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DISTINGUISHING NUMBER AND DISTINGUISHING INDEX

OF NATURAL AND FRACTIONAL POWERS OF GRAPHS

S. ALIKHANI∗ AND S. SOLTANI

(Communicated by Hossein Hajiabolhassan)

Abstract. The distinguishing number (resp. index) D(G) (D′(G)) of a

graph G is the least integer d such that G has an vertex labeling (resp.
edge labeling) with d labels that is preserved only by a trivial automor-

phism. For any n ∈ N, the n-subdivision of G is a simple graph G
1
n

which is constructed by replacing each edge of G with a path of length
n. The mth power of G, is a graph with same set of vertices of G and

an edge between two vertices if and only if there is a path of length at
most m between them in G. The fractional power of G, is the mth power

of the n-subdivision of G, i.e., (G
1
n )m or n-subdivision of m-th power of

G, i.e., (Gm)
1
n . In this paper we study the distinguishing number and

the distinguishing index of the natural and the fractional powers of G.
We show that the natural powers more than one of a graph are distin-
guished by at most three edge labels. We also show that for a connected
graph G of order n ⩾ 3 with maximum degree ∆(G), and for k ⩾ 2,

D(G
1
k ) ⩽ ⌈ k

√
∆(G)⌉. Finally we prove that for m ⩾ 2, the fractional

power of G, i.e., (G
1
k )m and (Gm)

1
k are distinguished by at most three

edge labels.
Keywords: Distinguishing index, distinguishing number, fractional
power.
MSC(2010): Primary: 05C15; Secondary: 05E18.

1. Introduction

Let G = (V,E) be a simple finite graph with n vertices. We use the standard
graph notation ([8]). An automorphism of G is a permutation σ on the vertex
set of G with the property that, for any vertices u and v, uσ ∼ vσ if and only if
u ∼ v (note that vσ denotes the image of the vertex v under the permutation
σ). The set of all automorphisms of G, with the operation of composition
of permutations, is a permutation group on V and is denoted by Aut(G).
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A labeling of G, ϕ : V → {1, 2, . . . , r}, is r-distinguishing, if no non-trivial
automorphism of G preserves all of the vertex labels. In other words, ϕ is r-
distinguishing if for every non-trivial σ ∈ Aut(G), there exists an x in V such
that ϕ(x) ̸= ϕ(xσ). The distinguishing number of a graph G has been defined
by Albertson and Collins [2] and is the minimum number r such that G has
a labeling that is r-distinguishing. Similar to this definition, Kalinowski and
Piĺsniak [13] have defined the distinguishing index D′(G) of G which is the least
integer d such that G has an edge colouring with d colours that is preserved
only by a trivial automorphism. The introduction of these two parameters was
a great success; by now more than one hundred papers were written motivated
by these two papers! (See, for example [3, 15, 10]).

If x and y are two vertices of G, then the distance d(x, y) between x and y, is
defined as the length of a minimum path connecting x and y. The eccentricity
of a vertex x is ecc(x) = max{d(x, u) : u ∈ V (G)} and the radius r and the
diameter d of G are defined as the minimum and the maximum eccentricity
among vertices of G, respectively. A vertex u of G is called the central vertex if
ecc(u) = r. The set of all central vertices of G is denoted by Z(G) and is called
the center of G. For k ∈ N, the k-power of G, denoted by Gk, is defined on the
vertex set V (G) by adding edges joining any two distinct vertices x and y with
distance at most k [1, 16]. In other words, E(Gk) = {xy : 1 ⩽ dG(x, y) ⩽ k}.
Also the k-subdivision of G, denoted by G

1
k , is constructed by replacing each

edge vivj of G with a path of length k, say Pvivj . These k-paths are called

superedges, any new vertex is an internal vertex, and is denoted by w
{vi,vj}
l if it

belongs to the superedge Pvivj , i < j with distance l from the vertex vi, where

l ∈ {1, 2, . . . , k − 1}. Note that for k = 1, we have G1/1 = G1 = G, and if the

graph G has v vertices and e edges, then the graph G
1
k has v+(k−1)e vertices

and ke edges. The fractional power of G, denoted by G
m
n is mth power of the

n-subdivision of G or n-subdivision of m-th power of G ([11]). Note that the

graphs (G
1
n )m and (Gm)

1
n are different graphs. The fractional power of a graph

has been introduced by Iradmusa in [11]. He has investigated the chromatic
number and the clique number of the fractional power of graphs. Also, he has
studied the domination number and the independent domination number of the
fractional powers of graphs ([12]). In the study of the distinguishing number
and the distinguishing index of graphs, this may raise the question: What
happens to the distinguishing number and the distinguishing index, when we
consider the natural power and the fractional power of a graph?

In this paper, we answer to this question. As usual, we denote the complete
graph, the path and the cycle of order n by Kn, Pn and Cn, respectively. Also
K1,n is the star graph with n+ 1 vertices.

In the next section, we state some results on the distinguishing number and
the distinguishing index of the natural powers of a graph. We show that the
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natural powers more than one of a graph distinguished by three edge labels. In
Sections 3 and 4, we study the distinguishing number and the distinguishing
index of the fractional powers of graphs, respectively.

2. The distinguishing number and the distinguishing index of the
natural powers of a graph

In this section, we consider the natural powers of a graph and study their
distinguishing number and distinguishing index. We begin with the following
lemma which follows from the definition of the power of a graph.

Lemma 2.1. Let G be a connected graph of order n and diameter d.

(i) For every natural number t ⩾ d, Gt = Kn.
(ii) ([9, Theorem 1]) Let k = mn, where m and n are positive integers. Then

Gk = (Gm)n.
(iii) [4, Lemma 2.1]) Let u and v be two vertices of a graph G. Then dGk(u, v) =

⌈dG(u,v)
k ⌉.

Proposition 2.2. If G is a connected graph, then for k ⩾ 2, Aut(G), is a
subgroup of Aut(Gk).

Proof. Since Aut(G) is a group, it is suffices to show that Aut(G) ⊆ Aut(Gk).
Let f be an automorphism of G. It is clear that vi and vj are adjacent in Gk

if and only if dG(vi, vj) ⩽ k and this is true if and only if dG(f(vi), f(vj)) ⩽ k
and so f(vi) and f(vj) are adjacent in Gk. So f ∈ Aut(Gk), and we have the
result. □

Now we state a simple and useful proposition.

Proposition 2.3 ([5]). If G1 and G2 are two graphs with the same vertex set,
and Aut(G1) is a subgroup of Aut(G2), then D(G1) ⩽ D(G2).

By Propositions 2.2 and 2.3 we have the following results which are com-
parison between the distinguishing number of a graph and the distinguishing
number of its natural powers:

Corollary 2.4. For a connected graph G and every k ⩾ 2, D(G) ⩽ D(Gk).

Theorem 2.5. Let G be a connected graph of order n with diameter d and
radius r. If Z(G) = {x1, . . . , xt}, t ⩾ 1, is the center of G, then for 0 ⩽ i ⩽ d−r
we have

D(Gr+i) ⩾
∣∣{x ∈ V (G)| 0 ⩽ dG(xj , x) ⩽ i for some j = 1, . . . , t}

∣∣.
Proof. We first prove the case i = 0. If i = 0, then we have{

x ∈ V (G)| dG(xj , x) = 0 for some j = 1, . . . , t
}
= {x1, . . . , xt}.

By the definition of a central vertex and a power graph, the vertices x1, . . . , xt

are the vertices of Gr such that degGrxj = n−1, where 1 ⩽ j ⩽ t. So the maps
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that fix noncentral vertices and act on central vertices as an permutation of St,
are automorphisms of Gr, because they preserve the adjacency relation in Gr.
So we need at least t labels, to have a vertex distinguishing labeling that is not
preserved by the mentioned automorphisms. Therefore D(Gr) ⩾ t.

The proof for i > 0 is similar. Indeed, the elements of the set {x ∈ V (G)| 0 ⩽
dG(xj , x) ⩽ i for some j = 1, . . . , t} are the vertices of V (G) such that their
degree is n− 1 in Gr+i. □

A graph G is Hamiltonian connected, if and only if every two distinct vertices
of G are joined by a Hamiltonian path in G (see [6, 17]). The following theorem
implies that the cube of every connected graph is Hamiltonian connected (see
also [7]).

Theorem 2.6 ([19]). If G is a connected finite graph, then G3 is Hamiltonian
connected.

We recall that a traceable graph is a graph that possesses a Hamiltonian
path.

Theorem 2.7 ([18]). If G is a traceable graph of order n ⩾ 7, then D′(G) ⩽ 2.

The assumption n ⩾ 7 is substantial in this theorem, because for example
D′(K3,3) = 3. The following corollary shows that the natural powers more
than two of a graph of order at least seven can be distinguished by two edge
labels.

Corollary 2.8. If G is a connected finite graph of order n ⩾ 7, then for any
i ⩾ 3, D′(Gi) ⩽ 2.

Proof. It can follows from Theorem 2.6 that Gi, i ⩾ 3, is Hamiltonian con-
nected, and so it is a traceable graph. Since the order of graph is n ⩾ 7, so by
Theorem 2.7 we have D′(Gi) ⩽ 2. □

Remark 2.9. If G is a connected finite graph of order 1 ⩽ n ⩽ 5 which is not a
path graph, then d ≤ 3. So for i ⩾ 3 we have D′(Gi) = D′(Kn) = 3. For n = 6,
by considering all graphs of order n = 6, observe that the diameter of G is less
than or equal to three except eight cases (see Figure 1). For these eight graphs,
the diameter of G is 4 (G is not a path graph), and so D′(Gi) = D′(K6) = 2
for i ⩾ 4. It can be easily computed that D′(G3) ⩽ 3 for these eight graphs.
Also it can be shown that D′(P 3

n) ⩽ 3, for all 1 ⩽ n ⩽ 6.

To see what happens for the distinguishing index of G2, we prove the fol-
lowing theorem.

Theorem 2.10. If G is a connected graph, then D′(G2) ⩽ 3.

Proof. We present an edge distinguishing labeling of G2 with three labels in
the following steps:
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Figure 1. The graphs of order n = 6 and diameter d = 4.

Step 1) The induced graph of G2 with the vertices of NG[x], i.e., G
2[NG[x]],

is a complete graph of order degGx+ 1. Hence we can label all its edges with
three labels 0, 1, and 2 distinguishingly and we do not use label 0 any more.
So with respect to the edge labeling of G2[NG[x]], we can conclude that if f is
an automorphism of G2 preserving the distinguishing edge labeling of G2, then
the restriction of f to NG[x] is the identity.

Step 2) If NG[NG[x]] ⊆ NG[x], then we labeled all edges of G2. Otherwise,
let v ∈ NG[x] such that NG[v] ⊈ NG[x]. So the induced subgraph G2[NG[v]]
is a complete graph of order degGv + 1. Since the vertex v of G is fixed under
each automorphism of G2 preserving the labeling, so we can label the remaining
edges of G2[NG[v]] which did not label in the Step 1, with two labels 1 and 2
such that for any two different vertices a and b of complete graph G2[NG[v]],
except the vertex v, there exists a label, say 1, such that the number of label
1 used for the labeling of incident edges to a and b is different, and hence
G2[NG[v]] has a distinguishing labeling.

Step 3) If there exists element ofNG[x], say v, such thatNG[v] ⊈ NG[x], then
we do the same work as Step 2 for v. So the induced subgraph G2[NG[v]] (for
every v ∈ NG[x] withNG[v] ⊈ NG[x]), and hence the elements ofNG[NG[x]] are
fixed under each nontrivial automorphism of G2 preserving the distinguishing
edge labeling of G2, by Steps 1 and 2.

Step 4) If NG[NG[NG[x]]] ⊆ NG[NG[x]], then we labeled all edges of G2.
Otherwise, we repeat the same method in Steps 2 and 3 for the vertices of
NG[NG[x]], say y, such that NG[y] ⊈ NG[NG[x]]. Similarly the elements of
NG[NG[NG[x]]] are fixed under each nontrivial automorphism of G2 preserving
the distinguishing edge labeling of G2.

After finite steps we get NG[. . . [NG[x]] . . .]︸ ︷︷ ︸
l−times

⊆ NG[. . . [NG[x]] . . .]︸ ︷︷ ︸
(l−1)−times

, where l ⩾ 2

is an integer number. In this case we labeled all edges of G2. We checked that
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the elements of NG[. . . [NG[x]] . . .]︸ ︷︷ ︸
(i)−times

are fixed under each nontrivial automor-

phism of G2 preserving the distinguishing edge labeling of G2 in the prior steps
for 1 ⩽ i ⩽ l − 1. Thus the identity is the only automorphism preserving the
labeling. Since we used three labels, so D′(G2) ⩽ 3. □

Now, we are ready to state the following result which obtain from Corollary
2.8, Remark 2.9 and Theorem 2.10. This result implies that all natural powers
greater than or equal two of a graph G are distinguished by three edge labels.

Corollary 2.11. If G is a connected finite graph, then D′(Gm) ⩽ 3 for m ⩾ 2.

It seems that D′(G2) ⩽ 2 for all connected graphs with diameter d > 2.
For instance, by Theorem 2.7 we have D′(Ck

n) = 2 where n ⩾ 7 and k ⩾ 2.
However, until now all attempts to show this result failed, and it remains as
open problem. We close this section with the following conjecture:

Conjecture 2.12. If G is a connected graph with diameter d > 2, then D′(G2) ⩽
2.

3. Distinguishing number of the fractional power of graphs

In this section, we study the distinguishing number of the fractional powers

of graphs. It can easily be verified that for n ⩾ 2 and k ⩾ 2, D(P
1
k
n ) = 2. Also

for n ⩾ 3 and k ⩾ 2,D(C
1
k
n ) = 2. We can show by Theorem 3.5 thatD(K

1
2
n ) = 2

for n ⩾ 3 and easily show that D(K
1
k
n ) = 2 for n ⩾ 3 and k ⩾ 2. We state and

prove the following lemma to obtain more results on the distinguishing number
of the fractional power of graphs.

Lemma 3.1. Let G be a connected graph of order n ⩾ 3 which is not a cycle.
If f ∈ Aut(G

1
k ), then the restriction of f to the set of vertices of G is V (G),

i.e., f |V (G) ∈ Aut(G).

Proof. Let {v1, . . . , vn} be the vertex set of G. By contradiction, suppose that

there exists t ∈ {1, . . . , k − 1} such that w
{vi,vj}
t is an internal vertex of G

1
k

such that f(w
{vi,vj}
t ) = vs. Since deg

G
1
k
(w

{vi,vj}
t ) = 2, so deg(vs) = 2 (note

that degG(vi) = deg
G

1
k
(vi) for all i ∈ {1 . . . , n}). Let vs1 be the adjacent vertex

to vs in G and w
{vs,vs1}
1 be the adjacent vertex to vs in G

1
k . Without loss of

generality, we can assume that

f(w
{vi,vj}
t−1 ) = w

{vs,vs1}
1 , f(w

{vi,vj}
t−2 ) = w

{vs,vs1}
2 , . . . ,f(w

{vi,vj}
1 ) = w

{vs,vs1}
t−1 ,

f(vi) = w
{vs,vs1}
t .

Therefore degG(vi) = 2. Continuing this process, we see that any vertex of
G has degree two, and so G is a cycle, which is a contradiction. □
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Observation 3.2. Let G be a connected graph of order n ⩾ 3 which is not a
cycle. Let i < j and vi and vj be two adjacent vertices of G. Suppose that f

is an automorphism of G
1
k such that f(vi) = vi′ and f(vj) = vj′ . We have two

following cases:

(i) If i′ < j′, then f(w
{vi,vj}
t ) = w

{vi′ ,vj′}
t , where 1 ⩽ t ⩽ k − 1.

(ii) If i′ > j′, then f(w
{vi,vj}
t ) = w

{vj′ ,vi′}
k−t , where 1 ⩽ t ⩽ k − 1.

Corollary 3.3. Let G be a connected graph of order n ⩾ 3 which is not a
cycle. Then for every natural number k,

(i) |Aut(G
1
k )| = |Aut(G)|.

(ii) D(G
1
k ) ⩽ D(G).

Proof. (i) It follows from Observation 3.2.
(ii) By Observation 3.2, if we label the vertices of the graph G with D(G)

labels in a distinguishing way and assign the internal vertices the label 1, then
we have a distinguishing labeling. Therefore D(G

1
k ) ⩽ D(G). □

Here we state the following definition:

Definition 3.4 ([14]). The total distinguishing number D′′(G) of a graph G
is the least number d such that G has a total colouring with d colours that is
preserved only by the identity automorphism of G.

Theorem 3.5. If G is a connected graph of order n ⩾ 3, then for every natural
number k, D(G

1
2k ) = D′′(G

1
k ).

Proof. Note that G
1
2k is constructed by replacing each edge vivj of G

1
k with a

path of length 2, say Pvivj . If we consider the label of the edges in total labeling

of G
1
k as the label of internal vertices of G

1
2k , then the result follows. □

Now we want to obtain a better upper bound for D(G
1
k ). For this purpose,

let SG
k (x), k ⩾ 0 denote a sphere of radius k with a center x, i.e., the set of all

vertices of G at distance k from x. We know that every finite tree T has either
a central vertex or a central edge which is fixed by every automorphism of T .
The following theorem gives an upper bound for the distinguishing number of
T

1
k .

Theorem 3.6. If T is a tree of order n ⩾ 3 with maximum degree ∆(T ), then

D(T
1
k ) ⩽ ⌈ k

√
∆(T )⌉.

Proof. The basic idea of proof follows directly from the proof of [14, Theorem
2.1]. If T has a central vertex v0, then the label of v0 can be arbitrary. Having

⌈ k
√
∆(T )⌉ labels, we have at least ∆(T ) different k-arys (c1, . . . , ck) of labels,

as the colouring need not be proper. Every k − 1 added vertices on the edge
incident to v0, in T , and its end vertex of this edge in T , obtain a distinct k-

ary of labels (c1, . . . , ck) in the
∪k

i=1 S
T

1
k

i (v0). Hence, all vertices of distance at
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most k to v0 are fixed by every automorphism of T
1
k preserving this colouring.

Next, we label the internal vertices on the edges going to subsequent spheres of

T by k-arys of labels in the same way as for the
∪k

i=1 S
T

1
k

i (v0). By induction

on the distance from v0, all vertices of T
1
k are fixed.

Suppose that T has a central edge e0. Let T1 and T2 be subtrees obtained
by deleting the edge e0. If we put distinct labels on the end vertices of e0, and
assign arbitrary label to the internal vertices on e0 in T

1
k , then these verices

are fixed by every automorphism. Next, for i = 1, 2, we label the tree Ti using
the same method as in the previous case. □

To see that the bound in Theorem 3.6 is sharp, we show the following theo-
rem:

Theorem 3.7. For m ⩾ 3 and k ⩾ 2, D(K
1
k
1,m) = ⌈ k

√
m⌉.

Proof. Denote the vertex of degree m of K1,m by v0 and the remaining vertices
by v1, . . . , vm. Since v0 is the only vertex of degree m, so the label of v0 can
be arbitrary. In an r-distinguishing labeling, each of the k-ary consisting of a
k − 1 internal vertices on the edge v0vi and the vertex vi, (1 ⩽ i ⩽ m) must
have a different k-ary of labels. There are rk possible k-ary of labels using r

colors, hence D(K
1
k
1,m) = min{r : rk ⩾ m} = ⌈ k

√
m⌉. □

Theorem 3.8. If G is a connected graph of order n ⩾ 3 with maximum degree
∆, then for any k ⩾ 2, D(G

1
k ) ⩽ ⌈ k

√
∆(G)⌉.

Proof. The basic idea of proof follows directly from the proof of [14, Theorem
2.2]. Clearly, ∆ ⩾ 2 and we have at least two labels. If G is a tree, then the re-
sult is true by Theorem 3.6. Suppose that G contains a cycle. If G is just a cycle
or a complete graph, then the claim follows from the information presented in
the first of this section. Otherwise, we can always choose a vertex v0 lying on a
cycle such that the sphere SG

2 (v0) is nonempty. We label v0 with the label 2 and
consider a BFS tree T of G rooted at v0. We first label the vertices of the tree

T
1
k . For a given vertex v ofG, letM(v) = {(w{v,u}

1 , . . . , w
{v,u}
k−1 , u) : vu ∈ E(G)}

(note that the vertices w
{v,u}
1 , . . . , w

{v,u}
k−1 are internal vertices on Pvu). Let

SG
1 (v0) = {v1, . . . , vp}. Without loss of generality, we can assume that v1 has

a neighbour in SG
2 (v0). We label both k-ary (w

{v0,v1}
1 , . . . , w

{v0,v1}
k−1 , v1) and

(w
{v0,v2}
1 , . . . , w

{v0,v2}
k−1 , v2) with a k-ary (1, . . . , 1). Then we label each k-ary of

M(v0) \ {(w{v0,v1}
1 , . . . , w

{v0,v1}
k−1 , v1), (w

{v0,v2}
1 , . . . , w

{v0,v2}
k−1 , v2)} with a distinct

k-ary of labels different from (1, . . . , 1). Thus (1, . . . , 1) appears twice as a k-

ary of labels in M(v0). We will then label the vertices of graph G
1
k in such a

way that v0 will be the only vertex of G
1
k labeled with the label 2 such that

k-ary (1, . . . , 1) appears twice in the M(v0). Hence v0 will be fixed by every

automorphism of G
1
k preserving the labeling. Therefore, all vertices in SG

1 (v0)
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and all internal vertices on Pv0v1 , . . . , Pv0vp will be also fixed, except, possi-

bly (w
{v0,v1}
1 , . . . , w

{v0,v1}
k−1 , v1) and (w

{v0,v2}
1 , . . . , w

{v0,v2}
k−1 , v2). To distinguish

them, we label the sets {(w{v1,u}
1 , . . . , w

{v1,u}
k−1 , u) ∈ M(v1) : u ∈ SG

2 (v0)} and

{(w{v2,u}
1 , . . . , w

{v2,u}
k−1 , u) ∈ M(v2) : v2u ∈ E(T ), u ∈ SG

2 (v0)} with two dis-
tinct sets of k-ary of labels (this is possible, because each of these sets contains
at most ∆ − 1 elements, and we have ∆ distinct k-ary of labels). Therefore
every internal vertex on the superedges Pv0v1 , . . . , Pv0vp and Pv1u, Pv2u where

u ∈ SG
2 (v0) will be fixed by every automorphism preserving our labeling. For

i = 3, . . . , p, we then label all elements of {(w{vi,u}
1 , . . . , w

{vi,u}
k−1 , u) : viu ∈

E(T ), u ∈ SG
2 (v0)} with distinct k-ary of labels different from the (1, . . . , 1).

Thus all other vertices in SG
2 (v0) and all internal vertices on Pv0v1 , . . . , Pv0vp

and Pv1u, . . . , Pvpu where u ∈ SG
2 (v0) \ SG

1 (v0) will be also fixed.
Then we proceed recursively with respect to the radius r of subsequent

sphere SG
r (v0) according to the ordering of the tree T . Suppose all vertices

of SG
i (v0) = {u1, . . . , uli}, i = 0, 1, . . . , r and all internal vertices on Pvavb ,

where va,∈ SG
i−1(v0) \ SG

i−2(v0) and vb ∈ SG
i (v0) \ SG

i−1(v0), are fixed by every
automorphism preserving labels. For each subsequent vertex uj , j = 1, . . . , lr

we label every k-ary (w
{uj ,u}
1 , . . . , w

{uj ,u}
k−1 , u) where u is a descendent of uj in

T , with a distinct k-ary of labels except for (1, . . . , 1). This is possible, because
the number of k-ary to be labeled is not greater than the number of admissible
k-ary of labels. Thus all neighbours of uj in SG

r+1(v0) and all internal vertices
on the superedges Puju, where u is a descendent of uj in T , will be also fixed.

Finally, we label all remaining vertices in V (G
1
k ) \ V (T

1
k ) with the label 2.

It is easy to see that if v is a vertex labeled with the label 2 such that the k-ary
(1, . . . , 1) appears twice in M(v), then v = v0. Hence all vertices of G

1
k are

fixed by any automorphism of G
1
k preserving this labeling. □

4. Distinguishing index of the fractional powers of graphs

In this section, we study the distinguishing index of the fractional powers of

graphs. It can be easily verified that for n ⩾ 2 and k ⩾ 2, D′(P
1
k
n ) = 2 and for

n ⩾ 3 and k ⩾ 2, D′(C
1
k
n ) = 2. We begin with the following theorem.

Theorem 4.1. Let G be a connected graph of order n ⩾ 3 such that it is not

a cycle. For any k ⩾ 2, D(G
1

k+1 ) ⩽ D′(G
1
k ).

Proof. We define a distinguishing vertex labeling for G
1

k+1 with D′(G
1
k ) labels.

Suppose that Pvivj is a superedge that has been replaced with the edge vivj

in the structure of G
1
k . If we assign the label of edges Pvivj in G

1
k to the

internal vertices of the superedge that has been replaced with the edge vivj in

construction of G
1

k+1 , and assign the remaining vertices the label 1, then by
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Observation 3.2 we can conclude that the labeling is distinguishing. Since we
used D′(G

1
k ) labels, the result follows. □

Theorem 4.2. Let G be a connected graph of order n ⩾ 3 such that it is not

a cycle. Then D′(G
1
2 ) ⩽ ⌈

1 +
√
1 + 8D′(G)

2
⌉.

Proof. Using the label of edges, we partition the edge set of G, to D′(G) classes,
each class contains the edges with the same labels. Suppose that the elements

of [i]-th class are ei1, . . . , eisi , where 1 ⩽ i ⩽ D′(G) and
∑D′(G)

i=1 si = |E(G)|.
We know that each edge of G is replaced with a path of length 2 in G

1
2 . Let the

edge eij in G be replaced with two edges e1ij and e2ij in G
1
2 . For 1 ⩽ i ⩽ D′(G),

we assign the distinct pairs (ci1, ci2) of labels to all new edges e1ij and e2ij , where
1 ⩽ j ⩽ si such that

(i) ci1 ̸= ci2 for 1 ⩽ i ⩽ D′(G),
(ii) {ci1, ci2} ≠ {ci′1, ci′2} for 1 ⩽ i, i′ ⩽ D′(G) and i ̸= i′.

By Observation 3.2, this labeling is distinguishing. Since there exist
∑r

i=2(i−
1) possible ordered pairs of such labels using r labels, hence D′(G

1
2 ) ⩽ min{r :∑r

i=2(i− 1) ⩾ D′(G)}. By an easy computation, we see that

min{s :
r∑

i=2

(i− 1) ⩾ D′(G)} = ⌈
1 +

√
1 + 8D′(G)

2
⌉.

Therefore we have the result. □

Let k ⩾ 2 and (c1, . . . , ck) be an k-ary of labels such that it is not symmetric,
i.e., there exists i, 1 ⩽ i ⩽ k such that ci ̸= ck−i. It can be computed that there
are rk − r⌈k/2⌉ of these kind of k-ary’s using r labels. Let d′k be the minimum
number of labels that have been used in the construction of D′(G) numbers of
such k-ary. In fact, d′k = min{r : rk − r⌈k/2⌉ ⩾ D′(G)}. Here we state and
prove the following theorem.

Theorem 4.3. Let G be a connected graph of order n ⩾ 3 such that it is not
a cycle. Then D′(G

1
k ) ⩽ d′k for k ⩾ 2.

Proof. Using the label of edges, we partition the edge set of G to D′(G) classes,
each class contains the edges with the same labels. Suppose that the elements

of [i]-th class are ei1, . . . , eisi , where 1 ⩽ i ⩽ D′(G) and
∑D′(G)

i=1 si = |E(G)|.
We know that each edge of G is replaced with a path of length k in G

1
k . Let the

edge eij in G be replaced with the edges e1ij , . . . , e
k
ij in G

1
k . For 1 ⩽ i ⩽ D′(G),

we assign the asymmetric distinct k-ary (ci1, . . . , cik) of labels to all new edges
e1ij , . . . , e

k
ij , where 1 ⩽ j ⩽ si. By Observation 3.2 this labeling is distinguishing.

Since the number of labels that have been used, is d′k, so we have the result. □
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By Theorems 3.8, 4.1 and 4.3, we have two upper bounds for D(G
1
k ), that

are d′k−1 and ⌈ k
√
∆(G)⌉, and hence D(G

1
k ) ⩽ min{d′k−1, ⌈ k

√
∆(G)⌉}.

Now by Corollary 2.11 and Theorem 4.3 we have the following result.

Corollary 4.4. If G is a connected finite graph of order n ⩾ 3, then D′(G
m
k ) ⩽

3 for m ⩾ 2 and k ⩾ 2.

Proof. We know that G
m
k means (G

1
k )m or (Gm)

1
k . In the case (G

1
k )m the

result follows directly from Corollary 2.11. For the case (Gm)
1
k , if Gm is a

cycle, then (Gm)
1
k is a cycle and so D′(G

m
k ) ⩽ 3. If Gm is not a cycle, then

we have D′((Gm)
1
k ) ⩽ d′k by Theorem 4.3 and d′k is the minimum number of

labels that have been used in construction of D′(Gm) numbers of asymmetric

k-ary. Since D′(Gm) ⩽ 3, so d′k ⩽ 3 and therefore D′((Gm)
1
k ) ⩽ 3. □

The following result follows easily from Corollaries 2.4 and 3.3.

Corollary 4.5. If G is a connected finite graph of order n ⩾ 3, then for m ⩾ 1
and k ⩾ 1 we have

(i) D(G
1
k ) ⩽ D((G1/k)m).

(ii) D((Gm)
1
k ) ⩽ D(Gm).
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Graphs, CRC Press, Boca Raton, 2011.
[9] A.M. Hobbs, Some hamiltonian results in powers of graphs, J. Res. Nat. Bur. Standards

Sect. B 77 (1973) 1–10.
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