Special Issue of the

Bulletin of the

Iranian Mathematical Society

in Honor of Professor Freydoon Shahidi's 70th birthday

Vol. 43 (2017), No. 4, pp. 3-16

Title:

Filtrations of smooth principal series and Iwasawa modules
Author(s):

W. Alsibiani and D. Ban

Published by the Iranian Mathematical Society

FILTRATIONS OF SMOOTH PRINCIPAL SERIES AND IWASAWA MODULES

W. ALSIBIANI AND D. BAN*
Dedicated to Prof. Freydoon Shahidi on the occasion of his 70th birthday

Abstract

Let G be a reductive p-adic group. We consider the general question of whether the reducibility of an induced representation can be detected in a "co-rank one" situation. For smooth complex representations induced from supercuspidal representations, we show that a sufficient condition is the existence of a subquotient that does not appear as a subrepresentation. An important example is the Langlands' quotient. In addition, we study the same general question for continuous principal series on p-adic Banach spaces. Although we do not give an answer in this case, we describe a related filtration on the corresponding Iwasawa modules. Keywords: Parabolically induced representations, Iwasawa modules, padic groups. MSC(2010): Primary: 22E50; Secondary: 20G05.

1. Introduction

In this paper, we study two types of principal series representations of a p adic group G : smooth principal series on complex vector spaces and continuous principal series on p-adic Banach spaces. Although the properties of continuous and smooth principal series are fundamentally different, we are able to treat both types of principal series in a uniform manner, using a filtration of the group G.

Our main motivation is the understanding of continuous principal series, which are important in the p-adic Langlands program [3, 7]. Smooth principal series are well-understood. Still, we obtain a new result about reducibility; namely, we show how the question of reducibility can be reduced to determining rank one reducibility (Theorem 3.4). Furthermore, we extend this result to

[^0]a more general case of representations induced from supercuspidal representations (Theorem 4.1).

In Section 2, we study the filtration of G coming from the partial order on the Weyl group. We apply this to the smooth principal series representations in Section 3. In Section 4, we study representations induced from supercuspidals and prove a criterion for reducibility (Theorem 4.1). Our approach to continuous principal series is based on the duality theory developed by Schneider and Teitelbaum in [16], which relates Banach space representations to Iwasawa modules. In Section 5, we prove a technical lemma on Iwasawa algebras. Section 6 is a brief review of the duality of [16] applied to continuous principal series. In Section 7, we describe filtrations of Iwasawa modules. We expect that these filtrations could be used in determining the reducibility of principal series. A conjecture about this difficult problem was formulated by Schneider in [14].

2. Partial orders on W and $\left[W / W_{\Omega}\right]$

Let F be a nonarchimedean local field and G the group of F-rational points of a connected reductive group defined over F. Fix a maximal split torus T in G and a minimal parabolic subgroup P containing T. Let Δ be the corresponding set of simple roots. For $\Omega \subseteq \Delta$, we denote by $P_{\Omega}=M_{\Omega} U_{\Omega}$ the standard parabolic subgroup corresponding to Ω. The minimal parabolic corresponds to $\emptyset \subseteq \Delta, P=P_{\emptyset}$.

Let W be the Weyl group of G. For $w \in W$, let $C(w)$ denote the double coset $P w P$. The closure of $C(w)$ with respect to the locally compact topology is equal to its relative closure in the Zarisky topology ([5, Proposition 21.27]) and is described as follows.

Theorem 2.1 ([5, Theorem 21.26]). Let $w \in W$ and $w=s_{1} \cdots s_{n}$ be a reduced decomposition of w. Then the set

$$
A_{w}=\left\{s_{i_{1}} \cdots s_{i_{m}} \mid m \in \mathbb{N}, 1 \leq i_{1}<\cdots<i_{m} \leq n\right\}
$$

depends only on w, not on the reduced decomposition, and we have

$$
\overline{C(w)}=\bigcup_{v \in A_{w}} C(v)
$$

We mention here that if $x \in A_{w}$, then the decomposition $x=s_{i_{1}} \cdots s_{i_{m}}$ from the previous theorem is not necessarily a reduced decomposition. However, we can reduce it further to obtain a reduced decomposition of x.

Let $\Omega \subseteq \Delta$ and $\left[W / W_{\Omega}\right]=\{w \in W \mid w \Omega>0\}$. Then G has the disjoint union decomposition $G=\bigcup_{w \in\left[W / W_{\Omega}\right]} P w P_{\Omega}$. Define a partial order on $\left[W / W_{\Omega}\right]$ as follows: $x \leq_{\Omega} y$ if $P x P_{\Omega}$ is contained in the closure of $P y P_{\Omega}$. In the special case when $\Omega=\emptyset$, we obtain a partial order on W and we denote it simply by
\leq. Hence, for $x, y \in W$,

$$
x \leq y \quad \Longleftrightarrow \quad x \in A_{y}
$$

Lemma 2.2. Let $\Omega=\{\alpha\}$. If $x, y \in\left[W / W_{\Omega}\right]$ then

$$
x \leq y \quad \Longleftrightarrow \quad x \leq_{\Omega} y
$$

Proof. Let $s=s_{\alpha}$ and $Q=P_{\Omega}=P \cup P s P$. We have $\overline{P y Q}=\overline{C(y s)}=$ $\bigcup_{v \in A_{y s}} C(v)$. If $x \leq y$, then $x \in A_{y}$, so $x s \in A_{y s}$. It follows $P x Q \subseteq \overline{P y Q}$, so $x \leq_{\Omega} y$.

Conversely, assume $x \leq_{\Omega} y$. Then $x s \in A_{y s}$. Let $y=s_{1} \cdots s_{n}$ be a reduced decomposition of y. Then $y s=s_{1} \cdots s_{n} s_{n+1}$, where $s_{n+1}=s$, is a reduced decomposition of $y s$. Write $x=s_{i_{1}} \cdots s_{i_{m}}$ as in Theorem $2.1,1 \leq i_{1}<\cdots<$ $i_{m} \leq n+1$, and assume that the decomposition is reduced. Then $s_{i_{m}} \neq s$, so $i_{m}<n+1$ and $x \leq y$.

For each $w \in\left[W / W_{\Omega}\right]$, define

$$
\begin{array}{rlr}
G_{w}^{\Omega}=\bigcup_{\substack{x \in\left[W / W_{\Omega}\right] \\
x \geq w}} P x P_{\Omega}, & G_{w}=G_{w}^{\emptyset}, \\
G_{w}^{\Omega,+}=\bigcup_{\substack{x \in\left[W / W_{\Omega}\right] \\
x>w}} P x P_{\Omega}, & G_{w}^{+}=G_{w}^{\emptyset,+} .
\end{array}
$$

Lemma 2.3. Let $\Omega=\{\alpha\}$ and $s=s_{\alpha}$. If $w \in\left[W / W_{\Omega}\right]$, then
(1) $G_{w}^{\Omega}=G_{w}$,
(2) $G_{w}^{+}=G_{w s} \cup G_{w}^{\Omega,+}$,
(3) $G_{w s} \cap G_{w}^{\Omega,+}=G_{w s}^{+}$.

Proof. (1) Clearly, $G_{w}^{\Omega} \subseteq G_{w}$. For converse inclusion, let $y \geq w$, so $w \in A_{y}$. If $y s>y$, then $y \in\left[W / W_{\Omega}\right]$. It follows $y \geq_{\Omega} w$ and $P y P \subseteq G_{w}^{\Omega}$.

If $y s<y$ then there exists a reduced decomposition $y=s_{1} \cdots s_{n}$ such that $s_{n}=s$. Let $z=s_{1} \cdots s_{n-1}$. Then $z \in\left[W / W_{\Omega}\right]$. Write $w=s_{i_{1}} \cdots s_{i_{m}}$ as in Theorem 2.1, and assume that the decomposition is reduced. Then $i_{m}<n$, so $w \in A_{z}$ and $z \geq w$. It follows that $P z Q \subseteq G_{w}^{\Omega}$, so $P y P=P z s P \subseteq G_{w}^{\Omega}$.
(2) Clearly, $G_{w s} \cup G_{w}^{\Omega,+} \subseteq G_{w}^{+}$. For converse inclusion, the proof goes along the same lines as in (1), with inequalities replaced by strict inequalities. The only difference is that in the case $y s<y$, we have to include $z=w$ since $y=w s>w$.
(3) Note that

$$
P y P \subseteq G_{w}^{\Omega,+} \Longleftrightarrow\left\{\begin{array}{l}
y \in\left[W / W_{\Omega}\right], \quad y>w, \quad \text { or, } \\
y=z s, z \in\left[W / W_{\Omega}\right], \quad z>w
\end{array}\right.
$$

In both cases, $y \neq w s$. It follows $G_{w s} \cap G_{w}^{\Omega,+} \subseteq G_{w s}^{+}$.

For the converse inclusion, let $y>w s$. Then $y>w$. If $y \in\left[W / W_{\Omega}\right]$, then $y>_{\Omega} w$, so $P y P \subseteq G_{w}^{\Omega,+}$. Otherwise, $y=z s, z \in\left[W / W_{\Omega}\right]$. Similarly as in (1), we get $z>w$, and consequently $P y P \subseteq P z Q \subseteq G_{w}^{\Omega,+}$. This proves $G_{w s}^{+} \subseteq G_{w}^{\Omega,+}$. Now, $G_{w s}^{+} \subseteq G_{w s}$ implies $G_{w s}^{+} \subseteq G_{w s} \cap G_{w}^{\Omega,+}$, finishing the proof.

3. Filtrations on smooth principal series

Let $\mathfrak{R}(G)$ denote the category of smooth representations of G on complex vector spaces. We denote by $\operatorname{Ind}_{P_{\Omega}}^{G}: \mathfrak{R}\left(M_{\Omega}\right) \rightarrow \mathfrak{R}(1 G)$ the functor of normalized parabolic induction $([4,6])$.

Let χ be a smooth character of $P=P_{\emptyset}=M U$. Let $I=I(\chi)$ denote the space of the representation $\operatorname{Ind}_{P}^{G}(\chi)$. It is the space of all functions $f: G \rightarrow \mathbb{C}$ such that
(i) $f(m u g)=\chi(m) \delta_{P}^{1 / 2}(m) f(g)$ for all $m \in M, u \in U, g \in G$, and
(ii) there exists a compact open subgroup K_{f} of G such that $f(g k)=f(g)$ for all $g \in G, k \in K_{f}$.
The group G acts on I by the right regular action. Define

$$
\begin{array}{cr}
I_{w}=\left\{f \in I \mid \operatorname{supp} f \subseteq G_{w}\right\}, & I_{w}^{\Omega}=\left\{f \in I \mid \operatorname{supp} f \subseteq G_{w}^{\Omega}\right\}, \\
I_{w}^{+}=\left\{f \in I \mid \operatorname{supp} f \subseteq G_{w}^{+}\right\}, & I_{w}^{\Omega,+}=\left\{f \in I \mid \operatorname{supp} f \subseteq G_{w}^{\Omega,+}\right\}, \\
J_{w}=I_{w} / I_{w}^{+}, & J_{w}^{\Omega}=I_{w}^{\Omega} / I_{w}^{\Omega,+}
\end{array}
$$

Lemma 3.1. Let $\Omega=\{\alpha\}$. If $w \in\left[W / W_{\Omega}\right]$, then
(1) $I_{w}^{\Omega}=I_{w}$,
(2) $I_{w}^{+}=I_{w s}+I_{w}^{\Omega,+}$,
(3) $I_{w s} \cap I_{w}^{\Omega,+}=I_{w s}^{+}$.

Proof. (1) and (3) follow immediately from Lemma 2.3. For (2), let

$$
X=\left\{x \in W \mid C(x) \subseteq G_{w}^{\Omega,+}, C(w s) \nsubseteq \overline{C(x)}\right\}
$$

The second condition is equivalent to $w s \not \leq x$. Since the double cosets are disjoint, it is also equivalent to $C(w s) \cap \overline{C(x)}=\emptyset$. Let

$$
\mathcal{X}=\bigcup_{x \in X} C(x)
$$

Let K be a maximal compact subgroup such that $G=P K$. Set $H=\overline{C(w s)}$. Since $P H=H$, it follows $H=P(H \cap K)$.

Let $f \in I_{w}^{+}$. In order to write f as $f=f^{\prime}+f^{\prime \prime}$, where $f^{\prime} \in I_{w s}$ and $f^{\prime \prime} \in I_{w}^{\Omega,+}$, we will construct a function f^{\prime} from the induced space which coincides with f on $C(w s)$ and whose support is disjoint from \mathcal{X} and from $H \backslash C(w s)$. Note that such a function has to be invariant under the action of a compact open subgroup of G. We start our construction with a compact open subgroup K_{f} such that $f(g k)=f(g)$ for all $g \in G, k \in K_{f}$. The definition of \mathcal{X} implies that for every $y \in C(w s)$ there exists a compact open subgroup K_{y}^{\prime} such that
$y K_{y}^{\prime} \cap \mathcal{X}=\emptyset$. Let $K_{y}=K_{y}^{\prime} \cap K_{f}$. Then $y K_{y} \cap \mathcal{X}=\emptyset$. For $y \in H \backslash C(w s)$, set $K_{y}=K_{f}$. Then $f(y k)=0$ for all $y \in H \backslash C(w s), k \in K_{y}$. The set $\left\{y K_{y} \mid y \in H \cap K\right\}$ is a cover of the compact subset $H \cap K$, so it has a finite subcover $\left\{y K_{y} \mid y \in Y\right\}$. Let

$$
\mathcal{Y}=\bigcup_{y \in Y} y K_{y}
$$

Denote by f^{\prime} the product of f with the characteristic function of $P \mathcal{Y}$. Then f^{\prime} is invariant under the action of the compact open subgroup $\bigcap_{y \in Y} K_{y}$. We have $f^{\prime} \in I, \operatorname{supp} f^{\prime} \subseteq G_{w}^{+}$and $\left(\operatorname{supp} f^{\prime}\right) \cap \mathcal{X}=\emptyset$. It follows $f^{\prime} \in I_{w s}$. Furthermore, $f^{\prime \prime}=f-f^{\prime} \in I_{w}^{\Omega,+}$. This implies $I_{w}^{+} \subseteq I_{w s}+I_{w}^{\Omega,+}$. The converse inclusion is obvious.

Lemma 3.2. Let $\Omega=\{\alpha\}$. If $w \in\left[W / W_{\Omega}\right]$, then $J_{w}^{\Omega} / J_{w s} \cong J_{w}$.
Proof. Using Lemma 3.1, we get

$$
J_{w s}=I_{w s} / I_{w s}^{+}=I_{w s} /\left(I_{w s} \cap I_{w}^{\Omega,+}\right) \cong\left(I_{w s}+I_{w}^{\Omega,+}\right) / I_{w}^{\Omega,+}=I_{w}^{+} / I_{w}^{\Omega,+}
$$

Therefore, $J_{w s}$ embeds into J_{w}^{Ω}. Moreover,

$$
J_{w}^{\Omega} / J_{w s}=\left(I_{w}^{\Omega} / I_{w}^{\Omega,+}\right) /\left(I_{w}^{+} / I_{w}^{\Omega,+}\right) \cong I_{w}^{\Omega} / I_{w}^{+}=I_{w} / I_{w}^{+}=J_{w}
$$

We obtain the following commutative diagram

Suppose \mathcal{I} is a proper subrepresentation of I. Define $\mathcal{I}_{w}^{\Omega}=\mathcal{I} \cap I_{w}^{\Omega}, \mathcal{I}_{w}^{\Omega,+}=$ $\mathcal{I} \cap I_{w}^{\Omega,+}$ and $\mathcal{J}_{w}^{\Omega}=\mathcal{I}_{w}^{\Omega} / \mathcal{I}_{w}^{\Omega,+}$. We want to select w and α so that \mathcal{J}_{w}^{Ω} is a proper nonzero submodule of J_{w}^{Ω}. Furthermore, we want to pass to representations of $M_{\{\alpha\}}$, and obtain from \mathcal{J}_{w}^{Ω} a proper subrepresentation of a principal series of $M_{\{\alpha\}}$. For this, we use Jacquet modules of parabolically induced representations ([4, 6]). Since the Jacquet module of J_{w}^{Ω} is precisely a principal series of $M_{\{\alpha\}}$, we select w and α by considering directly Jacquet modules (see the proof of Theorem 3.4).

For each $w \in\left[W / W_{\Omega}\right]$, let $d_{\Omega}(w)$ be the dimension of the algebraic variety $P \backslash P w P_{\Omega}$ over F. Define

$$
G_{n}^{\Omega}=\bigcup_{d_{\Omega}(w) \geq n} P w P_{\Omega} \quad \text { and } \quad I_{n}^{\Omega}=\left\{f \in I \mid \operatorname{supp} f \subseteq G_{n}^{\Omega}\right\}
$$

Let (π, V) be a smooth representation of G. For a compact subgroup $U_{0} \subset U_{\Omega}$, define

$$
V\left(U_{0}\right)=\left\{v \in V \mid \int_{U_{0}} \pi(u) v d u=0\right\}
$$

Define $V\left(U_{\Omega}\right)$ to be $\bigcup V\left(U_{0}\right)$, the union over all compact open subgroups U_{0} of U_{Ω}. Then $V\left(U_{\Omega}\right)$ is a subspace of $V[6]$. Define $r_{M_{\Omega}}^{G}(V)=V / V\left(U_{\Omega}\right)$. The normalized Jacquet module $r_{M_{\Omega}}^{G}(\pi)$ is the representation of M_{Ω} on the space $r_{M_{\Omega}}^{G}(V)$ given by

$$
r_{M_{\Omega}}^{G}(\pi)(m)\left(v+V\left(U_{\Omega}\right)\right)=\delta_{P_{\Omega}}^{-1 / 2}(m) \pi(m) v+V\left(U_{\Omega}\right)
$$

$m \in M_{\Omega}, v \in V$ [4]. If $W \subset V$ is a $P_{\Omega^{\prime}}$-invariant subspace, then $r_{M_{\Omega}}^{G}(V)$ is M_{Ω}-invariant.

Theorem 3.3 ([6, Theorem 6.3.5]). Let $P=P_{\emptyset}=M U$ and $\Omega \subseteq \Delta$. Let χ be a smooth character of $M, I=\operatorname{Ind}_{P}^{G} \chi$. There exists a filtration

$$
0 \subseteq I_{n_{\ell}}^{\Omega} \subseteq \cdots \subseteq I_{0}^{\Omega}=I
$$

by $P_{\Omega^{-}}$-stable subspaces such that $r_{M_{\Omega}}^{G}\left(I_{n}^{\Omega} / I_{n+1}^{\Omega}\right) \cong r_{M_{\Omega}}^{G}\left(I_{n}^{\Omega}\right) / r_{M_{\Omega}}^{G}\left(I_{n+1}^{\Omega}\right)$ is isomorphic to the direct sum $\bigoplus r_{M_{\Omega}}^{G}\left(J_{w}^{\Omega}\right)$, the sum ranging over $w \in\left[W / W_{\Omega}\right]$ with $d_{\Omega}(w)=n$. Furthermore, the normalized Jacquet module $r_{M_{\Omega}}^{G}\left(J_{w}^{\Omega}\right)$ is given by

$$
r_{M_{\Omega}}^{G}\left(J_{w}^{\Omega}\right) \cong \operatorname{Ind}_{w^{-1} P w \cap M_{\Omega}}^{M_{\Omega}} w^{-1} \chi
$$

The proof of the next theorem, as well as the proof of Theorem 4.1, is improved and shortened, as suggested by the referee.

Theorem 3.4. Let $P=P_{\emptyset}=M U$. Let χ be a character of M and $I(\chi)=$ $\operatorname{Ind}_{P}^{G} \chi$. Suppose that $I(\chi)$ has an irreducible subquotient which does not appear as a subrepresentation in $I(\chi)$. Then there exist $\alpha \in \Delta$ and $w \in W$ such that $\operatorname{Ind}_{P \cap M_{\{\alpha\}}}^{M_{\{\alpha\}}} w^{-1} \chi$ is reducible.
Proof. Denote by \mathcal{I} an irreducible subquotient of $I(\chi)$ which does not appear as a subrepresentation in $I(\chi)$. Then there exists $w^{\prime} \in W$ such that \mathcal{I} is a subrepresentation of $I\left(w^{\prime} \chi\right)$. Let $\chi^{\prime}=w^{\prime} \chi, I=I\left(\chi^{\prime}\right)$. Define

$$
W_{\mathcal{I}}=\left\{v \in W \mid \operatorname{Hom}_{M}\left(r_{M}^{G}(\mathcal{I}), v^{-1} \chi^{\prime}\right)=0\right\}
$$

Since \mathcal{I} does not appear as a subrepresentation of $I(\chi), \operatorname{Hom}_{M}\left(r_{P}^{G}(\mathcal{I}), \chi\right)=0$ so $w^{\prime} \in W_{\mathcal{I}}$. Moreover, $1 \notin W_{\mathcal{I}}$ because \mathcal{I} is a subrepresentation of I. Let
w_{0} be a minimal element in $W_{\mathcal{I}}$. Here, we consider the partial order on W as defined in section 2. Since $w_{0} \neq 1$, there exists $\alpha \in \Delta$ such that $w_{0} \alpha<0$. Let

$$
s=s_{\alpha}, \quad w=w_{0} s, \quad \Omega=\{\alpha\}, \quad P_{\Omega}=P \cup P s P .
$$

Then $w \in\left[W / W_{\Omega}\right]$. In addition, $w<w_{0}$, so $w \notin W_{\mathcal{I}}$. The Frobenius reciprocity gives us

$$
\begin{aligned}
0 \neq \operatorname{Hom}_{M}\left(r_{M}^{G}(\mathcal{I}), w^{-1} \chi^{\prime}\right) & =\operatorname{Hom}_{M}\left(r_{M}^{M_{\Omega}} \circ r_{M_{\Omega}}^{G}(\mathcal{I}), w^{-1} \chi^{\prime}\right) \\
& \cong \operatorname{Hom}_{M_{\Omega}}\left(r_{M_{\Omega}}^{G}(\mathcal{I}), \operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(w^{-1} \chi^{\prime}\right)\right)
\end{aligned}
$$

In the same way, $0=\operatorname{Hom}_{M_{\Omega}}\left(r_{M_{\Omega}}^{G}(\mathcal{I}), \operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(s w^{-1} \chi^{\prime}\right)\right)$. Hence,

$$
\operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(w^{-1} \chi^{\prime}\right) \not \not \operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(s w^{-1} \chi^{\prime}\right)
$$

Since these representations have the same composition factors ([6, Theorem 6.3.11]), if irreducible, they would be isomorphic. It follows that $\operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(w^{-1} \chi^{\prime}\right)$ $=\operatorname{Ind}_{P \cap M_{\Omega}}^{M_{\Omega}}\left(w^{-1} w^{\prime} \chi\right)$ is reducible.

Remark 3.5. Theorem 3.4 does not remain true if $I(\chi)$ is reducible, but we remove the hypothesis that $I(\chi)$ has a subquotient which does not appear as a subrepresentation in $I(\chi)$. The following example was communicated to us by Marko Tadić. Let χ_{1}, χ_{2} be two different characters of F^{\times}of order 2. The unitary principal series representation of $G S p(6, F)$ induced from $\chi_{1} \otimes \chi_{2} \otimes$ $\chi_{1} \chi_{2}$ has length 2, but we have irreducibility for all rank one Levi subgroups, and even for all rank two Levi subgroups (because unitary principal series for $G L(3, F)$ and $G S p(4, F)$ are irreducible [13]).

Example 3.6 (Langlands' Quotients). Let χ_{0} be a character of $M=M_{\emptyset}$ which is square-integrable modulo center. For $\Omega \subset \Delta$, the induced representation $\operatorname{Ind}_{M}^{M_{\Omega}} \chi_{0}$ decomposes as a direct sum of tempered representations, $\operatorname{Ind}_{M}^{M_{\Omega}} \chi_{0}=$ $\oplus \tau_{i}$. Let ν be an unramified character of M_{Ω} which takes positive real values and is strictly positive (in Weyl chamber). Then $\operatorname{Ind}_{M_{\Omega}}^{G}\left(\nu \tau_{i}\right)$ has a unique irreducible quotient π (Langlands' quotient). It appears with multiplicity one in $\operatorname{Ind}_{M_{\Omega}}^{G}\left(\nu \tau_{i}\right)$. Moreover, it can be shown using central exponents and uniqueness of Langlands' data that π does not appear as a subquotient in $\operatorname{Ind}_{M_{\Omega}}^{G}\left(\nu \tau_{j}\right)$ for any $\tau_{j} \not \neq \tau_{i}$.

Assume that $\operatorname{Ind}_{M_{\Omega}}^{G}\left(\nu \tau_{i}\right)$ is reducible. Corresponding to ν is a character of M, which we will denote by the same letter ν, such that $\operatorname{Ind}_{M_{\Omega}}^{G}\left(\nu \tau_{i}\right)$ is a subrepresentation of $\operatorname{Ind}_{M}^{G}\left(\nu \chi_{0}\right)$. Then π does not appear as a subrepresentation in $\operatorname{Ind}_{M}^{G}\left(\nu \chi_{0}\right)$ and we can apply Theorem 3.4. It follows that there exist $\alpha \in \Delta$ and $w \in W$ such that $\operatorname{Ind}_{M}^{M_{\{\alpha\}}} w^{-1}\left(\nu \chi_{0}\right)$ is reducible.

4. Generalization

In this section, we generalize Theorem 3.4.
Theorem 4.1. Let $\Theta \subseteq \Delta$. Let $P_{\Theta}=M_{\Theta} U_{\Theta}$. Let σ be an irreducible supercuspidal representation of M_{Θ} and $I(\sigma)=\operatorname{Ind}_{P_{\Theta}}^{G} \sigma$. Suppose that $I(\sigma)$ has an irreducible subquotient which does not appear as a subrepresentation in $I(\sigma)$. Then there exist $w_{0} \in W$ and $\Omega \subseteq \Delta$ such that $\Omega=w_{0}(\Theta) \cup\{\alpha\}$ and $\operatorname{Ind}_{w_{0}\left(M_{\Theta}\right)}^{M_{\Omega}} w_{0} \sigma$ is reducible.

We give a brief proof. For more detail, see [1].
Proof. Set $W(\Theta, \Theta)=\{w \in W \mid w(\Theta)=\Theta\}$. Denote by \mathcal{I} an irreducible subquotient of $I(\sigma)$ which does not appear as a subrepresentation in $I(\sigma)$. Then there exists $w^{\prime} \in W(\Theta, \Theta)$ such that \mathcal{I} is a subrepresentation of $I\left(w^{\prime} \sigma\right)$. Let $\sigma^{\prime}=w^{\prime} \sigma, I=I\left(\sigma^{\prime}\right)$. Define

$$
W_{\mathcal{I}}=\left\{v \in W \mid v(\Theta) \subseteq \Delta \text { and } \operatorname{Hom}_{v\left(M_{\Theta}\right)}\left(r_{v\left(M_{\Theta}\right)}^{G}(\mathcal{I}), v \sigma^{\prime}\right)=0\right\}
$$

Similarly as in the proof of Theorem 3.4, we see that $\left(w^{\prime}\right)^{-1} \in W_{\mathcal{I}}$ and $1 \notin W_{\mathcal{I}}$. Let $w_{\text {min }}$ be an element of $W_{\mathcal{I}}$ of minimum length and $\Theta^{\prime}=w_{\min }(\Theta)$. Now, we apply [17, Lemma 2.1.2]. In particular, let $\Theta=\Theta_{1}, \ldots, \Theta_{n}=\Theta^{\prime}$ be a sequence of associate subsets of Δ as in [17, Lemma 2.1.2]. Then for any $1 \leq i \leq n-1$ there exists a simple root α_{i} such that Θ_{i+1} is the conjugate of Θ_{i} in $\Theta_{i} \cup\left\{\alpha_{i}\right\}$. We have $w_{\text {min }}=w_{n-1} \ldots w_{1}$, where $w_{i} \in W\left(\Theta_{i}, \Theta_{i+1}\right)$. Set $y=w_{n-1}$ and $w=w_{n-2} \ldots w_{1}$. By minimality, $w \notin W_{\mathcal{I}}$ and we have

$$
\operatorname{Hom}_{w\left(M_{\ominus}\right)}\left(r_{w\left(M_{\ominus}\right)}^{G}(\mathcal{I}), w \sigma^{\prime}\right) \neq 0, \quad \operatorname{Hom}_{y w\left(M_{\Theta}\right)}\left(r_{y w\left(M_{\ominus}\right)}^{G}(\mathcal{I}), y w \sigma^{\prime}\right)=0
$$

Let $\alpha_{1}, \ldots, \alpha_{n-1}$ be as in [17, Lemma 2.1.2]. Set $\alpha=\alpha_{n-1}$ and $\Omega=w(\Theta) \cup\{\alpha\}$. Then $y w(\Theta)$ is the conjugate of $w(\Theta)$ in Ω. The Frobenius reciprocity gives us

$$
\begin{aligned}
\operatorname{Hom}_{w\left(M_{\ominus}\right)}\left(r_{w\left(M_{\ominus}\right)}^{G}(\mathcal{I}), w \sigma^{\prime}\right) & =\operatorname{Hom}_{w\left(M_{\Theta}\right)}\left(r_{w\left(M_{\Theta}\right)}^{M_{\Omega}} \circ r_{M_{\Omega}}^{G}(\mathcal{I}), w \sigma^{\prime}\right) \\
& \cong \operatorname{Hom}_{M_{\Omega}}\left(r_{M_{\Omega}}^{G}(\mathcal{I}), \operatorname{Ind}_{w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(w \sigma^{\prime}\right)\right) \neq 0
\end{aligned}
$$

In the same way, $\operatorname{Hom}_{M_{\Omega}}\left(r_{M_{\Omega}}^{G}(\mathcal{I}), \operatorname{Ind}_{y w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(y w \sigma^{\prime}\right)\right)=0$. Hence,

$$
\operatorname{Ind}_{w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(w \sigma^{\prime}\right) \not \not \operatorname{Ind}_{y w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(y w \sigma^{\prime}\right)
$$

As in the proof of Theorem 3.4, it follows that these representations are reducible. Hence, $\operatorname{Ind}_{w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(w w^{\prime} \sigma\right)=\operatorname{Ind}_{w\left(M_{\Theta}\right)}^{M_{\Omega}}\left(w \sigma^{\prime}\right)$ is reducible. Note that reducibility implies that $y w(\Theta)=w(\Theta)$. To complete the proof, we may select w_{0} to be either $w w^{\prime}$ or $y w w^{\prime}$.

Define $W(\sigma)=\{w \in W(\Theta, \Theta) \mid w \sigma \cong \sigma\}$ and call σ regular if $W(\sigma)=\{1\}$.
Corollary 4.2. Let $P_{\Theta}=M_{\Theta} U_{\Theta}$. Let σ be an irreducible supercuspidal representation of M_{Θ}. Suppose that σ is regular. Then $I(\sigma)=\operatorname{Ind}_{P_{\Theta}}^{G} \sigma$ is reducible
if and only if there exist $w_{0} \in W$ and $\Omega \subseteq \Delta$ such that $\Omega=w_{0}(\Theta) \cup\{\alpha\}$ and $\operatorname{Ind}_{w_{0}\left(M_{\Theta}\right)}^{M_{\Omega}} w_{0} \sigma$ is reducible.

Proof. Suppose that σ is regular. Then $r_{M_{\Theta}}^{G}(I(\sigma))=\bigoplus_{w \in W(\Theta, \Theta)} w \sigma$ is a direct sum of mutually inequivalent components ([6, Proposition 6.4.1]). Since the Jacquet functor is exact, it follows that every component of $I(\sigma)$ appears with multiplicity one. Furthermore, if V is an irreducible subrepresentation of $I(\sigma)$, then the Frobenius reciprocity gives us $\operatorname{Hom}_{G}(V, I(\sigma)) \cong \operatorname{Hom}_{M_{\Theta}}\left(r_{M_{\Theta}}^{G}(V), \sigma\right)$. Since the multiplicity of σ in $r_{M_{\Theta}}^{G}(I(\sigma))$ is one, it follows that $I(\sigma)$ has a unique irreducible subrepresentation. Therefore, if $I(\sigma)$ is reducible, it satisfies the conditions of Theorem 4.1.

In the case of principal series, the previous corollary also follows from Rodier's work on the principal series induced from regular characters [12].

5. Iwasawa algebras

We start by reviewing some results on projective limits. We refer to [11] for definitions of a projective system and a projective limit. The following two propositions follow from Proposition 1.1.3, Proposition 1.1.4 and Corollary 1.1.8 of [11].

Proposition 5.1. Let $\left(X_{i}\right)$ be a projective system of compact Hausdorff topological spaces over the directed set I, and let $X=\operatorname{proj} \lim X_{i}$.
(a) If X_{i} is totally disconnected, for all $i \in I$, then X is also a compact Hausdorff totally disconnected topological space.
(b) If X_{i} is nonempty, for all $i \in I$, then X is also nonempty.

Proposition 5.2. Let $\left(X_{i}\right)$ be a projective system of compact Hausdorff spaces, $X=\operatorname{proj} \lim X_{i}$, and let $\varphi_{i}: X \rightarrow X_{i}$ be the projections.
(a) If Y is a closed subspace of X, then $Y=\operatorname{proj} \lim \varphi_{i}(Y)$.
(b) If Y is a subspace of X, then $\bar{Y}=\operatorname{proj} \lim \varphi_{i}(Y)$, where \bar{Y} is the closure of Y in X.
(c) If Y and Y^{\prime} are subspaces of X and $\varphi_{i}(Y)=\varphi_{i}\left(Y^{\prime}\right)$ for each i, then their closures in X coincide: $\bar{Y}=\overline{Y^{\prime}}$.

Next, we review the definition and basic properties of Iwasawa algebras ([10], [15]). Let H be a profinite group. Let $\mathcal{N}(H)$ denote the family of all open normal subgroups of H. Then $H=\operatorname{proj} \lim _{N \in \mathcal{N}(H)} H / N$ is a projective limit, as a topological group, of the finite groups H / N. Let K be a finite extension of \mathbb{Q}_{p}, and o_{K} its ring of integers. The group rings $o_{K}[H / N], N \in \mathcal{N}(H)$, form a projective system of rings. The Iwasawa algebra of H over o_{K} is defined as

$$
o_{K}[[H]]=\underset{N \in \mathcal{N}(H)}{\operatorname{proj} \lim } o_{K}[H / N] .
$$

We equip $o_{K}[[H]]$ with the projective limit topology. Then $o_{K}[[H]]$ is a torsion free and compact linear-topological o_{K}-module. It has a structure of a topological ring; the ring multiplication is continuous. The inclusion map $H \hookrightarrow o_{K}[[H]]$ is a homeomorphism onto its image.

Define $K[[H]]=K \otimes_{o_{K}} o_{K}[[H]]$, endowed with the finest locally convex topology such that the inclusion of $o_{K}[[H]]$ is continuous. Then the multiplication on $K[[H]]$ is separately continuous.

Let A be a closed subset of H. For $N \in \mathcal{N}(H)$, define $A_{N}=\{a N \mid a \in$ $A\} \subseteq H / N$. Let $\left\langle A_{N}\right\rangle$ denote the o_{K}-submodule of $o_{K}[H / N]$ generated by A_{N}. Then $\left\langle A_{N}\right\rangle, N \in \mathcal{N}(H)$, is a projective system of topological o_{K}-modules. Define

$$
\Lambda^{o}(A)=\underset{N \in \mathcal{N}(H)}{\operatorname{proj}} \lim _{N}\left\langle A_{N}\right\rangle \quad \text { and } \quad \Lambda(A)=K \otimes_{o_{K}} \Lambda^{o}(A)
$$

Then $\Lambda^{o}(A)$ is a closed o_{K}-submodule of $o_{K}[[H]]$ and $\Lambda(A)$ is a closed K subspace of $K[[H]]$.
Lemma 5.3. Let A, B be closed subsets of H.
(a) $\Lambda^{\circ}(A)$ is a compact Hausdorff totally disconnected topological space.
(b) $\Lambda^{o}(A \cup B)=\Lambda^{o}(A)+\Lambda^{o}(B)$, and $\Lambda(A \cup B)=\Lambda(A)+\Lambda(B)$.
(c) $\Lambda^{o}(A \cap B)=\Lambda^{o}(A) \cap \Lambda^{o}(B)$, and $\Lambda(A \cap B)=\Lambda(A) \cap \Lambda(B)$.

Proof. (a) follows from Proposition 5.1. (b) follows from Proposition 5.2, because

$$
\left\langle A_{N} \cup B_{N}\right\rangle=\left\langle A_{N}\right\rangle+\left\langle B_{N}\right\rangle \quad \text { for all } N \in \mathcal{N}(H)
$$

(c) Set $C=A \cap B$. Since

$$
\left\langle C_{N}\right\rangle \subseteq\left\langle A_{N}\right\rangle \cap\left\langle B_{N}\right\rangle \quad \text { for all } N \in \mathcal{N}(H)
$$

we immediately get $\Lambda^{o}(C) \subseteq \Lambda^{o}(A) \cap \Lambda^{o}(B)$. Assume $\Lambda^{o}(C) \neq \Lambda^{o}(A) \cap \Lambda^{o}(B)$. Then there exists $\mu \in \Lambda^{o}(A) \cap \Lambda^{o}(B)$ such that $\mu \notin \Lambda^{o}(C)$. Write

$$
\mu=\left(\mu_{N}\right)_{N \in \mathcal{N}(H)}, \quad \mu_{N} \in o_{K}[H / N] .
$$

Then there exists $N_{0} \in \mathcal{N}(H)$ such that $\mu_{N_{0}} \notin\left\langle C_{N_{0}}\right\rangle$. Write

$$
\mu_{N_{0}}=\alpha_{1} a_{1} N_{0}+\cdots+\alpha_{k} a_{k} N_{0}=\alpha_{1} b_{1} N_{0}+\cdots+\alpha_{k} b_{k} N_{0}
$$

where $\alpha_{i} \in o_{K}, a_{i} \in A, b_{i} \in B$, and $a_{i} N_{0}=b_{i} N_{0}$ for all i. We can decompose μ as

$$
\mu=\mu^{1}+\cdots+\mu^{k}, \quad \mu^{i} \in \Lambda^{o}\left(a_{i} N_{0}\right) .
$$

Note that $\left(\mu^{i}\right)_{N_{0}}=\alpha_{i} a_{i} N_{0}$. Select $\ell \in\{1, \ldots, k\}$ such that $\alpha_{\ell} a_{\ell} N_{0} \notin\left\langle C_{N_{0}}\right\rangle$. Then $a_{\ell} N_{0} \neq c N_{0}$ for any $c \in C$. Let $\lambda=\mu^{\ell}$. Then $\lambda \in \Lambda^{o}\left(a_{\ell} N_{0}\right)=\Lambda^{o}\left(b_{\ell} N_{0}\right)$ and $\lambda \notin \Lambda^{o}(C)$.

For any $c \in C$ there exists $N_{c} \in \mathcal{N}(H)$ such that $a_{\ell} N_{0} \cap c N_{c}=\emptyset$. Then $\left\{c N_{c} \mid c \in C\right\}$ is an open cover of C. The set $B_{1}=B \backslash \bigcup_{c \in C} c N_{c}$ is closed, and disjoint from A. For any $b \in B_{1}$ there exists $N_{b} \in \mathcal{N}(H)$ such that $A \cap b N_{b}=\emptyset$. Then $\left\{b N_{b} \mid b \in B_{1}\right\}$ is an open cover of B_{1}. By compactness, it
has a finite subcover. It follows that we can find $N_{1} \in \mathcal{N}(H), N_{1} \leq N_{0}$, such that $A \cap b N_{1}=\emptyset$ for all $b \in B_{1}$. Now, write

$$
\lambda_{N_{1}}=\alpha_{1}^{\prime} a_{1}^{\prime} N_{1}+\cdots+\alpha_{s}^{\prime} a_{s}^{\prime} N_{1}
$$

Since $\alpha_{1}^{\prime}+\cdots+\alpha_{s}^{\prime}=\alpha_{\ell} \neq 0$, at least one coefficient α_{i}^{\prime} is not zero. Since $a_{i}^{\prime} \notin b N_{1}$ for any $b \in B$, we have $\alpha_{i}^{\prime} a_{i}^{\prime} N_{1} \notin\left\langle B_{N_{1}}\right\rangle$. This contradicts $\lambda \in$ $\Lambda^{o}\left(b_{i} N_{0}\right)$.

6. Continuous principal series

From now on, F is a finite extension of \mathbb{Q}_{p}, and K is a finite extension of F. As before, $P=P_{\emptyset}$ is a minimal parabolic subgroup of G. Let $\chi: P \rightarrow K^{\times}$be a continuous character. Let

$$
{ }^{c} \operatorname{Ind}_{P}^{G}\left(\chi^{-1}\right)=\{f: G \rightarrow K \text { continuous } \mid f(g p)=\chi(p) f(g) \forall p \in P, g \in G\}
$$

where G acts on the left by $g \cdot f(h)=f\left(g^{-1} h\right)$. Here, we take the left action because we will use the duality [16].

Let $G_{0} \subset G$ be a maximal compact subgroup which satisfies the Iwasawa decomposition $G=G_{0} P$. If $P_{0}=P \cap G_{0}$ and $\chi_{0}=\left.\chi\right|_{P_{0}}$, then restriction gives an isomorphism ${ }^{c} \operatorname{Ind}_{P}^{G}\left(\chi^{-1}\right) \cong{ }^{c} \operatorname{Ind}_{P_{0}}^{G_{0}}\left(\chi_{0}^{-1}\right)$.

Let $K^{\left(\chi_{0}\right)}$ denote the one dimensional representation of P_{0} on K given by χ_{0}. The continuous dual of ${ }^{c} \operatorname{Ind}_{P_{0}}^{G_{0}}\left(\chi_{0}^{-1}\right)$ is isomorphic to

$$
M^{\left(\chi_{0}\right)}=K\left[\left[G_{0}\right]\right] \otimes_{K\left[\left[P_{0}\right]\right]} K^{\left(\chi_{0}\right)}
$$

The isomorphism ${ }^{c} \operatorname{Ind}_{P}^{G}\left(\chi^{-1}\right) \cong{ }^{c} \operatorname{Ind}_{P_{0}}^{G_{0}}\left(\chi_{0}^{-1}\right)$ induces a G-module structure on $M^{\left(\chi_{0}\right)}$. We denote this G-module by $M^{(\chi)}$. Hence, $M^{(\chi)}$ is a G-module and $K\left[\left[G_{0}\right]\right]$-module. It follows from Theorem 3.5 of [16] that there is a bijection between G-invariant closed subspaces of ${ }^{c} \operatorname{Ind}_{P}^{G}\left(\chi^{-1}\right)$ and G-invariant $K\left[\left[G_{0}\right]\right]$ quotient modules of $M^{(\chi)}$.

7. Iwasawa modules

Similarly to open subsets of G defined in Section 2, we define certain closed subsets of G. For $w \in W$, define

$$
H_{w}=\overline{P w P}=\bigcup_{x \leq w} P x P, \quad H_{w}^{-}=\bigcup_{x<w} P x P
$$

Let $\alpha \in \Delta, \Omega=\{\alpha\}$, and $s=s_{\alpha}$. For $w \in\left[W_{\Omega} \backslash W\right]=\left\{w \in W \mid w^{-1} \Omega>0\right\}$, define

$$
H_{w}^{\Omega}=\bigcup_{\substack{x \in\left[W_{\Omega} \backslash W\right] \\
x \leq w}} P_{\Omega} x P, \quad H_{w}^{\Omega,-}=\bigcup_{\substack{x \in\left[\begin{array}{c}
W \Omega \backslash W] \\
x<w \\
\hline
\end{array}\right.}} P_{\Omega} x P
$$

For $X \subset K\left[\left[G_{0}\right]\right]$, we denote by $[X]$ the image of X in $M^{(\chi)}$. There exists a compact set $C \subset G_{0}$ such that C is a set of coset representatives of G / P (see
[2] for an explicit description of such a set). Then the map $\mu \mapsto[\mu]$ defines an isomorphism between $\Lambda(C)$ and $M^{(\chi)}$ ([2], Corollary 15). Fix such a compact set C. The sets $H_{w}, H_{w}^{-}, H_{w}^{\Omega}$ and $H_{w}^{\Omega,-}$ are closed in G, so we can define, for $w \in W$,

$$
M_{w}=\left[\Lambda\left(C \cap H_{w}\right)\right], \quad M_{w}^{-}=\left[\Lambda\left(C \cap H_{w}^{-}\right)\right], \quad \text { and } \quad N_{w}=M_{w} / M_{w}^{-}
$$

Similarly, for $w \in\left[W_{\Omega} \backslash W\right]$, we define

$$
M_{w}^{\Omega}=\left[\Lambda\left(C \cap H_{w}^{\Omega}\right)\right], \quad M_{w}^{\Omega,-}=\left[\Lambda\left(C \cap H_{w}^{\Omega,-}\right)\right], \quad \text { and } \quad N_{w}^{\Omega}=M_{w}^{\Omega} / M_{w}^{\Omega,-} .
$$

Lemma 7.1. Let $\Omega=\{\alpha\}$ and $s=s_{\alpha}$. If $w \in\left[W_{\Omega} \backslash W\right]$, then
(a) $M_{w}^{\Omega}=M_{s w}$,
(b) $M_{w} \cap M_{w}^{\Omega,-}=M_{w}^{-}$,
(c) $M_{w}+M_{w}^{\Omega,-}=M_{s w}^{-}$.

Proof. (a) is clear, because $H_{w}^{\Omega}=H_{s w}$. For (b) and (c), note that

$$
H_{w} \cap H_{w}^{\Omega,-}=\left(\bigcup_{x \leq w} P x P\right) \cap\left(\bigcup_{\substack{x \in\left[W_{\Omega} \backslash W\right] \\ x<w}} P_{\Omega} x P\right)=H_{w}^{-}
$$

and

$$
H_{w} \cup H_{w}^{\Omega,-}=\left(\bigcup_{x \leq w} P x P\right) \cup\left(\bigcup_{\substack{x \in\left[W_{\Omega} \backslash W\right] \\ x<w}} P_{\Omega} x P\right)=H_{s w}^{-}
$$

Lemma 5.3 implies

$$
\begin{aligned}
\Lambda\left(C \cap H_{w}\right) \cap \Lambda\left(C \cap H_{w}^{\Omega,-}\right) & =\Lambda\left(\left(C \cap H_{w}\right) \cap\left(C \cap H_{w}^{\Omega,-}\right)\right) \\
& =\Lambda\left(C \cap\left(H_{w} \cap H_{w}^{\Omega,-}\right)\right)=\Lambda\left(C \cap H_{w}^{-}\right)
\end{aligned}
$$

It follows $M_{w} \cap M_{w}^{\Omega,-}=M_{w}^{-}$. Similarly,

$$
\begin{aligned}
\Lambda\left(C \cap H_{w}\right)+\Lambda\left(C \cap H_{w}^{\Omega,-}\right) & =\Lambda\left(\left(C \cap H_{w}\right) \cup\left(C \cap H_{w}^{\Omega,-}\right)\right) \\
& =\Lambda\left(C \cap\left(H_{w} \cup H_{w}^{\Omega,-}\right)\right)=\Lambda\left(C \cap H_{s w}^{-}\right)
\end{aligned}
$$

gives $M_{w}+M_{w}^{\Omega,-}=M_{s w}^{-}$.
Lemma 7.2. Let $\Omega=\{\alpha\}$. If $w \in\left[W_{\Omega} \backslash W\right]$, then $N_{w}^{\Omega} / N_{w} \cong N_{s w}$.
Proof. Using Lemma 7.1, we get

$$
N_{w} \cong M_{w} / M_{w}^{-} \cong M_{w} /\left(M_{w} \cap M_{w}^{\Omega,-}\right) \cong\left(M_{w}+M_{w}^{\Omega,-}\right) / M_{w}^{\Omega,-} \cong M_{s w}^{-} / M_{w}^{\Omega,-} .
$$

Then

$$
N_{w}^{\Omega} / N_{w} \cong\left(M_{s w} / M_{w}^{\Omega,-}\right) /\left(M_{s w}^{-} / M_{w}^{\Omega,-}\right) \cong M_{s w} / M_{s w}^{-} \cong N_{s w}
$$

Hence, we have the following commutative diagram

Note that $M^{(\chi)}$ is a cyclic $K\left[\left[G_{0}\right]\right]$-module, generated by [1]. Let S be a $K\left[\left[G_{0}\right]\right]$-submodule and G-submodule of $M^{(\chi)}$. Assume that $S \neq 0$ and $S \neq M^{(\chi)}$. Then $[1] \notin S$ and $S \cap M_{1}=0$. Moreover, there exists a minimal $w^{\prime} \in W$ such that $S \cap M_{w^{\prime}} \neq 0$. Write $w^{\prime}=s w$, where $s=s_{\alpha}$ is a simple reflection. Hence,

$$
S \cap M_{s w} \neq 0, \quad S \cap M_{x}=0, \text { for all } x<s w
$$

In particular, $S \cap M_{w}=0, S \cap M_{w}^{\Omega,-}=0, S \cap M_{s w}^{-}=0$.
Lemma 7.3. $S \cap M_{w}^{\Omega}$ is isomorphic to a proper submodule of N_{w}^{Ω}.
Proof. Since $S \cap M_{w}^{\Omega,-}=0$, we have

$$
\begin{aligned}
S \cap M_{w}^{\Omega} & \cong\left(S \cap M_{w}^{\Omega}\right) /\left(S \cap M_{w}^{\Omega,-}\right) \\
& \cong\left(S \cap M_{w}^{\Omega}\right)+M_{w}^{\Omega,-} / M_{w}^{\Omega,-} \subseteq M_{w}^{\Omega} / M_{w}^{\Omega,-}=N_{w}^{\Omega}
\end{aligned}
$$

We have to prove $\left(S \cap M_{w}^{\Omega}\right)+M_{w}^{\Omega,-} \neq M_{w}^{\Omega}$. Assume, on the contrary, that $\left(S \cap M_{w}^{\Omega}\right)+M_{w}^{\Omega,-}=M_{w}^{\Omega}$. Then we can write $[w] \in M_{w}^{\Omega}$ as

$$
[w]=[\sigma]+[\nu], \quad[\sigma] \in S \cap M_{w}^{\Omega},[\nu] \in M_{w}^{\Omega,--}
$$

Then

$$
[\sigma]=[w]-[\nu] \in M_{w}+M_{w}^{\Omega,-}=M_{s w}^{-}
$$

Since $S \cap M_{s w}^{-}=0$, the equation above implies $[w] \in M_{w}^{\Omega,-}$, a contradiction.
To follow the approach of Section 3, we would need a method for associating to N_{w}^{Ω} a module corresponding to a principal series representation of a rank one group. The method used in Section 3 is the Jacquet functor. In the theory of p-adic Banach space representations, we still do not have a functor that plays the role of the Jacquet functor. Such a functor is defined for certain locally analytic representations in [8] and for mod p representations in [9].

Acknowledgements

We would like to thank Joe Hundley, Chris Jantzen and Marko Tadić for their valuable comments. We also thank the referee, whose remarks helped in improving the exposition and the proof.

References

[1] W. Alsibiani, Reducibility of Parabolically Induced Representations, PhD Thesis, Southern Illinois University, 2015.
[2] D. Ban and J. Hundley, On reducibility of p-adic principal series representations of p-adic groups, Represent. Theory, to appear.
[3] L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de $G L_{2}\left(\mathbb{Q}_{p}\right)$, Astérisque 330 (2010) 155-211.
[4] I.N. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977) 441-472.
[5] A. Borel, Linear Algebraic Groups, Springer-Verlag, 2nd edition, New York, 1991.
[6] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
[7] P. Colmez, Représentations de $G L_{2}\left(\mathbb{Q}_{p}\right)$ et (φ, Γ)-modules, Astérisque 330 (2010) 281509.
[8] M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups, I. Construction and first properties, Ann. Sci. Éc. Norm. Supér. (4) 39 (2006), no. 5, 775-839.
[9] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups, I: Definition and first properties, Astérisque 331 (2010) 355-402.
[10] M. Lazard, Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965) 389-603.
[11] L. Ribes and P. Zalesskii, Profinite Groups, A Series of Modern Surveys in Mathematics 40, Springer-Verlag, 2010.
[12] F. Rodier, Décomposition de la série principale des groupes réductifs p-adiques, in: Noncommutative Harmonic Analysis and Lie Groups (Marseille, 1980), pp. 408-424, Lecture Notes in Math. 880, Springer, Berlin-New York, 1981.
[13] P. Sally and M. Tadić, Induced representations and classifications for GSp(2,F) and $\mathrm{Sp}(2, \mathrm{~F})$, Mém. Soc. Math. Fr. (N.S.) 52 (1993), no. 2, 75-133.
[14] P. Schneider, Continuous representation theory of p-adic Lie groups, in: International Congress of Mathematicians, Vol. II, pp. 1261-1282, Eur. Math. Soc. Zürich, 2006.
[15] P. Schneider, p-Adic Lie Groups, Grundlehren der Math. Wiss. 344, Springer, Heidelberg, 2011.
[16] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Isr. J. Math. 127 (2002) 359-380.
[17] F. Shahidi, On certain L-functions, Amer. J. Math., 103 (1981) 297-355.
(Wahidah Alsibiani)
E-mail address: walsibiani@live.com
(Dubravka Ban)
E-mail address: dban@siu.edu

[^0]: Article electronically published on August 30, 2017.
 Received: 1 February 2016, Accepted: 20 July 2016.

 * Corresponding author.

