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Abstract. Let G be a reductive p-adic group. We consider the general
question of whether the reducibility of an induced representation can be
detected in a “co-rank one” situation. For smooth complex representa-

tions induced from supercuspidal representations, we show that a suffi-
cient condition is the existence of a subquotient that does not appear as
a subrepresentation. An important example is the Langlands’ quotient.
In addition, we study the same general question for continuous principal

series on p-adic Banach spaces. Although we do not give an answer in
this case, we describe a related filtration on the corresponding Iwasawa
modules.
Keywords: Parabolically induced representations, Iwasawa modules, p-

adic groups.
MSC(2010): Primary: 22E50; Secondary: 20G05.

1. Introduction

In this paper, we study two types of principal series representations of a p-
adic group G: smooth principal series on complex vector spaces and continuous
principal series on p-adic Banach spaces. Although the properties of continuous
and smooth principal series are fundamentally different, we are able to treat
both types of principal series in a uniform manner, using a filtration of the
group G.

Our main motivation is the understanding of continuous principal series,
which are important in the p-adic Langlands program [3, 7]. Smooth principal
series are well-understood. Still, we obtain a new result about reducibility;
namely, we show how the question of reducibility can be reduced to determin-
ing rank one reducibility (Theorem 3.4). Furthermore, we extend this result to
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a more general case of representations induced from supercuspidal representa-
tions (Theorem 4.1).

In Section 2, we study the filtration of G coming from the partial order on
the Weyl group. We apply this to the smooth principal series representations in
Section 3. In Section 4, we study representations induced from supercuspidals
and prove a criterion for reducibility (Theorem 4.1). Our approach to con-
tinuous principal series is based on the duality theory developed by Schneider
and Teitelbaum in [16], which relates Banach space representations to Iwasawa
modules. In Section 5, we prove a technical lemma on Iwasawa algebras. Sec-
tion 6 is a brief review of the duality of [16] applied to continuous principal
series. In Section 7, we describe filtrations of Iwasawa modules. We expect
that these filtrations could be used in determining the reducibility of principal
series. A conjecture about this difficult problem was formulated by Schneider
in [14].

2. Partial orders on W and [W/WΩ]

Let F be a nonarchimedean local field and G the group of F -rational points
of a connected reductive group defined over F . Fix a maximal split torus
T in G and a minimal parabolic subgroup P containing T . Let ∆ be the
corresponding set of simple roots. For Ω ⊆ ∆, we denote by PΩ = MΩUΩ

the standard parabolic subgroup corresponding to Ω. The minimal parabolic
corresponds to ∅ ⊆ ∆, P = P∅.

Let W be the Weyl group of G. For w ∈ W , let C(w) denote the double
coset PwP . The closure of C(w) with respect to the locally compact topology
is equal to its relative closure in the Zarisky topology ([5, Proposition 21.27])
and is described as follows.

Theorem 2.1 ([5, Theorem 21.26]). Let w ∈ W and w = s1 · · · sn be a reduced
decomposition of w. Then the set

Aw = {si1 · · · sim | m ∈ N, 1 ≤ i1 < · · · < im ≤ n}

depends only on w, not on the reduced decomposition, and we have

C(w) =
∪

v∈Aw

C(v).

We mention here that if x ∈ Aw, then the decomposition x = si1 · · · sim from
the previous theorem is not necessarily a reduced decomposition. However, we
can reduce it further to obtain a reduced decomposition of x.

Let Ω ⊆ ∆ and [W/WΩ] = {w ∈ W | wΩ > 0}. Then G has the disjoint
union decomposition G =

∪
w∈[W/WΩ] PwPΩ. Define a partial order on [W/WΩ]

as follows: x ≤Ω y if PxPΩ is contained in the closure of PyPΩ. In the special
case when Ω = ∅, we obtain a partial order on W and we denote it simply by
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≤. Hence, for x, y ∈ W ,

x ≤ y ⇐⇒ x ∈ Ay.

Lemma 2.2. Let Ω = {α}. If x, y ∈ [W/WΩ] then

x ≤ y ⇐⇒ x ≤Ω y.

Proof. Let s = sα and Q = PΩ = P ∪ PsP . We have PyQ = C(ys) =∪
v∈Ays

C(v). If x ≤ y, then x ∈ Ay, so xs ∈ Ays. It follows PxQ ⊆ PyQ, so
x ≤Ω y.

Conversely, assume x ≤Ω y. Then xs ∈ Ays. Let y = s1 · · · sn be a reduced
decomposition of y. Then ys = s1 · · · snsn+1, where sn+1 = s, is a reduced
decomposition of ys. Write x = si1 · · · sim as in Theorem 2.1, 1 ≤ i1 < · · · <
im ≤ n + 1, and assume that the decomposition is reduced. Then sim ̸= s, so
im < n+ 1 and x ≤ y. □

For each w ∈ [W/WΩ], define

GΩ
w =

∪
x∈[W/WΩ]

x≥w

PxPΩ, Gw = G∅
w,

GΩ,+
w =

∪
x∈[W/WΩ]

x>w

PxPΩ, G+
w = G∅,+

w .

Lemma 2.3. Let Ω = {α} and s = sα. If w ∈ [W/WΩ], then

(1) GΩ
w = Gw,

(2) G+
w = Gws ∪GΩ,+

w ,
(3) Gws ∩GΩ,+

w = G+
ws.

Proof. (1) Clearly, GΩ
w ⊆ Gw. For converse inclusion, let y ≥ w, so w ∈ Ay. If

ys > y, then y ∈ [W/WΩ]. It follows y ≥Ω w and PyP ⊆ GΩ
w.

If ys < y then there exists a reduced decomposition y = s1 · · · sn such that
sn = s. Let z = s1 · · · sn−1. Then z ∈ [W/WΩ]. Write w = si1 · · · sim as in
Theorem 2.1, and assume that the decomposition is reduced. Then im < n, so
w ∈ Az and z ≥ w. It follows that PzQ ⊆ GΩ

w, so PyP = PzsP ⊆ GΩ
w.

(2) Clearly, Gws ∪GΩ,+
w ⊆ G+

w . For converse inclusion, the proof goes along
the same lines as in (1), with inequalities replaced by strict inequalities. The
only difference is that in the case ys < y, we have to include z = w since
y = ws > w.

(3) Note that

PyP ⊆ GΩ,+
w ⇐⇒

{
y ∈ [W/WΩ], y > w, or,

y = zs, z ∈ [W/WΩ], z > w.

In both cases, y ̸= ws. It follows Gws ∩GΩ,+
w ⊆ G+

ws.
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For the converse inclusion, let y > ws. Then y > w. If y ∈ [W/WΩ], then
y >Ω w, so PyP ⊆ GΩ,+

w . Otherwise, y = zs, z ∈ [W/WΩ]. Similarly as
in (1), we get z > w, and consequently PyP ⊆ PzQ ⊆ GΩ,+

w . This proves
G+

ws ⊆ GΩ,+
w . Now, G+

ws ⊆ Gws implies G+
ws ⊆ Gws ∩ GΩ,+

w , finishing the
proof. □

3. Filtrations on smooth principal series

Let R(G) denote the category of smooth representations of G on complex

vector spaces. We denote by IndGPΩ
: R(MΩ) → R(1G) the functor of normal-

ized parabolic induction ([4, 6]).
Let χ be a smooth character of P = P∅ = MU . Let I = I(χ) denote the

space of the representation IndGP (χ). It is the space of all functions f : G → C
such that

(i) f(mug) = χ(m)δ
1/2
P (m)f(g) for all m ∈ M , u ∈ U , g ∈ G, and

(ii) there exists a compact open subgroup Kf of G such that f(gk) = f(g)
for all g ∈ G, k ∈ Kf .

The group G acts on I by the right regular action. Define

Iw = {f ∈ I | supp f ⊆ Gw}, IΩw = {f ∈ I | supp f ⊆ GΩ
w},

I+w = {f ∈ I | supp f ⊆ G+
w}, IΩ,+

w = {f ∈ I | supp f ⊆ GΩ,+
w },

Jw = Iw/I
+
w , JΩ

w = IΩw/I
Ω,+
w .

Lemma 3.1. Let Ω = {α}. If w ∈ [W/WΩ], then

(1) IΩw = Iw,
(2) I+w = Iws + IΩ,+

w ,
(3) Iws ∩ IΩ,+

w = I+ws.

Proof. (1) and (3) follow immediately from Lemma 2.3. For (2), let

X = {x ∈ W | C(x) ⊆ GΩ,+
w , C(ws) ̸⊆ C(x)}.

The second condition is equivalent to ws ̸≤ x. Since the double cosets are
disjoint, it is also equivalent to C(ws) ∩ C(x) = ∅. Let

X =
∪
x∈X

C(x).

Let K be a maximal compact subgroup such that G = PK. Set H = C(ws).
Since PH = H, it follows H = P (H ∩K).

Let f ∈ I+w . In order to write f as f = f ′+f ′′, where f ′ ∈ Iws and f ′′ ∈ IΩ,+
w ,

we will construct a function f ′ from the induced space which coincides with
f on C(ws) and whose support is disjoint from X and from H \ C(ws). Note
that such a function has to be invariant under the action of a compact open
subgroup of G. We start our construction with a compact open subgroup Kf

such that f(gk) = f(g) for all g ∈ G, k ∈ Kf . The definition of X implies
that for every y ∈ C(ws) there exists a compact open subgroup K ′

y such that
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yK ′
y ∩ X = ∅. Let Ky = K ′

y ∩ Kf . Then yKy ∩ X = ∅. For y ∈ H \ C(ws),
set Ky = Kf . Then f(yk) = 0 for all y ∈ H \ C(ws), k ∈ Ky. The set
{yKy | y ∈ H ∩K} is a cover of the compact subset H ∩K, so it has a finite
subcover {yKy | y ∈ Y }. Let

Y =
∪
y∈Y

yKy.

Denote by f ′ the product of f with the characteristic function of PY. Then f ′

is invariant under the action of the compact open subgroup
∩

y∈Y Ky. We have

f ′ ∈ I, supp f ′ ⊆ G+
w and (supp f ′) ∩ X = ∅. It follows f ′ ∈ Iws. Furthermore,

f ′′ = f − f ′ ∈ IΩ,+
w . This implies I+w ⊆ Iws + IΩ,+

w . The converse inclusion is
obvious. □

Lemma 3.2. Let Ω = {α}. If w ∈ [W/WΩ], then JΩ
w/Jws

∼= Jw.

Proof. Using Lemma 3.1, we get

Jws = Iws/I
+
ws = Iws/(Iws ∩ IΩ,+

w ) ∼= (Iws + IΩ,+
w )/IΩ,+

w = I+w /IΩ,+
w .

Therefore, Jws embeds into JΩ
w . Moreover,

JΩ
w/Jws = (IΩw/I

Ω,+
w )/(I+w /IΩ,+

w ) ∼= IΩw/I
+
w = Iw/I

+
w = Jw.

□

We obtain the following commutative diagram

0
↓

0 → I+ws → Iws → Jws → 0
↓ ↓ ↓

0 → IΩ,+
w → IΩw → JΩ

w → 0
↓
Jw
↓
0

.

Suppose I is a proper subrepresentation of I. Define IΩ
w = I ∩ IΩw , IΩ,+

w =
I∩IΩ,+

w and J Ω
w = IΩ

w/IΩ,+
w . We want to select w and α so that J Ω

w is a proper
nonzero submodule of JΩ

w . Furthermore, we want to pass to representations of
M{α}, and obtain from J Ω

w a proper subrepresentation of a principal series of
M{α}. For this, we use Jacquet modules of parabolically induced representa-

tions ([4, 6]). Since the Jacquet module of JΩ
w is precisely a principal series

of M{α}, we select w and α by considering directly Jacquet modules (see the
proof of Theorem 3.4).
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For each w ∈ [W/WΩ], let dΩ(w) be the dimension of the algebraic variety
P \ PwPΩ over F . Define

GΩ
n =

∪
dΩ(w)≥n

PwPΩ and IΩn = {f ∈ I | supp f ⊆ GΩ
n}.

Let (π, V ) be a smooth representation of G. For a compact subgroup U0 ⊂ UΩ,
define

V (U0) = {v ∈ V |
∫
U0

π(u)vdu = 0}.

Define V (UΩ) to be
∪
V (U0), the union over all compact open subgroups U0

of UΩ. Then V (UΩ) is a subspace of V [6]. Define rGMΩ
(V ) = V/V (UΩ). The

normalized Jacquet module rGMΩ
(π) is the representation of MΩ on the space

rGMΩ
(V ) given by

rGMΩ
(π)(m)(v + V (UΩ)) = δ

−1/2
PΩ

(m)π(m)v + V (UΩ),

m ∈ MΩ, v ∈ V [4]. If W ⊂ V is a PΩ-invariant subspace, then rGMΩ
(V ) is

MΩ-invariant.

Theorem 3.3 ([6, Theorem 6.3.5]). Let P = P∅ = MU and Ω ⊆ ∆. Let χ be

a smooth character of M , I = IndGP χ. There exists a filtration

0 ⊆ IΩnℓ
⊆ · · · ⊆ IΩ0 = I

by PΩ-stable subspaces such that rGMΩ
(IΩn /I

Ω
n+1)

∼= rGMΩ
(IΩn )/r

G
MΩ

(IΩn+1) is iso-

morphic to the direct sum
⊕

rGMΩ
(JΩ

w ), the sum ranging over w ∈ [W/WΩ] with

dΩ(w) = n. Furthermore, the normalized Jacquet module rGMΩ
(JΩ

w ) is given by

rGMΩ
(JΩ

w ) ∼= IndMΩ

w−1Pw∩MΩ
w−1χ.

The proof of the next theorem, as well as the proof of Theorem 4.1, is
improved and shortened, as suggested by the referee.

Theorem 3.4. Let P = P∅ = MU . Let χ be a character of M and I(χ) =

IndGP χ. Suppose that I(χ) has an irreducible subquotient which does not appear
as a subrepresentation in I(χ). Then there exist α ∈ ∆ and w ∈ W such that

Ind
M{α}
P∩M{α}

w−1χ is reducible.

Proof. Denote by I an irreducible subquotient of I(χ) which does not appear
as a subrepresentation in I(χ). Then there exists w′ ∈ W such that I is a
subrepresentation of I(w′χ). Let χ′ = w′χ, I = I(χ′). Define

WI = {v ∈ W | HomM (rGM (I), v−1χ′) = 0}.

Since I does not appear as a subrepresentation of I(χ), HomM (rGP (I), χ) = 0
so w′ ∈ WI . Moreover, 1 /∈ WI because I is a subrepresentation of I. Let
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w0 be a minimal element in WI . Here, we consider the partial order on W as
defined in section 2. Since w0 ̸= 1, there exists α ∈ ∆ such that w0α < 0. Let

s = sα, w = w0s, Ω = {α}, PΩ = P ∪ PsP.

Then w ∈ [W/WΩ]. In addition, w < w0, so w /∈ WI . The Frobenius reciprocity
gives us

0 ̸= HomM (rGM (I), w−1χ′) = HomM (rMΩ

M ◦ rGMΩ
(I), w−1χ′)

∼= HomMΩ(r
G
MΩ

(I), IndMΩ

P∩MΩ
(w−1χ′)).

In the same way, 0 = HomMΩ(r
G
MΩ

(I), IndMΩ

P∩MΩ
(sw−1χ′)). Hence,

IndMΩ

P∩MΩ
(w−1χ′) ≇ IndMΩ

P∩MΩ
(sw−1χ′).

Since these representations have the same composition factors ([6, Theorem
6.3.11]), if irreducible, they would be isomorphic. It follows that IndMΩ

P∩MΩ
(w−1χ′)

= IndMΩ
P∩MΩ

(w−1w′χ) is reducible. □

Remark 3.5. Theorem 3.4 does not remain true if I(χ) is reducible, but we
remove the hypothesis that I(χ) has a subquotient which does not appear as
a subrepresentation in I(χ). The following example was communicated to us
by Marko Tadić. Let χ1, χ2 be two different characters of F× of order 2. The
unitary principal series representation of GSp(6, F ) induced from χ1 ⊗ χ2 ⊗
χ1χ2 has length 2, but we have irreducibility for all rank one Levi subgroups,
and even for all rank two Levi subgroups (because unitary principal series for
GL(3, F ) and GSp(4, F ) are irreducible [13]).

Example 3.6 (Langlands’ Quotients). Let χ0 be a character ofM = M∅ which
is square-integrable modulo center. For Ω ⊂ ∆, the induced representation
IndMΩ

M χ0 decomposes as a direct sum of tempered representations, IndMΩ

M χ0 =
⊕τi. Let ν be an unramified character of MΩ which takes positive real values
and is strictly positive (in Weyl chamber). Then IndGMΩ

(ντi) has a unique
irreducible quotient π (Langlands’ quotient). It appears with multiplicity one in

IndGMΩ
(ντi). Moreover, it can be shown using central exponents and uniqueness

of Langlands’ data that π does not appear as a subquotient in IndGMΩ
(ντj) for

any τj ≇ τi.

Assume that IndGMΩ
(ντi) is reducible. Corresponding to ν is a character of

M , which we will denote by the same letter ν, such that IndGMΩ
(ντi) is a sub-

representation of IndGM (νχ0). Then π does not appear as a subrepresentation

in IndGM (νχ0) and we can apply Theorem 3.4. It follows that there exist α ∈ ∆

and w ∈ W such that Ind
M{α}
M w−1(νχ0) is reducible.
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4. Generalization

In this section, we generalize Theorem 3.4.

Theorem 4.1. Let Θ ⊆ ∆. Let PΘ = MΘUΘ. Let σ be an irreducible supercus-
pidal representation of MΘ and I(σ) = IndGPΘ

σ. Suppose that I(σ) has an irre-
ducible subquotient which does not appear as a subrepresentation in I(σ). Then

there exist w0 ∈ W and Ω ⊆ ∆ such that Ω = w0(Θ)∪ {α} and IndMΩ

w0(MΘ) w0σ

is reducible.

We give a brief proof. For more detail, see [1].

Proof. Set W (Θ,Θ) = {w ∈ W | w(Θ) = Θ}. Denote by I an irreducible
subquotient of I(σ) which does not appear as a subrepresentation in I(σ).
Then there exists w′ ∈ W (Θ,Θ) such that I is a subrepresentation of I(w′σ).
Let σ′ = w′σ, I = I(σ′). Define

WI = {v ∈ W | v(Θ) ⊆ ∆ and Homv(MΘ)(r
G
v(MΘ)(I), vσ

′) = 0}.

Similarly as in the proof of Theorem 3.4, we see that (w′)−1 ∈ WI and 1 /∈ WI .
Let wmin be an element of WI of minimum length and Θ′ = wmin(Θ). Now, we
apply [17, Lemma 2.1.2]. In particular, let Θ = Θ1, . . . ,Θn = Θ′ be a sequence
of associate subsets of ∆ as in [17, Lemma 2.1.2]. Then for any 1 ≤ i ≤ n− 1
there exists a simple root αi such that Θi+1 is the conjugate of Θi in Θi∪{αi}.
We have wmin = wn−1 . . . w1, where wi ∈ W (Θi,Θi+1). Set y = wn−1 and
w = wn−2 . . . w1. By minimality, w /∈ WI and we have

Homw(MΘ)(r
G
w(MΘ)(I), wσ

′) ̸= 0, Homyw(MΘ)(r
G
yw(MΘ)(I), ywσ

′) = 0.

Let α1, . . . , αn−1 be as in [17, Lemma 2.1.2]. Set α = αn−1 and Ω = w(Θ)∪{α}.
Then yw(Θ) is the conjugate of w(Θ) in Ω. The Frobenius reciprocity gives us

Homw(MΘ)(r
G
w(MΘ)(I), wσ

′) = Homw(MΘ)(r
MΩ

w(MΘ) ◦ r
G
MΩ

(I), wσ′)

∼= HomMΩ
(rGMΩ

(I), IndMΩ

w(MΘ)(wσ
′)) ̸= 0.

In the same way, HomMΩ(r
G
MΩ

(I), IndMΩ

yw(MΘ)(ywσ
′)) = 0. Hence,

IndMΩ

w(MΘ)(wσ
′) ≇ IndMΩ

yw(MΘ)(ywσ
′).

As in the proof of Theorem 3.4, it follows that these representations are re-
ducible. Hence, IndMΩ

w(MΘ)(ww
′σ) = IndMΩ

w(MΘ)(wσ
′) is reducible. Note that

reducibility implies that yw(Θ) = w(Θ). To complete the proof, we may select
w0 to be either ww′ or yww′. □

Define W (σ) = {w ∈ W (Θ,Θ) | wσ ∼= σ} and call σ regular if W (σ) = {1}.

Corollary 4.2. Let PΘ = MΘUΘ. Let σ be an irreducible supercuspidal repre-
sentation of MΘ. Suppose that σ is regular. Then I(σ) = IndGPΘ

σ is reducible
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if and only if there exist w0 ∈ W and Ω ⊆ ∆ such that Ω = w0(Θ) ∪ {α} and

IndMΩ

w0(MΘ) w0σ is reducible.

Proof. Suppose that σ is regular. Then rGMΘ
(I(σ)) =

⊕
w∈W (Θ,Θ) wσ is a direct

sum of mutually inequivalent components ([6, Proposition 6.4.1]). Since the
Jacquet functor is exact, it follows that every component of I(σ) appears with
multiplicity one. Furthermore, if V is an irreducible subrepresentation of I(σ),
then the Frobenius reciprocity gives us HomG(V, I(σ)) ∼= HomMΘ(r

G
MΘ

(V ), σ).

Since the multiplicity of σ in rGMΘ
(I(σ)) is one, it follows that I(σ) has a

unique irreducible subrepresentation. Therefore, if I(σ) is reducible, it satisfies
the conditions of Theorem 4.1. □

In the case of principal series, the previous corollary also follows from Rodier’s
work on the principal series induced from regular characters [12].

5. Iwasawa algebras

We start by reviewing some results on projective limits. We refer to [11]
for definitions of a projective system and a projective limit. The following
two propositions follow from Proposition 1.1.3, Proposition 1.1.4 and Corollary
1.1.8 of [11].

Proposition 5.1. Let (Xi) be a projective system of compact Hausdorff topo-
logical spaces over the directed set I, and let X = proj limXi.

(a) If Xi is totally disconnected, for all i ∈ I, then X is also a compact
Hausdorff totally disconnected topological space.

(b) If Xi is nonempty, for all i ∈ I, then X is also nonempty.

Proposition 5.2. Let (Xi) be a projective system of compact Hausdorff spaces,
X = proj limXi, and let φi : X → Xi be the projections.

(a) If Y is a closed subspace of X, then Y = proj limφi(Y ).
(b) If Y is a subspace of X, then Y = proj limφi(Y ), where Y is the closure

of Y in X.
(c) If Y and Y ′ are subspaces of X and φi(Y ) = φi(Y

′) for each i, then
their closures in X coincide: Y = Y ′.

Next, we review the definition and basic properties of Iwasawa algebras ([10],
[15]). Let H be a profinite group. Let N (H) denote the family of all open
normal subgroups of H. Then H = proj limN∈N (H) H/N is a projective limit,

as a topological group, of the finite groups H/N . Let K be a finite extension
of Qp, and oK its ring of integers. The group rings oK [H/N ], N ∈ N (H), form
a projective system of rings. The Iwasawa algebra of H over oK is defined as

oK [[H]] = proj lim
N∈N (H)

oK [H/N ].
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We equip oK [[H]] with the projective limit topology. Then oK [[H]] is a torsion
free and compact linear-topological oK-module. It has a structure of a topologi-
cal ring; the ring multiplication is continuous. The inclusion map H ↪→ oK [[H]]
is a homeomorphism onto its image.

Define K[[H]] = K ⊗oK oK [[H]], endowed with the finest locally convex
topology such that the inclusion of oK [[H]] is continuous. Then the multipli-
cation on K[[H]] is separately continuous.

Let A be a closed subset of H. For N ∈ N (H), define AN = {aN | a ∈
A} ⊆ H/N . Let ⟨AN ⟩ denote the oK-submodule of oK [H/N ] generated by
AN . Then ⟨AN ⟩, N ∈ N (H), is a projective system of topological oK-modules.
Define

Λo(A) = proj lim
N∈N (H)

⟨AN ⟩ and Λ(A) = K ⊗oK Λo(A).

Then Λo(A) is a closed oK-submodule of oK [[H]] and Λ(A) is a closed K-
subspace of K[[H]].

Lemma 5.3. Let A,B be closed subsets of H.

(a) Λo(A) is a compact Hausdorff totally disconnected topological space.
(b) Λo(A ∪B) = Λo(A) + Λo(B), and Λ(A ∪B) = Λ(A) + Λ(B).
(c) Λo(A ∩B) = Λo(A) ∩ Λo(B), and Λ(A ∩B) = Λ(A) ∩ Λ(B).

Proof. (a) follows from Proposition 5.1. (b) follows from Proposition 5.2, be-
cause

⟨AN ∪BN ⟩ = ⟨AN ⟩+ ⟨BN ⟩ for all N ∈ N (H).

(c) Set C = A ∩B. Since

⟨CN ⟩ ⊆ ⟨AN ⟩ ∩ ⟨BN ⟩ for all N ∈ N (H),

we immediately get Λo(C) ⊆ Λo(A)∩Λo(B). Assume Λo(C) ̸= Λo(A)∩Λo(B).
Then there exists µ ∈ Λo(A) ∩ Λo(B) such that µ /∈ Λo(C). Write

µ = (µN )N∈N (H), µN ∈ oK [H/N ].

Then there exists N0 ∈ N (H) such that µN0 /∈ ⟨CN0⟩. Write

µN0
= α1a1N0 + · · ·+ αkakN0 = α1b1N0 + · · ·+ αkbkN0,

where αi ∈ oK , ai ∈ A, bi ∈ B, and aiN0 = biN0 for all i. We can decompose
µ as

µ = µ1 + · · ·+ µk, µi ∈ Λo(aiN0).

Note that (µi)N0 = αiaiN0. Select ℓ ∈ {1, . . . , k} such that αℓaℓN0 /∈ ⟨CN0⟩.
Then aℓN0 ̸= cN0 for any c ∈ C. Let λ = µℓ. Then λ ∈ Λo(aℓN0) = Λo(bℓN0)
and λ /∈ Λo(C).

For any c ∈ C there exists Nc ∈ N (H) such that aℓN0 ∩ cNc = ∅. Then
{cNc | c ∈ C} is an open cover of C. The set B1 = B \

∪
c∈C cNc is closed,

and disjoint from A. For any b ∈ B1 there exists Nb ∈ N (H) such that
A ∩ bNb = ∅. Then {bNb | b ∈ B1} is an open cover of B1. By compactness, it
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has a finite subcover. It follows that we can find N1 ∈ N (H), N1 ≤ N0, such
that A ∩ bN1 = ∅ for all b ∈ B1. Now, write

λN1 = α′
1a

′
1N1 + · · ·+ α′

sa
′
sN1.

Since α′
1 + · · · + α′

s = αℓ ̸= 0, at least one coefficient α′
i is not zero. Since

a′i /∈ bN1 for any b ∈ B, we have α′
ia

′
iN1 /∈ ⟨BN1⟩. This contradicts λ ∈

Λo(biN0). □

6. Continuous principal series

From now on, F is a finite extension of Qp, and K is a finite extension of F .
As before, P = P∅ is a minimal parabolic subgroup of G. Let χ : P → K× be
a continuous character. Let

cIndGP (χ
−1) = {f : G → K continuous | f(gp) = χ(p)f(g) ∀p ∈ P, g ∈ G},

where G acts on the left by g · f(h) = f(g−1h). Here, we take the left action
because we will use the duality [16].

Let G0 ⊂ G be a maximal compact subgroup which satisfies the Iwasawa
decomposition G = G0P . If P0 = P ∩G0 and χ0 = χ|P0 , then restriction gives

an isomorphism cIndGP (χ
−1) ∼= cIndG0

P0
(χ−1

0 ).

Let K(χ0) denote the one dimensional representation of P0 on K given by
χ0. The continuous dual of cIndG0

P0
(χ−1

0 ) is isomorphic to

M (χ0) = K[[G0]]⊗K[[P0]] K
(χ0).

The isomorphism cIndGP (χ
−1) ∼= cIndG0

P0
(χ−1

0 ) induces a G-module structure

on M (χ0). We denote this G-module by M (χ). Hence, M (χ) is a G-module and
K[[G0]]-module. It follows from Theorem 3.5 of [16] that there is a bijection

between G-invariant closed subspaces of cIndGP (χ
−1) and G-invariant K[[G0]]-

quotient modules of M (χ).

7. Iwasawa modules

Similarly to open subsets of G defined in Section 2, we define certain closed
subsets of G. For w ∈ W , define

Hw = PwP =
∪
x≤w

PxP, H−
w =

∪
x<w

PxP.

Let α ∈ ∆, Ω = {α}, and s = sα. For w ∈ [WΩ \W ] = {w ∈ W | w−1Ω > 0},
define

HΩ
w =

∪
x∈[WΩ\W ]

x≤w

PΩxP, HΩ,−
w =

∪
x∈[WΩ\W ]

x<w

PΩxP.

For X ⊂ K[[G0]], we denote by [X] the image of X in M (χ). There exists a
compact set C ⊂ G0 such that C is a set of coset representatives of G/P (see
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[2] for an explicit description of such a set). Then the map µ 7→ [µ] defines an
isomorphism between Λ(C) and M (χ) ([2], Corollary 15). Fix such a compact
set C. The sets Hw, H

−
w , HΩ

w and HΩ,−
w are closed in G, so we can define, for

w ∈ W ,

Mw = [Λ(C ∩Hw)], M−
w = [Λ(C ∩H−

w )], and Nw = Mw/M
−
w .

Similarly, for w ∈ [WΩ \W ], we define

MΩ
w = [Λ(C ∩HΩ

w )], MΩ,−
w = [Λ(C ∩HΩ,−

w )], and NΩ
w = MΩ

w /MΩ,−
w .

Lemma 7.1. Let Ω = {α} and s = sα. If w ∈ [WΩ \W ], then

(a) MΩ
w = Msw,

(b) Mw ∩MΩ,−
w = M−

w ,
(c) Mw +MΩ,−

w = M−
sw.

Proof. (a) is clear, because HΩ
w = Hsw. For (b) and (c), note that

Hw ∩HΩ,−
w =

 ∪
x≤w

PxP

 ∩

 ∪
x∈[WΩ\W ]

x<w

PΩxP

 = H−
w

and

Hw ∪HΩ,−
w =

 ∪
x≤w

PxP

 ∪

 ∪
x∈[WΩ\W ]

x<w

PΩxP

 = H−
sw.

Lemma 5.3 implies

Λ(C ∩Hw) ∩ Λ(C ∩HΩ,−
w ) = Λ((C ∩Hw) ∩ (C ∩HΩ,−

w ))

= Λ(C ∩ (Hw ∩HΩ,−
w )) = Λ(C ∩H−

w ).

It follows Mw ∩MΩ,−
w = M−

w . Similarly,

Λ(C ∩Hw) + Λ(C ∩HΩ,−
w ) = Λ((C ∩Hw) ∪ (C ∩HΩ,−

w ))

= Λ(C ∩ (Hw ∪HΩ,−
w )) = Λ(C ∩H−

sw)

gives Mw +MΩ,−
w = M−

sw. □

Lemma 7.2. Let Ω = {α}. If w ∈ [WΩ \W ], then NΩ
w /Nw

∼= Nsw.

Proof. Using Lemma 7.1, we get

Nw
∼= Mw/M

−
w

∼= Mw/(Mw ∩MΩ,−
w ) ∼= (Mw +MΩ,−

w )/MΩ,−
w

∼= M−
sw/M

Ω,−
w .

Then

NΩ
w /Nw

∼= (Msw/M
Ω,−
w )/(M−

sw/M
Ω,−
w ) ∼= Msw/M

−
sw

∼= Nsw.

□
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Hence, we have the following commutative diagram

0
↓

0 → M−
w → Mw → Nw → 0
↓ ↓ ↓

0 → MΩ,−
w → MΩ

w → NΩ
w → 0
↓

Nsw

↓
0

.

Note that M (χ) is a cyclic K[[G0]]-module, generated by [1]. Let S be
a K[[G0]]-submodule and G-submodule of M (χ). Assume that S ̸= 0 and
S ̸= M (χ). Then [1] /∈ S and S ∩ M1 = 0. Moreover, there exists a minimal
w′ ∈ W such that S ∩ Mw′ ̸= 0. Write w′ = sw, where s = sα is a simple
reflection. Hence,

S ∩Msw ̸= 0, S ∩Mx = 0, for all x < sw.

In particular, S ∩Mw = 0, S ∩MΩ,−
w = 0, S ∩M−

sw = 0.

Lemma 7.3. S ∩MΩ
w is isomorphic to a proper submodule of NΩ

w .

Proof. Since S ∩MΩ,−
w = 0, we have

S ∩MΩ
w

∼= (S ∩MΩ
w )/(S ∩MΩ,−

w )

∼= (S ∩MΩ
w ) +MΩ,−

w /MΩ,−
w ⊆ MΩ

w /MΩ,−
w = NΩ

w .

We have to prove (S ∩ MΩ
w ) + MΩ,−

w ̸= MΩ
w . Assume, on the contrary, that

(S ∩MΩ
w ) +MΩ,−

w = MΩ
w . Then we can write [w] ∈ MΩ

w as

[w] = [σ] + [ν], [σ] ∈ S ∩MΩ
w , [ν] ∈ MΩ,−

w .

Then

[σ] = [w]− [ν] ∈ Mw +MΩ,−
w = M−

sw.

Since S∩M−
sw = 0, the equation above implies [w] ∈ MΩ,−

w , a contradiction. □

To follow the approach of Section 3, we would need a method for associating
to NΩ

w a module corresponding to a principal series representation of a rank one
group. The method used in Section 3 is the Jacquet functor. In the theory of
p-adic Banach space representations, we still do not have a functor that plays
the role of the Jacquet functor. Such a functor is defined for certain locally
analytic representations in [8] and for mod p representations in [9].
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[15] P. Schneider, p-Adic Lie Groups, Grundlehren der Math. Wiss. 344, Springer, Heidel-

berg, 2011.
[16] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Isr.

J. Math. 127 (2002) 359–380.
[17] F. Shahidi, On certain L-functions, Amer. J. Math., 103 (1981) 297–355.

(Wahidah Alsibiani)

E-mail address: walsibiani@live.com

(Dubravka Ban)

E-mail address: dban@siu.edu


	1. Introduction
	2. Partial orders on W and [W/W]
	3. Filtrations on smooth principal series
	4. Generalization
	5. Iwasawa algebras
	6. Continuous principal series
	7. Iwasawa modules
	Acknowledgements
	References

