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Abstract. This paper extends to the pro-p Iwahori subgroup of GL(2)
over an unramified finite extension of Qp the presentation of the Iwasawa
algebra obtained earlier by the author for the congruence subgroup of

level one of SL(2,Zp). It then describes a natural base change map
between the Iwasawa algebras or more correctly, as it turns out, between
the global distribution algebras on the associated rigid-analytic spaces. In
a forthcoming paper this will be applied to p-adic representation theory.

Keywords: Iwasawa theory, automorphic representations, rigid analytic
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1. Introduction

This is the first part of a study of base change for globally analytic represen-
tations of the pro-p-Iwahori subgroup of GL(2) over an unramified extension of
Qp. This paper contains an extension to such fields, and to the pro-p-Iwahori,
of the presentation given in [6] of the Iwasawa algebra. We are led naturally
(Section 3.3) to a base change map; however, this map makes sense only for the
algebras of global distributions on the rigid-analytic spaces; it is constructed
in Chapter 4.

In the second part, we will follow the implications of this construction for
certain p-adic representations of our groups. This Introduction concerns both
papers.

1.1. We first recall some well-known facts about admissible complex represen-
tations of GL(n, F ) when F is a local field.
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Globally analytic p-adic representations 56

Assume first that F is p–adic. Let E/F be an unramified extension of
degree r. There exists a base change map which to each admissible irreducible
representation π of GL(n, F ) associates an admissible representation πE of
GL(n,E) [1, Section 2.2].

The local Langlands conjecture is known [7, 8] and we know that π is asso-
ciated to a representation r of degree n of the Weil–Deligne group WDF of F .
(Here a systematic normalization of the correspondence must be specified, but
this is inessential for us. For instance adopt the normalization of [7, Introduc-
tion]). We can restrict r to WDE , to rE , and it is known (indeed part of the
proof) that rE is associated to πE .

There are two opposite kinds of representations. We can first consider the
unramified principal series. Here

π = indGB(χ1, . . . , χn)

(unitary induction), where G = GL(n, F ), B is a Borel subgroup, and the
χi are unramified characters of F×. Assume the χi unitary, so the induced
representation is irreducible. Then

πE = indGE

BE
(η1, . . . ηn)

where GE = GL(n,E), BE is its Borel subgroup, and ηi = χi ◦NE/F .
In this case, base change is naturally associated to a homomorphism of

Hecke algebras [9]. Let HF , HE be the unramified Hecke algebras of com-
pactly supported functions invariant by GL(n,OF ), GL(n,OE). There is a
homomorphism

b : HE −→ HF ,

and the action of φ ∈ HE on the spherical vector in πE is given by λF ◦ b,
λF : HF → C being the character associated to the spherical vector in πF .

On the other hand, we can consider a supercuspidal representation π of
GL(n, F ), associated to an irreducible representation r of WF (thus also of
WDF .) In this case π has a minimal K–type – a type in the terminology of
[4], which defines a representation τ of GL(n,OF ) [12].

This is uniquely associated to the inertial type of π, i.e., its equivalence class
under twist by unramified characters of the determinant. This class corre-
sponds bijectively to the restriction of r to the inertia IF ⊂ WF , an irreducible
representation of IF . Thus we can see τ , a representation of GL(n,OF ), as
being associated to r|IF .

The restriction of r to IE is not necessarily irreducible – of course, the cases
of reducibility are easily understood. When it is, however, we see that the
representation τE occurring in πE is naturally associated to τ .

In this case, however, although the map π ⇝ πE is compatible, via the base
change “transfer” [1, Section 1.3], to a correspondence of functions φ ⇝ f ,
there does not seem to exist, in general, a homomorphism of Hecke algebras
realising this correspondence.
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We end this introductory description with the case when F = R and E = C.
In this case the local correspondence, with representations of degree n of WR
(resp. WC), has been proved by Langlands [10] (completed by Speh [15]). We
can consider the restricted class of the finite–dimensional, algebraic, irreducible
representations of GL(n,R).

If π is such a representation, on a complex vector space V , we can extend it
holomorphically to GL(n,C), identifying the extension C of R with the complex
field of coefficients : we still denote it by π. Let π̄ be the complex conjugate.
Then [5, Proposition 3.2] π ⊗ π̄ = πC is the representation of GL(n,C) associ-
ated by base change to π.

Finally, assume F is a finite field, E/F an extension of degree r, and fix an
embedding of E into an algebraic closure F̄ of F . Then Steinberg’s theorem
[16] tells us that any algebraic, irreducible representation πE of GL(n,E) (seen
as an F -group) over F̄ can be written

πE = π1 ⊗ πφ
2 ⊗ · · · ⊗ πφr−1

r ,

where πi is an irreducible algebraic representation of GL(n, F ), extended E–
linearly to GL(n,E), and φ is the Frobenius automorphism acting in GL(n,E).
If the πi are isomorphic to π, we can see πE as the base change of π. This is
the construction that we will extend.

1.2. This paper arose from the natural attempt at extending to a p–adic field
L the presentation given in [6] of the Iwasawa algebra of the level–1 subgroup

Γ1SL(2,OL) = ker(SL(2,OL) −→ SL(2, kL)) .

We extend this in two ways. First, following a suggestion of Gaëtan Chenevier
(whom we heartfully thank) we consider instead the pro–p–Iwahori subgroup,
denoted by I in this introduction :

I = {g ∈ GL(2,OL) : ḡ ∈ N(kL)},

where N =
{(

1 ∗
0 1

)}
. This is a maximal pro–p– subgroup of GL(2, L).

If L is unramified over Qp, we will give (for p > 5, see Chapter 2) a presen-
tation of the Iwasawa algebra entirely similar to that given in [6].

To be more specific in this Introduction, assume now that kr is an extension
of degree r of Fp and that L is the fraction field of OL = W (kr), the ring of
Witt vectors.

Let Λ1, Λr be the Iwasawa algebras for the pro-p-Iwahori subgroups, re-
spectively in GL(2,Qp) and GL(2, L). Then it appears immediately in the
presentation obtained for Λ1, Λr that there is a formal homomorphism

b : Λr −→ Λ1 ,

exactly similar to that existing, in the classical situation between unramified
Hecke algebras.
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Here “formal” is taken in the colloquial, or informal sense. To explain this,
note that, just as in [6], the algebra Λ1 can be seen as a space of formal series

(1.1) f =
∑
n

anY
n1Hn2Xn3Zn4

(n = (n1, n2, n3, n4) ∈ N4) with an ∈ Zp. (See §2.) Similarly, an element
φ ∈ Λr can be seen as a formal series, with coefficients in Zp, in 4r variables.
(The variables, in each case, do not commute! Their relations are given be-
fore Theorem 3.1) Given φ we can naturally define an expansion (1.1) for a
“distribution” f , but the coefficients an do not belong to Zp, and are not even
integral.

It is then natural to inquire for which spaces of distributions φ, f (subspaces
of Λr, Λ1) this map is actually defined. It turns out that these spaces are the
spaces Dr, D1 of global distributions on the pro–p–Iwahori subgroups Ir, I1.

Recall that on a p–adic Lie group such as Ir, we can consider the space Dloc

introduced by Schneider and Teitelbaum (who denote it by D) of distributions,
dual to the space Can of locally analytic functions. Here, for p > 5, our pro–
p–Iwahori subgroups have a richer structure: they are saturated pro–p–groups
in the sense of Lazard, i.e., group objects in the category of rigid–analytic
varieties, respectively over Qp and L, cf. [11, III. 1.3.4, III. 3.3.2]. We can
then consider the Qp–vector space A1 of globally analytic functions on I1 (· · ·
seen as a rigid–analytic space) and the Qp–vector space Ar of globally analytic
function on Ir, seen by restriction of scalars as a rigid analytic space over Qp.
The map which appeared formally in Section 3.3 is then obtained naturally in
Section 4 as a map between the duals Dr, D1 of Ar and A1. (Note that the
spaces A and D are Banach spaces, unlike the topologically more complicated
spaces of Schneider–Teitelbaum.) We must however, for this, extend scalars,
so we obtain

b : Dr −→ D1 ⊗Qp L.

2. Iwasawa algebra : the case of Qp

2.1. Let L/Qp be a finite extension, and e its ramification index. We will
assume, in this paragraph, that L is mildly ramified, i.e.

(2.1) 2e < p− 1 .

In particular p ≥ 5. (Note that the condition (2.1) is adequate only because
we are working with GL(2). For GL(n) it would be ne < p − 1, cf. [11, III.
3.2.7.5]).

Let p, O = OL denote the prime ideal, the integers of L. We denote by G
the pro–p–Iwahori subgroup of GL(2, L), i.e.

G =
{
g ∈ GL(2,OL) : g ≡

(
1 ∗
0 1

)
[p]

}
.
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Proposition 2.1 (Lazard). G is a saturated p–valued pro–p–group.

We recall Lazard’s proof. (Cf. also [14, p. 172].) Denote by v or vp the
canonical p–valuation on any finite extension of Qp, i.e., v(p) = 1.

By (2.1) we can choose a rational number α such that

1

p− 1
< α <

1

e
− 1

p− 1
.

Choose an extension L′ of L containing an element a of (canonical) valuation

α. Let D ∈ GL(2, L′) be the matrix

(
1

a

)
; let w be the natural valuation

inf v(xij) on M2(L
′). We set, for g ∈ G,

vG(g) = w(DgD−1 − 1).

For g =

(
t x
y u

)
∈ G, DgD−1 =

(
t ax

a−1y u

)
.

This yields the formula

(2.2) vG(g) = inf(v(x) + α, v(y)− α, v(t− 1), v(u− 1)) .

Moreover, v(t− 1) ≥ 1
e > 1

p−1 , v(u− 1) ≥ 1
p−1 ,

v(x) + α ≥ α >
1

p− 1
,

v(y)− α ≥ 1

e
− α >

1

p− 1
.

This implies [11, III. 3.2] that g is sent into the subgroup of GL(2, L′), where
w(g − 1) is a valuation.

Moreover, it is saturated (if vG(g) >
p

p−1 , g is a p–th power) because this is

true in GL(2, L′) [11, III. 3.2].

2.2. The group G has a triangular decomposition

G = UTN ,

U =
{(

1
y 1

)
: y ∈ p

}
,

T =
{(

t
v

)
: t, v ∈ O, t, v ≡ 1[p]

}
,

N =
{(

1 x
1

)
: x ∈ O

}
.

For g = uhn, we obtain the expression

(2.3)

(
t tx
ty txy + v

)
.
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Since p ≥ 5, the torus T is the direct product of the centre ZG =
{(

z
z

)}
(z ≡ 1) and of the torus TS in SL(2):

TS =
{(

t
t−1

)}
(t ≡ 1).

The valuation vG restricts to a valuation vS on the group S = G∩SL(2, L).
In this group we have the expression

g =

(
t tx
ty txy + t−1

)
.

Lemma 2.2. For g ∈ S,

vS(g) = inf(v(x) + α, v(y)− α, v(t− 1)).

We first prove :

Lemma 2.3. For x ∈ O, y ∈ p,

v(xy) > inf(v(x) + α, v(y)− α).

Assume first v(y)− α ≤ v(x) + α. Since

v(xy) = (v(x) + α) + (v(y)− α)

it suffices to prove that v(x) + α > 0, which is clear; if

v(x) + α ≤ v(y)− α,

we must check that v(y) > α ; since y ∈ p,

v(y) ≥ 1

e
> α.

We can now prove Lemma 2.2. Write z = txy + t−1. Since |t| = 1, we must
check:

(2.4) inf(v(x) + α, v(y)− α, v(z − 1)) = inf(v(x) + α, v(y)− α, v(t− 1)).

Write
v = v(t− 1), v1 = v(z − 1) ,
X = inf(v(x) + α, v(y)− α).

Then (2.4) is equivalent to

v1 ≥ X if v ≥ X,
v1 = v if v < X.

If v = v(t−1 − 1) ≥ X, v(xy) > X by the previous lemma, so v(z − 1) ≥ X.
If v < X < v(xy), v(z − 1) = v, which proves the Lemma.



61 Clozel

2.3. From now on we assume L unramified over Qp. Let e1, . . . er be a basis
of OL over Zp. If x =

∑
xiei ∈ OL (xi ∈ Zp), we then have

(2.5) v(x) = inf v(xi).

The elements ei define generators

yi =

(
1
pei 1

)
of U , and

xi =

(
1 ei

1

)
of N . We can write the torus T as T = ZGTS , the product being direct since
L contains no square root of 1. We have generators for TS :

hi =

(
(t′i)

−1

(t′i)

)
, t′i = (1 + pei)

1/2

and for ZG:

zi =

(
1 + pei

1 + pei

)
.

From Lemma 2.2 and (2.5) we immediately deduce (note that vG(yi) =
1− α):

Proposition 2.4. The elements yi, hi, zi, xi (1 ≤ i ≤ r) form an ordered
basis of G, in the sense of Lazard: any element of G can be written uniquely

g =
∏

yηi

i ·
∏

hτi
i ·

∏
zζii ·

∏
xξii

for exponents ηi, . . . , ξi ∈ Zp. Moreover

(2.6) vG(g) = inf(v(ηi) + 1− α, v(τi), v(ζi), v(ξi) + α).

Remark 2.5. Assume L = Qp and G is replaced by the group of [6]: {g ∈
SL(2,Zp) : g ≡ 1[p]}. The same argument shows that the subgroups U , N , TS

(with now x ∈ pZp) form an ordered basis; furthermore, the formula similar to
(2.6) is true. (This was omitted in [6].)

2.4. We now consider first the case where L = Qp. Thus

g = yηhτzζxξ

with obvious notations. Let ΛG be the Iwasawa algebra of G (with coefficients
in Zp). Recall that the Iwasawa algebra of a p-adic group G is the Zp-module
of continuous linear forms C(G) → Zp, where C(G) is the space of continuous
functions G → Zp, endowed with the convolution product. For simplicity, we
will consider the group S: this is harmless as G is a direct product. We set, δ
denoting a Dirac measure:

Y = δ(y)− 1, H = δ(h)− 1, X = δ(x)− 1.
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The (ordered) decomposition of S as a product:

g = uhn (g ∈ S)

then, as in [6], implies that we can consider Y , H, X as distributions on S.
Moreover, as a space Λ = ΛS is the completed tensor product

ΛU ⊗̂ ΛT ⊗̂ ΛN

with basis over Zp the elements Y n1Hn2Xn3 (ni ≥ 0). This is equal to the
product Y n1 ·Hn2 ·Xn3 in the Iwasawa algebra.

We determine the commutation relation between these elements. The com-
putation is the same as in [6]; we have changed the generator h in order to
simplify the formulas. We have, with q = 1 + p:

(a) (1 +X)(1 +H) = (1 +H)(1 +X)q,

(b) (1 +H)(1 + Y ) = (1 + Y )q(1 +H).
Moreover,

xy =

(
1 1

1

)(
1
p 1

)
=

(
1 + p 1
p 1

)
.

Given the expression

g =

(
t tx
ty txg + t−1

)
,

we have t = 1 + p = ((1 + p)−1/2)−2, tpy′ = p so y′ = t−1 = (1 + p)−1 and
likewise x = (1 + p)−1. Thus

(c) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)−2(1 +X)Q (Q = (1 + p)−1).
The elements X, H, Y therefore verify in Λ the relations (a), (b), and (c).
We now consider the universal non–commutative p–adic algebra A = Zp{{Y,

H,X}} over Y ,H,X (cf. [6]), with maximal idealMA generated by (p, Y,H,X)
and a prime ideal PA generated by (Y,H,X). It contains the dense sub-
algebra A = Zp{Y,H,X} of non–commutative polynomials. Let R ⊂ A
be the closed two–sided ideal generated by the relations (a), (b) and (c); let
Ā = Fp{{Y,H,X}} and R̄ the image of R in Ā. As in [6] we have:

Lemma 2.6. R̄ is the closed two–sided in Ā generated by the relations (a), (b)
and (c)

There is a natural map A → Λ.

Lemma 2.7. This extends to a continuous map A → Λ.

It suffices to show that if a sequence in A converges to 0 in the topology of
A, the image converges to 0 in Λ.

The topology of A is given by the valuation vA; write

F =
∑
n

∑
λix

i ,
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n ≥ 0, i ranging over the maps {1, . . . , n} → {1, 2, 3}, and
(2.7) xi = xi1xi2 · · ·xin ;

we set x1 = Y , x2 = H, x3 = X. For F ̸= 0,

vA(F ) = inf
n,i

(vp(λi) + n).

Lazard [11, III. 2.3] shows that Λ has an additive valuation (v(λµ) = v(λ)+
v(µ)) given by v(λ) = vp(λ)(λ ∈ Zp), v(Y ) = 1− α, v(H) = 1, v(X) = α. For
F ∈ A, with image µ ∈ Λ, we have

v(µ) = v
(∑

n

∑
λix

i)

≥ inf
n,i

(vp(λi) + (1− α)n(1) + n(2) + αn(3))

where n(1) is the number of elements in [1 . . . n] with image 1, etc. . .

≥ inf(α, 1− α) vA(F ).

This proves the continuity, whence the existence of the map A → ΛG. Note that
this is surjective, since the ordered monomials Y n1Hn2Xn3 are obtained.

Theorem 2.8. The map A → Λ gives, by passing to the quotient, an isomor-
phism B = A/R ∼−→ Λ

As in our previous paper, we will use for the proof the corresponding algebras
with finite coefficients. Thus let Ω = Λ

⊗
Zp

Fp be the algebra of distributions

with values in Fp. We now have a natural map Ā = A⊗Fp → Ω. The previous
proof shows that it extends naturally to a map Ā → Ω, whose kernel contains
R̄. We will show:

Theorem 2.9. The map Ā → Ω gives an isomorphism B̄ = Ā/R̄ ∼−→ Ω.

Note that Ā has again an natural valuation, given on F ̸= 0 by inf
n

n, the infi-

mum being taken on the integers n such that there exists a non–zero monomial
of degree n in the expression of F .

Exactly as in [6], Theorem 2.8 follows from Theorem 2.9. We now begin the
proof of this last result. Note that

1

p− 1
<

1

2
<

p− 2

p− 1

since p > 3. We can therefore take α = 1/2. Then

v(Y ) = v(X) =
1

2
, v(H) = 1.

The Iwasawa algebra Λ is filtered by 1
2N. As an Fp–vector space, grν Λ is

generated by the independent elements

pℓY n1Hn2Xn3 , ℓ+
1

2
n1 + n2 +

1

2
n3 = ν.
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(Cf. [14, p. 199].) The filtration of Λ defines a filtration of Ω by FilνΩ =
FilνΛ⊗ Fp; we see that grν Ω is then generated by the elements

Y n1Hn2Xn3 ,
1

2
n1 + n2 +

1

2
n3 = ν ,

and these elements are linearly independent.
We do not change the filtration by replacing ν ∈ 1

2N by n = 2ν ∈ N, the
valuations of (Y,H,X) being now (1,2,1).

In particular, we now have (for n ∈ N)
Lemma 2.10. The dimension of grnΩ (n ≥ 0) over Fp is equal to the di-
mension of the space of homogeneous symmetric polynomials of degree n in
(Y,H,X), the variables having degrees (1, 2, 1).

Note that this dimension is equal to (µ+ 1)(n+ 1− µ) where µ = [n2 ]. We
denote it by dn.

We must now consider on Ā the filtration of Ā obtained by assigning degrees
(1,2,1) to the (formal) variables Y , H, X. Then grnĀ is isomorphic to the space
of non–commutative polynomials of degree n. We endow B̄ = Ā/R̄ with the
induced filtration, so

grnB̄ = FilnĀ/F iln+1Ā+ (FilnĀ ∩ R̄).

The map grnB̄ → grnΩ is surjective by construction. We now have:

Lemma 2.11. dim grnB̄ ≤ dn (n ≥ 0).

The Lemma is obvious for n = 0, 1. We also note that the generators of R̄
given by the relations (a, b, c) belong to Fil2Ā. This is obvious for (a, b) since
q ≡ 1 [p]; for (c) we obtain modulo terms of ordinary degree 2 in Y , H, X:

(1 +X)(1 + Y )− (1 + Y )(1 +H)−2(1 +X) = 2H

and H ∈ Fil2Ā.
Consider now gr2B̄, a quotient of the space Fil2Ā/F il3Ā with basis XY ,

Y X, H, X2, Y 2. Since Q ≡ 1 [p], Q − 1 ≡ 0 [p] and H is of degree 2, the
relation (c) yields

1 +X + Y +XY = 1 + Y +X + Y X − 2H

modulo terms of degree ≥ 3. Thus dim gr2B̄ ≤ d2 = 4.
In order to prove the general case, we state the necessary relations in B̄:

Lemma 2.12. (i) XY − Y X + 2H = 0 (mod Fil3)
(ii) XY −HX = 0 (mod Fil4)
(iii) HY − Y H = 0 (mod Fil4)

Part (i) has just been proven. For (ii) consider the identity (b). We have

(1 +X)q = 1 + qX +
q(q − 1)

2
X2 +

q(q − 1)(q − 2)

6
X3 + · · ·

= 1 +X (mod X4),
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since q = 1 + p, p > 3. Thus

(1 +X)(1 +H) = (1 +H)(1 +X) mod Fil4,

since the filtration is multiplicative on Ā. Whence (ii), and similarly (iii).
We can now prove Lemma 2.11. Consider a non–commutative monomial cf.,

(2.7):

(2.8) xi = xi1xi2 · · ·xit .

Assume the homogeneous degree of xi is equal to n (H being of course
of degree 2). As in [6, Lemma 3.2] we can change xi into a well–ordered
monomial (α 7→ iα increasing) by a sequence of transpositions. Consider a
move (α, α+ 1) 7→ (α+ 1, α) and assume iα > iα+1. Write

xi = xj xα xα+1 xk

write deg(i) = n, deg(j) = r, deg(k) = s. There are three possibilities

(2.9) (xα, xα+1) = (X,H)

Note that the degree of HX is 3. By Lemma 2.12(ii), XH = HX mod Fil4.
Multiplying by xj and xk, we obtain xjHXxk (mod Filr+4+s = Filn+1).

(2.10) The case (H,Y ) is similar.

(2.11) (xα, xα+1) = (X,Y ).

Now XY = Y X + 2H (mod Fil3), all elements being of degree 2. The first
term yields again (mod Filn+1) a monomial with fewer inversions.

The second term yields a monomial with the same homogeneous degree, but
with trivial degree - the number t in (2.8) - lowered by 1. We have to show
that we have decreased the number of inversions in the monomial. For xi, it
was

inv =
∑
β<γ

iβ>iγ

1 +
∑

γ>α+1
iα=3>iγ

1 +
∑
β<α

iβ>iα+1=1

1 + 1

where the indices β, γ are different from α, α + 1. After contraction of XH
into (2 times) H, we obtain

inv′ =
∑
β<γ

iβ>iγ

1 +
∑

γ>α+1
iα=2>iγ

1 +
∑
β<α
iβ>2

1

Clearly inv′ < inv. By performing the induction on the number of inversions
(independently of the trivial degree), the proof of Lemma 2.11 is now completed.

Since grnB̄ → grnΩ was surjective, the proof of Theorem 2.9 is complete.

Corollary 2.13. The Iwasawa algebra ΛG is a quotient A/R, with A =
Zp{{Z, Y,H,X}} and R defined by the relations (a, b, c) and

(Comm) Z commutes with Y, H, X.
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3. Iwasawa algebras in the unramified case

3.1. We return to the unramified extension L of Qp, of degree r; notations are
as in Section 2.3. In particular, the Lazard basis of G is given by Proposition
2.4. This depends on the choice of a basis (ei) of OL = W (Fpr ), the ring of
Witt vectors, over Zp

1.
As in Section 2.4, we will in fact compute the Iwasawa algebra ΛS (with Zp–

coefficients) of S = G∩SL(2, L), since G is a direct product. Associated to the
(ordered) decomposition g = uhn, we have a decomposition ΛS = ΛU ⊗̂ΛT ⊗̂ΛN

(completed tensor product.) Each factor is a commutative Iwasawa algebra in
r variables, respectively Yi, Hi and Xi, defined as in Section 2.4. In particular
Λ = ΛS has a topological basis.

(3.1) Y ℓ Hm Xn

with ℓ = (ℓ1, . . . ℓr), Y
ℓ = Y ℓ1

1 · · ·Y ℓn
r , etc.

As recalled, the elements Y ℓ (resp. Hm, Xn) commute. We want to write
the other commutation relations. We have

hi yj h−1
i =

(
1

p(1 + pei)ej 1

)
.

Write

(3.2) (1 + pei)ej =
∑
k

qijkek (qijk ∈ Zp).

Then

(3.3)
qijj ≡ 1 [p]
qijk ≡ 0 [p] (k ̸= j).

The commutation relation implies

(A) (1 +Xj)(1 +Hi) = (1 +Hi)
r∏

k=1

(1 +Xk)
qijk

(B) (1 +Hi)(1 + Yj) =
r∏

k=1

(1 + Yk)
qijk(1 +Hi)

with the same exponents.
We must now compute the “triangular” relation, the analogue of (c) in

Section 2.4. We have

xiyj =

(
1 ei

1

)(
1
pej 1

)
=

(
1 + peiej ei

pej 1

)
.

1We do not see how to obtain a natural basis of W (Fpr ). In particular, the structure

constants qijk, Qijk of ΛG do not seem to have a natural expression.
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From the expression of the triangular decomposition (before Lemma 2.2):

g =

(
t tx
ty txy + t−1

)
we see that

t = 1 + peiej =
∏
k

(1 + pek)
−1/2Pijk ,

ej = t
∑
k

Qijkek

ei = t
∑
k

Qjikek.

The exponents Pijk ∈ Zp are defined by

log(1 + peiej) = −1

2

∑
k

Pijk log(1 + pek).

Such an expression exists since exp and log(1 + X) are inverse diffeomor-
phisms between pOL and 1 + pOL. For p > 2 and x ∈ pOL,

log(1 + x) ≡ x [p2].

Indeed it suffices to show that vp(
xn

n ) ≥ 2 (n ≥ 2). This is clear for n = 2;
for n ≥ 3,

vp(
xn

n
) ≥ n− logp n ≥ n− log3 n ≥ 2 (n ≥ 3),

with equality only if n = p = 3. Dividing the previous equality by p, we see
that

(3.4) eiej ≡ −1

2

∑
k

Pijkek [p].

Moreover,

(1 + peiej)
−1ej =

∑
k

Qijkek(3.5)

(1 + peiej)
−1ei =

∑
k

Qjikek

and the coefficients verify

Qijj ≡ 1[p](3.6)

Qijk ≡ 0[p] (k ̸= j)

We now have the relation:
(C) (1 +Xi)(1 + Yj) =

∏
α,β,γ

(1 + Yα)
Qijα(1 +Hβ)

Pijβ (1 +Xγ)
Qjiγ .

Now, as in Section 2.4, we consider in the non–commutative algebra
A = Zp{{Yi,Hj , Xk}} the ideal R generated by the relations (A), (B) and
(C) and
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(Comm0) The variables Yi,Hj , Xk (separately) commute.

We have again

Theorem 3.1. The natural homomorphism

A/R −→ Λ

is an isomorphism.

If we consider, as in Section 2.4, Ā and Ω, we have likewise:

Theorem 3.2. The natural homomorphism

Ā/R̄ −→ Ω

is an isomorphism.

3.2. We sketch the proof, which is very similar to that given for Qp. We
choose the coefficient α of Section 2.1 equal to 1

2 . Again, Λ is filtered by 1
2N,

grνΛ having a basis given by the independent elements

ptY ℓHmXn , t+
1

2
|ℓ|+ |m|+ 1

2
|n| = ν.

The elements Y ℓHmXn ( 12 |ℓ|+ |m|+ 1
2 |n| = ν) give a basis of grνΩ.

The foregoing argument shows that the natural maps A → Λ, Ā → Ω are
well–defined. We give weights (1,2,1) to the elements Yi, Hj , Xk and replace in
Ω the filtration by 1

2N by the filtration by n = 2ν ∈ N. We have the analogue
of Lemma 2.12; first we have

Lemma 3.3. In the algebra Ā
(i) (1 +Xk)

qijk ≡ 1 (mod Fil4), k ̸= j
(1 +Xk)

qijk ≡ 1 +Xk (mod Fil4), k = j.
The same relations are verified by the Yk.
(ii) Same relations, with qijk replaced by Qijk.
(iii)

∏
k

(1 +Hk)
Pijk ≡ 1 +

∑
PijkHk (mod Fil4).

Relation (iii) is obvious; (i) and (ii) follow from (3.3) and (3.6), since p ≥ 5.

Lemma 3.4. In the algebra B̄ = Ā/R̄,
(i) XjHi −HiXj ≡ 0 (mod Fil4),
(ii) HiYi − YjHi ≡ 0 (mod Fil4),
(iii) XjYj − YiXi ≡

∑
k

PijkHk (mod Fil3).

Part (i) follows from (A) and (i) of the previous Lemma; similarly (ii) follows
from (B) and (i). Now from (C) we have, using (ii) of that Lemma:

(1 +Xi)(1 + Yi) ≡ (1 + Yi)
∏
(1 +Hβ)

Pijβ (1 +Xi) (mod Fil4)
≡ 1 + Yj +Xi + YjXi +

∑
P̄ijkHk (mod Fil3).
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By Lemma 3.4, we see first that dim gr1B̄ = 2r (linear terms in the Xi, Yi),

then that dim gr2B̄ = 2r(2r+1)
2 + r (symmetric polynomials of degree 2 in the

Xi, Yj and linear forms in the Hk). Finally, the argument given for the proof
of Lemma 2.11 shows that the dimension of grnB̄ is smaller than the dimension
of the space of symmetric polynomials of degree n in the Yi Hi, Xk (with the
correct degrees.) This proves Theorem 3.2, and Theorem 3.1 follows.

Changing notations, we now have:

Corollary 3.5. The Iwasawa algebra ΛG of G is the quotient of A= Zp{{Yi,Hi,
Xi, Zi}} by the ideal R generated by relations (A), (B), (C),
(Comm0), and
(Comm1) The variables Zi commute, and commute with Yi, Hi, Xi.

3.3. We now show that, at least formally (in the colloquial sense) there exists
a map ΛGr → ΛG1 where Gr is the group associated to L and G1 the group
associated to Qp. Denote by Ar the algebra of non–commutative series in 4r
variables of Corollary 3.5, and A the algebra of non–commutative series in 4
variables. We would like to define a map b: Ar → A sending the ideal Rr of
relations to R. We work with the Iwasawa algebras Λr, Λ of the group S.

Recall the relations defining A:

(a) (1 +X)(1 +H) = (1 +H)(1 +X)q,
(b) (1 +H)(1 + Y ) = (1 + Y )q(1 +H),
(c) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)−2(1 +X)Q.

where q = 1 + p, Q = (1 + p)−1

and Ar:

(A) (1 +Xj)(1 +Hi) = (1 +Hi)
r∏

k=1

(1 +Xk)
qijk ,

(B) (1 +Hi)(1 + Yj) =
r∏

k=1

(1 + Yk)
qijk(1 +Hi),

(C) (1 +Xi)(1 + Yj) =
∏

α,β,γ

(1 + Yα)
Qijα(1 +Hβ)

Pijβ (1 +Xγ)
Qjiγ ),

where

(1 + pei)ej =
∑
k

qijkek,

(1 + peiej)
−1ej =

∑
k

Qijkek,

log(1 + peiej) = − 1
2

∑
k

Pijk log(1 + pek).

The map b is defined if we give the images of 1 +Xi, 1 +Hi, 1 + Yi. We first
try to satisfy the relations (a, b).

The set A×
1 of elements of the form 1+F , where F belongs to the prime ideal

(Y,H,X) of A, is a multiplicative subgroup of A×; it is a compact pro–p–group.
In particular gx is well–defined if x ∈ Zp and g belongs to A×

1 .
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It is natural to consider a map b given by

1 +Hi 7→ (1 +H)αi

1 +Xj 7→ (1 +X)βj

1 + Yj 7→ (1 + Y )βj .

If h = 1 +H, x = 1 +X, the relation (a) can be written

h−1xh = xq

which implies, for α, β ∈ Zp:

(3.7) h−αxβhα = xβqα .

Note that qα is well–defined since q = 1 + p.
The relation (a) will follow from (A) if

(1 +X)βj (1 +H)αi = (1 +H)αi(1 +X)

∑
k

qijkβk

which is true, according to (3.7), if

(3.8) βjq
αi =

∑
k

qijkβk.

Comparing with the expression of the exponents in relations (A), (B) and
(C), we see that this will be verified if

(3.9) βj = ej , qαi = 1 + pei ,

or equivalently

(3.10) βj = ej , αi =
log(1 + pei)

log(1 + p)
.

Furthermore, it can be checked that there is no other solution to the equa-
tions (3.8) for αi, βj ∈ OL. In particular, there is no solution with exponents
in Zp. This implies that the images of our generators 1 + Hi, etc. will have
coefficients in L. However, even if we extend coefficients, their images are not
in Λ⊗ L.

The reductions ēj of ej in kL form a basis of kL over Fp. We may assume
that ē1 = 1, and then |ej − r| = 1 (j > 1) for any r ∈ Z. The formal series

(3.11) (1 +X)ej =
α∑

m=0

(
ei
m

)
Xm =

∑
amXm

then verifies, for the canonical valuation on OL:

vp(am) = −vp(m!) = − 1

p− 1
(m− Schiffm)

(Lazard’s notation, [11, III. 1.1.2.5]) where Schiff m is the sum of the digits of
m in base p. In particular the coefficients tend to infinity (in absolute value).
We will return to the growth of the images at the end of this section.
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We neglect this for now, and (computing formally) consider the other rela-
tions. By the usual symmetry, (b) is automatically satisfied. We must consider
relation (c). Applying our map to (C), we must investigate in A the relation

(3.12) (1 +X)βi(1 + Y )βj = (1 + Y )ΣβkQijk(1 +H)ΣαkPijk · (1 +X)ΣβkQjik ,

where βi, αi are given by (3.10). This is to be compared with (c).
Unlike the two previous cases, then is no formal fashion to deduce (3.12)

from (c). We must return to the way (c) was obtained. It was equivalent to
the relation (in S):

xy =

(
1 1

1

)(
1
p 1

)
=

(
1
Qp 1

)(
(1 + p)−1/2

(1 + p)−1/2

)−2 (
1 Q

1

)
.

In the additive groups U and N , it is natural to assume that xβi = xei =(
1 ei

1

)
, and yej =

(
1
pej 1

)
(elements now of the L–points of the groups).

Now

xeiyej =

(
1 ei

1

)(
1
pej 1

)
=

(
1 + peiej ei

pej 1

)
.

We are reduced to the computation of Section 3.1, and this yields relation
(C) which, after applying the map b, implies (3.12).

This argument is admittedly formal, even more than the previous ones. It
shows, however, that we will have to use the extension of scalars to make sense
of the map b between (some algebras replacing) Λr and Λ.

3.4. We end this section by noting that the apparent problem posed by the
growth of the series (3.11) naturally presents its own solution. Consider simply
the additive group N (over Zp). Clearly the series (3.11) does not belong to
the Iwasawa algebra, dual to the continuous functions.

However we see that its coefficients am always satisfy

vp(am) ≥ − 1

p− 1
(m− Schiffm) = −vp(m!).

On the other hand, an analytic function on Zp (seen as a rigid–analytic
space, or, in Lazard’s terminology, a saturated pro-p group) admits a Mahler
expansion

f(x) =
∑
m

cm

(
x
m

)
with v(cm) − v(m!) → ∞. (Amice’s theorem, cf [11, III. 1.3.8].) This implies
that the Iwasawa series (3.11) is convergent on such functions. Thus we are
naturally led to replace the Iwasawa algebra by the dual of the space of globally
analytic functions (possibly with coefficients in L).
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4. The holomorphic base change map

4.1. In this section we will make sense of the “formal” base change map of
Section 3.3 by restricting it to the algebra of global distributions. We will in
fact work rationally; in the previous sections this would amount to replacing
an Iwasawa algebra Λ by Λ⊗Qp.

We first check that our groups S, Sr are naturally group objects in the
category of (affinoid) rigid–analytic spaces (in fact, all isomorphic to BN , B
being the closed ball of radius 1.)

Consider for simplicity the group S of Zp–points. It is in bijection with Z3
p

by the variables y, x and −2 log(t)
log(1+p) . We will denote this last variable by z in

the next computations. Let, as before Lemma 2.2,

g =

(
t tx

tpy tpxy + t−1

)
and let

γ =

(
τ τξ

τpη τpξη + τ−1

)
.

Then the product gγ, equal to(
tτ + ptτxη tτξ + tτpxξη + tτ−1x

tτpy + tτp2xyη + τt−1pη ∗

)
has parameters given by

T = tτ(1 + pxη),
TY = tτ(y + pxyη + t−2η),
TX = tτ(ξ + pxξη + τ−2x).

With parameters z, x, y, we see that the coordinates of the product are then
in the Tate algebra in the six variables. Note that t = exp(−1

2 z log(1+ p)) is,
an a function of z, in the Tate algebra in one variable, and is invertible. Then
T an invertible element in the Tate algebra T6(Qp) of the product. A similar
argument applies to the map g 7→ g−1. Thus we can see S as a rigid analytic
group, isomorphic as a space to the closed 3–ball B3. (This was already proved
by Lazard, cf. [11, III. 3.3.2].)

The same formulas, and the same argument, apply to Sr
∼= B3(L), a rigid

analytic space of dimension 3 over L.

4.2. Now let A1
∼= T3(Qp) be the space of globally defined analytic functions

on S.2 We assume that the coefficients are in L. If f ∈ A1, f defines naturally

2We apologise for the conflict of notations with the previous paragraphs. The spaces of
non-commutative polynomials will no longer occur in this section. Also (already in section

4.1) X,Y, Z, T denote objects different from the formal variables of Section 2,3.
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a function in T3(L) (with the same coefficients). We denote it by b∗0(f). There
is a comultiplication m∗: A1 → A1⊗̂A1,

f(g) 7→ f(g1g2).

It is obviously compatible with the map b∗0 : A1 → A′
r = T3(L) which we

have defined. (E.g., use that Zp is dense in OL for the canonical topology.)
A function in A1 can be paired with an element of the Iwasawa algebra of

S (but we obtain a small space of the space of test functions). Similarly, a
function in A′

r can be integrated against a distribution in the Iwasawa algebra
of Sr.

Now the Iwahori subgroup Sr, a rigid–analytic space of dimension 3 over
L, defines by restriction of scalars a rigid-analytic space Res(Sr) of dimension
3r over Qp , but it then has a larger space Ar of analytic functions. See [3]
for the restriction of scalars in the formal case; by the results in [13] this gives
the restriction of scalars in the rigid-analytic case. All that we will need is
that for functions the corresponding map A′

r 7→ Ar is given by the explicit
formula (4.1) below. Thus we get a map b∗A1 → Ar; the image is comprised
of the functions (in Ar) which are “L–holomorphic”; again, this is compatible
with the comultiplication. Note that all these spaces are Banach spaces, with
natural norms.

The construction of Res(Sr) yields the following formula for functions, (cf.
[3]).3 Let OL =

⊕
Zpei, so v =

∑
viei (v ∈ OL, vi ∈ Zp). We can apply this

to the variables x, y, z. If

f =
∑

a(m,n, q)xmznyq ∈ A1,

the corresponding function on Res(Sr) is

(4.1) F =
∑

a(m,n, q)(
∑

xiei)
m(

∑
ziei)

n(
∑

yiei)
q

=
∑

mi,ni,qi

∏
xmi
i

∏
zni
i

∏
yqii a(

∑
mi,

∑
ni,

∑
qi)

(
m
mi

)(
n
ni

)(
q
qi

)
emeneq,

where em =
∏

emi
i , etc., obviously in the Tate algebra in the 3r variables. The

map f 7→ F is continuous if the Tate algebras are provided with the sup norm;
it is compatible with the comultiplication.

Consider now the spaces of (global) distributions D, Dr on the rigid-analytic
spaces S and Res(Sr) (with coefficients in L.) These are simply the dual spaces
of A1 and Ar.

By duality we obtain a map

b : Dr −→ D.

3We will review the restriction of scalars more precisely in part II of this paper.
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Since the convolution can be defined by means of the coproduct on the spaces
A, we see that b is a homomorphism of algebras for the convolution.

In fact we can say more. Return to the formulas in Section 4.1 giving the
product map in coordinates, with

t = exp(−1

2
z log(1 + p)) = exp(−1

2
zπ), z = −2

log t

log(1 + p)
,

where π = log(1 + p).
The local parameter Z associated to T is then, with obvious notation,

z + ζ − 2
1

log(1 + p)
log(1 + pxη),

a convergent series in (z, ζ, x, η) with integral coefficients. Furthermore, (1 +
pxη)−1 is such a series, as is t−2:

t−2 = exp(zπ) =
∑

anz
n

with

v(an) =
p− 2

p− 1
n+ Schiff(n) > 0

for n ≥ 1.Therefore the coordinates Z,X, Y of the product belong to the Tate
algebra in the six variables with integral coefficients.4

Let δ: A = AS → AS⊗̂AS be the comultiplication. Then convolution in D
is defined by

⟨S ∗ T, f⟩ = ⟨S ⊗ T, δ(f)⟩,
while the norm in D is given by

∥T∥ = Supf∈A0⟨T, f⟩.

where A0 is the unit ball in A. For f ∈ A0, the previous computation show
that δ(f) is a series with integral coefficients. By [2, Section 2.1, Proposition
1], we then have |⟨S ⊗ T, δ(f)⟩| ≤ 1 if ∥S∥ ≤ 1 and ∥T∥ ≤ 1. Thus

∥S ∗ T∥ ≤ ∥S∥.∥T∥.

This obviously applies, with the same proof, to Res(Sr). Since the restriction
of scalars preserves integral functions, we finally have the following result. We
write D(L),Dr(L) to emphasise the fact that the coefficients are in L.

Theorem 4.1. (i) The map b defines a morphism of convolution algebras
Dr(L) → D(L).

(ii) D(L),Dr(L) are Banach algebras for convolution, the product verifying
in fact ∥S ∗ T∥ ≤ ∥S∥.∥T∥.

(iii) ∥b(f)∥ ≤ ∥f∥ (f ∈ Dr(L).

4 Note that in this rigid-analytic computation we do not have to assume that p > 3. We

did not check which of the other arguments apply.
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By adding the center (a direct factor for p ≥ 3), Theorem 4.1 obviously
extends to the full Iwahori subgroups G,Gr.

4.3. It is now easy to see that the map b : Dr → D is the map that we had
formally defined in Section 3.4. Consider for instance the effect of b on 1+Xi:

1 +Xi 7→ (1 +X)ei .

The distribution 1+Xi belongs to Dr, and is simply the evaluation of F at the
point (xi = 1, 0, . . . , 0) of the ball Z3r

p . If we compose with the map f 7→ F
(cf. (4.1)), we obtain the map f 7→ f(ei, 0, 0) where f is seen as an analytic
function on the L-adic group. This distribution does not belong to the Iwasawa
algebra: it has no meaning on the continuous functions. However, (1 + X)v

is the map f 7→ f(v, 0, 0) if v ∈ Zp; for v ∈ OL, the power (1 + X)ei which
appeared in the computations of Section 3.4 is then naturally identified with
f 7→ f(ei, 0, 0). The same argument applies to the other variables.
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