|f_n \circ \varphi\|_{\mathbb{D}} = \|f_n\|_{\varphi(\overline{\mathbb{D}})}, \|(f_n \circ \varphi)'\|_{\mathbb{D}} \leq \|f'_n\|_{\varphi(\overline{\mathbb{D}})} \|\varphi'\|_{\mathbb{D}}$ and for all $z, w \in \overline{\mathbb{D}}$ with $\varphi(z) \neq \varphi(w)$ (so $z \neq w$) we have

$$\frac{|f_n \circ \varphi(z) - f \circ \varphi(w)|}{|z - w|^{\alpha}} \le \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} ||f'_n||_{\Delta_r} \le p_{\alpha}(\varphi) ||f'_n||_{\Delta_r},$$

so that $p_{\alpha}(f_n \circ \varphi) \leq p_{\alpha}(\varphi) ||f'_n||_{\Delta_r}$, and

$$\frac{|(f_n \circ \varphi)'(z) - (f_n \circ \varphi)'(w)|}{|z - w|^{\alpha}} = \frac{|f'_n(\varphi(z))\varphi'(z) - f'_n(\varphi(w))\varphi'(w)|}{|z - w|^{\alpha}}$$
$$\leq \frac{|f'_n(\varphi(z)) - f'_n(\varphi(w))||\varphi'(z)|}{|z - w|^{\alpha}} + \frac{|\varphi'(z) - \varphi'(w)||f'_n(\varphi(w))|}{|z - w|^{\alpha}}$$
$$\leq ||f''_n||_{\Delta_r} \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} ||\varphi'||_{\mathbb{D}} + ||f'_n||_{\Delta_r} p_{\alpha}(\varphi')$$
$$\leq ||f''_n||_{\Delta_r} p_{\alpha}(\varphi)||\varphi'||_{\mathbb{D}} + ||f'_n||_{\Delta_r} p_{\alpha}(\varphi'),$$

so that $p_{\alpha}((f_n \circ \varphi)') \leq ||f_n''||_{\Delta_r} p_{\alpha}(\varphi)||\varphi'||_{\mathbb{D}} + ||f_n'||_{\Delta_r} p_{\alpha}(\varphi').$

Hence all sequences $\{ \|f_n \circ \varphi\|_{\mathbb{D}} \}, \{ \|(f_n \circ \varphi)'\|_{\mathbb{D}} \}, \{ p_\alpha(f_n \circ \varphi) \}$ and $\{ p_\alpha((f_n \circ \varphi)') \}$ are Cauchy sequences. Thus $\{ f_n \circ \varphi \}$ is a Cauchy

sequence in $Lip^1(\mathbb{D}, \alpha)$, and hence it is convergent, by the completeness of $Lip^1(\mathbb{D}, \alpha)$.

Conversely, let $\alpha = 1, 0 \neq T$ be compact and $|c| = 1, |\varphi(c)| = 1$ for some c. Define $f_n(z) = \frac{z^n}{n(n-1)}$. Then

$$||f_n|| = ||f_n||_{\mathbb{D}} + ||f'_n||_{\mathbb{D}} + p_1(f_n) + p_1(f'_n)$$

$$\leq \frac{1}{n(n-1)} + \frac{2}{n-1} + 1.$$

Therefore, $\{f_n\}$ is a bounded sequence in $Lip^1(\mathbb{D})=Lip^1(\mathbb{D},1)$. By the compactness of T, there exists a subsequence $\{f_{n_k}\}$ such that $Tf_{n_k} = f_{n_k} \circ \varphi$ is convergent in $Lip^1(\mathbb{D})$. Since $f_{n_k} \to 0$ uniformly on $\overline{\mathbb{D}}$, $f_{n_k} \circ \varphi \to 0$ in $Lip^1(\mathbb{D})$. Thus

$$p_1((f_{n_k} \circ \varphi)') = \sup_{\substack{z, w \in \overline{\mathbb{D}} \\ z \neq w}} \frac{|\varphi^{n_k - 1}(z)\varphi'(z) - \varphi^{n_k - 1}(w)\varphi'(w)|}{(n_k - 1)|z - w|}$$
$$= \frac{1}{n_k - 1} \sup_{\substack{z, w \in \overline{\mathbb{D}} \\ z \neq w}} |\frac{\varphi^{n_k - 1}(z) - \varphi^{n_k - 1}(w)}{z - w}\varphi'(z)$$
$$+ \frac{\varphi'(z) - \varphi'(w)}{z - w}\varphi^{n_k - 1}(w)| \to 0 \quad \text{as} \quad k \to \infty$$

Considering

$$\frac{1}{n_k - 1} \sup_{\substack{z, w \in \overline{\mathbb{D}} \\ z \neq w}} \left| \frac{\varphi'(z) - \varphi'(w)}{z - w} \varphi^{n_k - 1}(w) \right| \le \frac{1}{n_k - 1} p_1(\varphi') \to 0$$

as $k \to \infty$,

we have

$$\frac{1}{n_k - 1} \sup_{\substack{z, w \in \overline{\mathbb{D}} \\ z \neq w}} \left| \frac{\varphi^{n_k - 1}(z) - \varphi^{n_k - 1}(w)}{z - w} \varphi'(z) \right| \to 0 \quad \text{as} \quad k \to \infty.$$

In particular,

$$\frac{1}{n_k - 1} \sup_{\substack{z \in \overline{\mathbb{D}} \\ z \neq c}} \left| \frac{\varphi^{n_k - 1}(z) - \varphi^{n_k - 1}(c)}{z - c} \varphi'(z) \right| \to 0 \quad \text{as} \quad k \to \infty.$$

Behrouzi and Mahyar

and hence

$$\frac{1}{n_k - 1} \sup_{\substack{z \in \mathbb{D} \\ z \neq c}} \left| \frac{\varphi^{n_k - 1}(z) - \varphi^{n_k - 1}(c)}{z - c} \varphi'(z) \right| < \epsilon$$

for arbitrary $\epsilon > 0$ and some n_k . Then

$$\frac{1}{n_k - 1} \lim_{\substack{z \to c \\ z \in \mathbb{D}}} \left| \frac{\varphi^{n_k - 1}(z) - \varphi^{n_k - 1}(c)}{z - c} \varphi'(z) \right| \le \epsilon,$$

so $|\varphi'(c)|^2 = |(\varphi'(c))^2 \varphi^{n_k - 2}(c)| \le \epsilon$, for any $\epsilon > 0$. Hence $\varphi'(c) = 0$. On the other hand, $g = \frac{\varphi}{\varphi(c)} \in Lip^1(\mathbb{D})$, has continuous complex

On the other hand, $g = \frac{\varphi}{\varphi(c)} \in Lip^1(\mathbb{D})$, has continuous complex derivative on $\overline{\mathbb{D}}$, and $g(c) = 1 = ||g||_{\mathbb{D}}$. Then by Lemma 4.2, the function g is constant on $\overline{\mathbb{D}}$, so φ must be constant. \Box

Remark 4.4. Using a similar method, one can conclude Theorem 4.3 for $Lip^n(\mathbb{D}, \alpha)$ when $n \ge 1, 0 < \alpha \le 1$.

References

- F. Behrouzi, Homomorphisms of certain Banach function algebras, Proc. Indian Acad. Sci. (Math Sci) 112 (2002), 331-336.
- [2] C. Caratheodory, Theory of Functions of a Complex Variable, Vol. II, Chelsea, New york, 1960.
- [3] T. G. Honary and H. Mahyar, Approximation in Lipschitz algebras of infinitely differentiable functions, Bull. Korean Math. Soc. 36 (1999), 629-636.
- [4] K. Jarosz, Lip_{Hol}(X, α), Proc. Amer. Math. Soc. **125** (1997), 3129-3130.
- [5] H. Kamowitz, Compact operators of the form $uC\varphi$, Pacific J. Math. 80 (1979), 205-211.
- [6] H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, *Studia Math.* 96, 3(1990), 255-261.

10

H. Mahyar

Faculty of Mathematical Sciences and Computer Engineering Teacher Training University Tehran 15618, Iran e-mail:mahyar@saba.tmu.ac.ir

F. Behrouzi

Faculty of Mathematical Sciences and Computer Engineering Teacher Training University Tehran 15618, Iran e-mail:behrouzif@yahoo.com