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STRONG EXPONENT BOUNDS FOR THE LOCAL

RANKIN-SELBERG CONVOLUTION

C.J. BUSHNELL∗ AND G. HENNIART

Abstract. Let F be a non-Archimedean locally compact field. Let σ
and τ be finite-dimensional representations of the Weil-Deligne group of
F . We give strong upper and lower bounds for the Artin and Swan ex-
ponents of σ ⊗ τ in terms of those of σ and τ . We give a different lower

bound in terms of σ⊗ σ̌ and τ ⊗ τ̌ . Using the Langlands correspondence,
we obtain the bounds for Rankin-Selberg exponents.
Keywords: Local Langlands correspondence, Weil-Deligne groups and
representations, tensor products, Artin exponent, Swan exponent, Rankin-

Selberg exponent.
MSC(2010): Primary: 22E50; Secondary: 11S37.

1. Introduction

1.1. Let F be a non-Archimedean, locally compact field. For integers m,n ⩾ 1
let π, ρ be irreducible, smooth, complex representations of the general linear
groups GLm(F ), GLn(F ) respectively. If s is a complex variable and ψ a non-
trivial smooth character of F , we consider the L-function L(π × ρ, s) and the
local constant ε(π × ρ, s, ψ) of [17] or [21, 22]. If q is the cardinality of the
residue field of F , the local constant takes the form

ε(π × ρ, s, ψ) = ε(π × ρ, 0, ψ) q−s(Ar(π×ρ)+mnc(ψ)).

Here, c(ψ) is an integer depending only on ψ. The integer Ar(π × ρ) depends
only on the pair (π, ρ). Here we call it the Rankin-Selberg exponent of (π, ρ).

If we take n = 1 and let ρ be the trivial character 1 of F× ∼= GL1(F ),
then ε(π × 1, s, ψ) is the Godement-Jacquet local constant ε(π, s, ψ) [10], and
Ar(π × 1) is denoted simply Ar(π). The aim of this paper is to give strong,
universal estimates for Ar(π×ρ) in terms of Ar(π) and Ar(ρ). We give a second
lower bound in terms of exponents of the pairs (π, π̌), (ρ, ρ̌). These results are
Corollaries A–C below.
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1.2. We fix a separable algebraic closure F̄ /F of the field F , and form the

Weil group WF = WF̄ /F . Let ŴD
F be the set of equivalence classes of finite-

dimensional representations of the Weil-Deligne group defined by WF (see 1.1).
With π and ρ as before, the Langlands correspondence [11, 15, 18, 19] associates

to π, ρ representations Lπ, Lρ ∈ ŴD
F . These have dimension m,n respectively.

For σ ∈ ŴD
F , of dimension d, let ε(σ, s, ψ) be the Langlands-Deligne local

constant [3, 23] of σ. Again, ε(σ, s, ψ) = ε(σ, 0, ψ) q−s(Ar(σ)+dc(ψ)) and the
integer Ar(σ) is the Artin exponent of σ. A defining property of the Langlands
correspondence [14, 16] is that

ε(π × ρ, s, ψ) = ε(Lπ ⊗ Lρ, s, ψ).

Consequently, Ar(π×ρ) = Ar(Lπ⊗Lρ) and Ar(π) = Ar(Lπ). We may therefore
tackle the Rankin-Selberg exponent via the Artin exponent of tensor products
of representations of the Weil-Deligne group.

1.3. We state our results for representations of the Weil-Deligne group. If

σ ∈ ŴD
F , σ ̸= 0, write

η(σ) = Ar(σ)/dimσ, σ ∈ ŴD
F , σ ̸= 0.

Convention. When σ is the zero representation, η(σ) is undefined. So, use of
the symbol η(σ) here will always entail the implicit assumption σ ̸= 0.

Say that σ is η-minimal if Ar(σ) ⩽ Ar(χ⊗ σ), for any character χ of WF .

Theorem A. If σ ∈ ŴD
F is η-minimal, then

η(σ ⊗ τ) ⩾ 1
2 max {η(σ), η(τ)},

for all τ ∈ ŴD
F .

A trivial example shows that some hypothesis of minimality is required for

a result of this kind: for fixed σ, τ ∈ ŴD
F and a character χ of WF , one

has η((χ ⊗ σ) ⊗ (χ−1 ⊗ τ)) = η(σ ⊗ τ). For suitable choice of χ, one has
η(χ⊗ σ) = η(χ−1 ⊗ τ) = η(χ) and this may be taken as large as desired.

Further examples show that the constant 1
2 is best possible: there are many

pairs of irreducible representations (σ, τ), with σ being η-minimal, for which
2η(σ ⊗ τ) = η(σ) = η(τ). However, by restricting the class of representation
one can get better constants: see the examples in 3.3 and 4.5.

There is a second, rather different, lower bound. This avoids the necessity
for a minimality condition by using the operation σ 7→ σ̌ of contragredience on

ŴD
F .

Theorem B. If σ, τ ∈ ŴD
F , then

η(σ ⊗ τ̌) ⩾ 1
2

(
η(σ ⊗ σ̌) + η(τ ⊗ τ̌)

)
.

If σ and τ are indecomposable, then η(σ ⊗ τ̌) ⩾ max {η(σ ⊗ σ̌), η(τ ⊗ τ̌)}.
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The easy example σ = τ shows that the constant 1
2 is again best possible.

With regard to upper bounds, we prove:

Theorem C. Let σ, τ ∈ ŴD
F have dimensions m,n, respectively. The Artin

exponent Ar(σ ⊗ τ) satisfies

Ar(σ ⊗ τ) ⩽ nAr(σ) +mAr(τ)−min {Ar(σ),Ar(τ)}.

If σ, τ ∈ ŴD
F are irreducible, then

η(σ ⊗ τ) ⩽ max {η(σ), η(τ)}.

Both aspects of the result are best possible.

1.4. Let π, ρ be irreducible, smooth, complex representations of GLm(F ),
GLn(F ), respectively. Set η(π×ρ) = Ar(π×ρ)/mn and η(π) = Ar(π)/m, with
the same convention regarding zero representations. Say that π is η-minimal
if η(π) ⩽ η(χπ) for all characters χ of F×. The Langlands correspondence
respects contragredience and twisting with characters, so we have the following
consequences of Theorems A–C.

Corollary A. Let π, ρ be irreducible representations of the groups GLm(F ),
GLn(F ), respectively. If π is η-minimal, then

η(π × ρ) ⩾ 1
2 max {η(π), η(ρ)}.

Corollary B. If π, ρ are irreducible representations of the groups GLm(F ),
GLn(F ), respectively, then

η(π × ρ̌) ⩾ 1
2

(
η(π × π̌) + η(ρ× ρ̌)

)
.

If π and ρ are essentially square-integrable, then

η(π × ρ̌) ⩾ max {η(π × π̌), η(ρ× ρ̌)}.

Corollary C. Let π, ρ be irreducible representations of the groups GLm(F ),
GLn(F ), respectively. The Rankin-Selberg exponent satisfies

Ar(π × ρ) ⩽ nAr(π) +mAr(ρ)−min {Ar(π),Ar(ρ)}.

If the representations π and ρ are cuspidal, then

η(π × ρ) ⩽ max {η(π), η(ρ)}.

In all of these statements, the representations π, ρ are assumed smooth.
Corollary C may also be found in [1], where it receives a different proof.

Beyond remarking that the representation π is essentially square-integrable

(resp. cuspidal) if and only if Lπ ∈ ŴD
F is indecomposable (resp. irreducible),

there is nothing more to be said about these corollaries.
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1.5. We return to the Galois side. Let Ŵss
F be the set of equivalence classes of

finite-dimensional, smooth, semisimple representations of WF .
There is a parallel, but distinct, family of estimates governing the Swan

exponent Sw(σ), σ ∈ ŴD
F , in place of the Artin exponent. We include them

here since, in applications, the Swan exponent often occurs more naturally
than the Artin exponent and it can be bothersome to switch between the two
languages. The exponent Sw(σ) depends only on the restriction of σ to WF ,

so nothing is lost by treating Sw as a function on Ŵss
F .

If σ ̸= 0, we set ς(σ) = Sw(σ)/dimσ. Again, use of the symbol ς(σ) entails
the implicit assumption σ ̸= 0.

Say that σ is ς-minimal if ς(σ) ⩽ ς(χ⊗σ) for all characters χ of WF . (Note
that the concepts of η-minimality and ς-minimality are distinct.) We then have
the following results.

Theorem AS. If σ ∈ Ŵss
F is ς-minimal, then

ς(σ ⊗ τ) ⩾ 1
2 max {ς(σ), ς(τ)},

for all τ ∈ Ŵss
F .

Theorem BS. If σ, τ ∈ Ŵss
F , then

ς(σ ⊗ τ̌) ⩾ 1
2

(
ς(σ ⊗ σ̌) + ς(τ ⊗ τ̌)

)
.

If σ and τ are irreducible, then ς(σ ⊗ τ̌) ⩾ max {ς(σ ⊗ σ̌), ς(τ ⊗ τ̌)}.

Theorem CS. Let σ, τ ∈ Ŵss
F have dimensions m,n, respectively. The Swan

exponent Sw(σ ⊗ τ) satisfies

Sw(σ ⊗ τ) ⩽ nSw(σ) +m Sw(τ)−min {Sw(σ), Sw(τ)}.

If σ, τ ∈ ŴD
F are irreducible, then ς(σ ⊗ τ) ⩽ max {ς(σ), ς(τ)}.

1.6. We review some background material in Section 2. The proof of Theo-
rem A starts in Section 3, where we deal with irreducible representations. At
present, these can only be treated via parallel properties for irreducible cus-
pidal representations of general linear groups and then using the Langlands
correspondence. The method relies on the explicit formula for Ar(π× ρ) in [6],
combining the classification theory of [7], [8, 9] with the interpretation [22] of
the Rankin-Selberg exponent as a relative Plancherel measure. This is where
the factor 1

2 of Theorem A first appears and reveals itself as best possible. The
main part of the proofs of Theorems A and AS is in Section 4. The arguments
are all conducted on the Galois side. They are essentially elementary although,
in places, they feel intricate.

Theorems B and BS are treated in Section 5. The proofs start from relatively
simple properties of tensor products of irreducible representations observed in
[12, 5] but are equally intricate. For the pairs A/AS, B/BS of parallel theorems,
the proofs start together. We then concentrate on the more involved case of
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the Artin exponent. That done, the argument for the Swan exponent follows a
shorter version of the same route, obtained by a simple change of vocabulary.
We indicate the process briefly at the ends of the relevant sections. The results
are not so easy to deduce from each other, and nothing seems to be gained from
constructing an artificial framework in which they can be treated together. The
proofs of Theorems C and CS are short, and combined in Section 6.

2. Representations of the Weil-Deligne group

We retain the notations WF , Ŵss
F and ŴD

F of the introduction. Let Ŵ irr
F

be the set of isomorphism classes of irreducible smooth representations of WF .
Starting from the discussions in [3] and [23], we recall some basic features

of representations σ ∈ ŴD
F . We define the Artin exponent in terms of the

Langlands-Deligne local constant and collect a number of facts and simple
results for use in later sections.

2.1. Let q be the cardinality of the residue class field of F . Let x 7→ ∥x∥
denote the unique character of WF that is trivial on the inertia subgroup of
WF and takes the value q−1 on geometric Frobenius elements.

For our purposes, a representation σ of the Weil-Deligne group of F is a pair
(σW , n) consisting of a finite-dimensional, smooth, semisimple representation
σW : WF → AutC(V ) and a nilpotent endomorphism n of the vector space V
such that

σW(g) n = ∥g∥ nσW(g), g ∈ WF .

We denote by ŴD
F the set of isomorphism classes of such representations. For

σ ∈ ŴD
F , we rarely use the notation σW but speak instead of the restriction

of σ to WF . In the same spirit, a representation σ ∈ Ŵss
F defines an element

(σ, 0) of ŴD
F that we continue to denote by σ.

The set ŴD
F admits a notion of direct sum,

(σ,m)⊕ (τ, n) = (σ ⊕ τ,m⊕ n).

We say (σ, n) is indecomposable if it cannot be expressed in this way as a direct

sum in which both factors are non-trivial. Surely any σ ∈ ŴD
F may be expressed

as a direct sum of indecomposable elements of ŴD
F . Such a decomposition is

unique up to permutation of the isomorphism classes of indecomposable factors.
To define the tensor product (σ,m) ⊗ (τ, n), let σ act on a vector space V

and τ on W . One sets

(σ,m)⊗ (τ, n) = (σ ⊗ τ,m⊗ 1W + 1V ⊗ n).
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2.2. We recall the standard first example of an element of ŴD
F . Let n ⩾ 1

be an integer and let spn ∈ Ŵss
F denote the direct sum of the characters x 7→

∥x∥i, for 0 ⩽ i ⩽ n−1. We view spn as acting on V = Cn. The space V
admits a regular nilpotent endomorphism n such that Spn(1) = (spn, n) is a
representation of the Weil-Deligne group. The isomorphism class of Spn(1) is
independent of the choice of n.

More generally, let σ ∈ Ŵ irr
F . We define

Spn(σ) = σ ⊗ Spn(1).

An exercise [23, (4.1.5)] yields:

Fact 2.1. A representation Σ ∈ ŴD
F is indecomposable if and only if Σ =

Spn(σ), for an integer n ⩾ 1 and a representation σ ∈ Ŵ irr
F . Moreover,

Spn(σ)
∼= Spn′(σ′) if and only if n = n′ and σ ∼= σ′.

2.3. We recall the definition of the Artin exponent Ar(σ) and the Swan expo-

nent Sw(σ), for σ ∈ ŴD
F .

Let ψ be a non-trivial smooth character of F and s a complex variable. If
dimσ = n, the Langlands-Deligne local constant ε(σ, s, ψ) takes the form

ε(σ, s, ψ) = ε(σ, 0, ψ) q−(Ar(σ)+nc(ψ))s.

The constant ε(σ, 0, ψ) is non-zero. The exponent Ar(σ) is a non-negative
integer depending only on σ and c(ψ) is an integer depending only on ψ. The
function σ 7→ Ar(σ) is additive with respect to direct sums. In simple cases, it
is given as follows.

Fact 2.2. (1) If χ is an unramified character of WF , then Ar(Spr(χ)) =
r−1.

(2) Let (σ, n) ∈ ŴD
F . If σ is a direct sum of unramified characters of WF ,

then Ar(σ, n) equals the rank of the linear operator n.

(3) If σ ∈ Ŵ irr
F is not an unramified character, then Ar(Spr(σ)) = rAr(σ).

These are the key instances of a general formula [23, (4.1.6)] (but note that,

in the terminology of [23], all σ ∈ ŴD
F are Φ-semisimple).

We define the Swan exponent Sw(σ) of σ ∈ ŴD
F : if σ = (σW , n), then

Sw(σ) = Sw(σW). On Ŵss
F , the function σ 7→ Sw(σ) is additive with respect to

direct sums. If χ is an unramified character of WF , then Sw(χ) = Ar(χ) = 0.

If σ ∈ Ŵ irr
F is not an unramified character, then Sw(σ) = Ar(σ)− dimσ.

As in the introduction, it is helpful to have normalized exponents. For

σ ∈ ŴD
F , σ ̸= 0, set

η(σ) = Ar(σ)/dimσ, ς(σ) = Sw(σ)/dimσ.

The use of either of these symbols carries the presumption that σ is not zero.
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The ς-invariant has a helpful property. For a real number x ⩾ 0, let Wx
F be

the corresponding ramification subgroup of WF (see [20, Section IV.3]). From
[13, Théorème 3.5] , we have:

Fact 2.3. If σ ∈ Ŵ irr
F , then ς(σ) = inf

{
x ⩾ 0 : Wx

F ⊂ Kerσ
}
. If ς(σ) > 0,

then the restriction σ
∣∣Wς(σ)

F does not contain the trivial character.

We make repeated use of the following observation.

Lemma 2.4. If σ, τ ∈ Ŵ irr
F , then

ς(σ ⊗ τ) ⩽ max {ς(σ), ς(τ)}, and

η(σ ⊗ τ) ⩽ max {η(σ), η(τ)}.

Equality holds in the first instance if ς(τ) ̸= ς(σ), in the second if η(τ) ̸= η(σ).

Proof. The inequality concerning ς follows from [5, 3.1 Corollary]. Suppose
that s = ς(σ) > ς(τ). For x ⩾ 0, let Wx+

F denote the closure of the group∪
y>xW

y
F . By Fact 2.3, each of the representations σ, τ , σ ⊗ τ is trivial on

Ws+
F while τ is trivial on Ws

F . The restriction of σ to Ws
F does not contain the

trivial character. It follows that any irreducible component ξ of σ ⊗ τ satisfies
ς(ξ) = s, whence Sw(ξ) = sdim ξ and ς(σ ⊗ τ) = s.

The assertions concerning η now follow from the definitions via a simple
calculation. □

Note. We have proved the parts of Theorems C and CS relating to irreducible
representations. We do not return to those results until Section 5.

2.4. We consider tensor products of indecomposable elements of ŴD
F that are

unramified on restriction to WF .

Proposition 2.5. Let m,n be positive integers. If χ, ξ are unramified charac-
ters of WF , then

Ar(Spm(χ)⊗ Spn(ξ)) = mn−min {m,n},
η(Spm(χ)⊗ Spn(ξ)) = max {η(Spm(χ)), η(Spn(ξ))}.

Proof. The two assertions are visibly equivalent so we prove the first. There
are positive integers ri and unramified characters χi of WF , 1 ⩽ i ⩽ l, so that

Spm(χ)⊗ Spn(ξ) =
l⊕
i=1

Spri(χi).
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In particular,
∑l
i=1 ri = mn. Using the definition of η and the additivity of

the exponent Ar, we get

η
(⊕l

i=1 Spri(χi)
)
=

l∑
i=1

riη
(
Spri(χi)

)
/mn

=
l∑
i=1

(ri−1)/mn = 1− l/mn.

We therefore need to compute l.
Write Spm(χ) = (σ,m), where m is a regular nilpotent endomorphism of Cm.

Likewise, write Spn(ξ) = (τ, n), so that Spm(χ) ⊗ Spn(ξ) = (σ ⊗ τ, l), where
l = m⊗ 1 + 1⊗ n. In this form, the integer mn−l is the rank of the nilpotent
operator l (Fact 2.2(2)). It is therefore enough to recall:

Lemma 2.6. Let m (resp. n) be a regular nilpotent endomorphism of the vector
space V = Cm (resp. W = Cn). The operator l = m ⊗ 1W + 1V ⊗ n has rank
mn−min{m,n}.

The proof of the lemma is a straightforward exercise which completes the
proof of the proposition. □

3. Irreducible representations

We prove Theorems A and AS for irreducible representations of WF , taking
an indirect approach. We state and prove analogous results for irreducible
cuspidal representations of general linear groups GLn(F ) and then use the
Langlands correspondence.

3.1. We need some definitions. Let π be an irreducible cuspidal representation
of GLn(F ), for an integer n ⩾ 1. If χ is a character of F×, then χπ denotes
the representation g 7→ χ(det g)π(g), g ∈ GLn(F ).

We recalled in the introduction the definition of the Artin exponent Ar(π)
of π. We also use the notation η(π) = Ar(π)/n.

The Swan exponent Sw(π) of π is defined by Sw(π) = Ar(π)−n except in
the case where n = 1 and π is an unramified character of F× = GL1(F ). In
that case, Sw(π) = 0. In all cases, Sw(π) ⩾ 0. We also use the notation
ς(π) = Sw(π)/n.

If σ = Lπ ∈ Ŵ irr
F is the irreducible representation of WF attached to π by

the Langlands correspondence, then Ar(σ) = Ar(π) and η(σ) = η(π). The
definitions ensure that Sw(π) = Sw(σ) and ς(π) = ς(σ).

We make a similar modification to the Rankin-Selberg exponent Ar(π × ρ)
defined in the introduction.

Definition 3.1. Let ρ (resp. π) be an irreducible cuspidal representation of
GLm(F ) (resp. GLn(F )). Let d be the number of unramified characters χ of
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F× such that χρ ∼= π̌. Set

Sw(π × ρ) = Ar(π × ρ)−mn+ d,

ς(π × ρ) = Sw(π × ρ)/mn.

Note that if, in this definition, we have d ̸= 0, then m = n and d divides n.
As a consequence of the definition and corresponding properties of the Artin
exponent, we have:

Fact 3.2. Let π be an irreducible cuspidal representation of GLn(F ).

(1) If σ = Lπ ∈ Ŵ irr
F , then Sw(π) = Sw(σ) and ς(π) = ς(σ).

(2) If ρ is an irreducible cuspidal representation of GLm(F ) and Lρ = τ ,
then Sw(π × ρ) = Sw(σ ⊗ τ) and ς(π × ρ) = ς(σ ⊗ τ).

3.2. We remark on some upper bounds.

Proposition 3.3. For i = 1, 2, let πi be an irreducible cuspidal representation
of GLni(F ).

(1) We have ς(π1 × π2) ⩽ max {ς(π1), ς(π2)}, with equality in the case
ς(π1) ̸= ς(π2).

(2) We have η(π1 × π2) ⩽ max {η(π1), η(π2)}, with equality in the case
η(π1) ̸= η(π2).

Proof. This follows from Lemma 2.4 via the Langlands correspondence. □
3.3. We consider the more substantial problem of lower bounds.

Proposition 3.4. For i = 1, 2, let πi be an irreducible cuspidal representation
of GLni(F ). If π1 is ς-minimal then ς(π1 × π2) ⩾ 1

2 max {ς(π1), ς(π2)}.

Proof. It is easier to work with π̌2 in place of π2. By [5, 5.4 Corollary],

ς(π1 × π̌1) ⩽ max {ς(π1 × π̌2), ς(π2 × π̌1)}.
Since ς(π1× π̌2) = ς(π2× π̌1), we get ς(π1× π̌1) ⩽ ς(π1× π̌2). We are therefore
reduced to treating the following special case.

Lemma 3.5. Let π be an irreducible cuspidal representation of GLn(F ), for
some n ⩾ 1. If π is ς-minimal, then ς(π × π̌) ⩾ ς(π)/2.

Proof. We first show that if ς(π) = 0 then also ς(π × π̌) = 0. In Definition
3.1, we have m = n while n = d by [7, (6.2.5)], so the assertion follows from
[6, 6.5 Theorem (i)]. We therefore assume ς(π) > 0. Thus π contains a simple
character θ, attached to a simple stratum [a,m, 0, β] in the matrix algebra
Mn(F). The algebra F [β] is a field, of degree dβ , say, over F and ramification
index eβ . Indeed, θ is “m-simple” (cf. [4], especially Corollary 1), so eβ equals
the F -period of the hereditary order a and ς(π) = m/eβ . The element β
determines a certain non-negative integer c(β), as in [6, Section 6.4], such that
ς(π × π̌) = c(β)/d2β ([6, 6.5 Theorem (i)]).
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We next choose a simple stratum [a,m,m−1, α] equivalent to [a,m,m−1, β].
Let the field extension F [α]/F have degree dα and ramification index eα. It
follows from [2, 3.1 Proposition] that c(α)/d2α ⩽ c(β)/d2β . The element α is

minimal over F (in the sense of [7, 1.4.14] and, since π is ς-minimal, dα > 1.
To calculate c(α), we take a simple stratum [a′,m′, 0, α] in the matrix algebra
EndF (F [α]) ∼= Mdα(F). The integer m′ is meα/eβ (cf. [7, (1.2.4)]) and, by [5,
4.1 Proposition], c(α) = m′dα(dα−1))/eα. Therefore,

ς(π × π̌) ⩾ c(α)/d2α = (1− d−1
α )m/eβ ⩾ m/2eβ = 1

2 ς(π),

as required. □
This completes the proof of the proposition. □

Example 3.6. Let π be an irreducible, cuspidal representation of GL2(F ).
Suppose that π is ς-minimal and ς(π) > 0. In the proof of the last lemma, we
get α = β and dα = 2. This implies ς(π × π̌) = 1

2 ς(π). The constant 1
2 in the

proposition is therefore best possible as applied to arbitrary representations.

Example 3.7. One can improve the constant by restricting the class of repre-
sentations under consideration. For example, if ℓ ⩾ 3 is a prime number and if
ρ is an irreducible, ς-minimal, cuspidal representation of GLℓ(F ) with ς(ρ) > 0,
the same argument gives ς(ρ× ρ̌) = (1−ℓ−1)ς(ρ) > 1

2 ς(ρ).

We translate in terms of Artin exponents. Let π be an irreducible cuspi-
dal representation of GLn(F ). If π is η-minimal, it is then ς-minimal. (The
converse does not hold: the case n = 1 and Ar(π) = 1 provides an example).

Corollary 3.8. For i = 1, 2, let πi be an irreducible cuspidal representation of
GLni(F ). If π1 is η-minimal then η(π1 × π2) ⩾ 1

2 max {η(π1), η(π2)}.

Proof. If either πi is an unramified character of F×, there is nothing to prove
so we assume otherwise. Suppose next that π2 is not an unramified twist of
π̌1. Thus

η(π1 × π2) = ς(π1 × π2)+1 ⩾ 1
2 max {ς(π1), ς(π2)}+1

= 1
2 max {η(π1), η(π2)}+ 1

2 .

Finally, suppose π2 is an unramified twist of π̌1. Thus ς(π1 × π2) = ς(π1 × π̌1).
The lemma then gives ς(π1×π2) ⩾ 1

2 ς(π1) =
1
2 ς(π2). In this case, n1 = n2 and,

since π1 is not an unramified character of F×, we have n1 > 1. If d(π1) is the
number of unramified characters χ for which χπ1 ∼= π1, we have d(π1)/n

2
1 ⩽

1/n1 ⩽ 1
2 . So,

η(π1 × π2) = ς(π1 × π2)+1−d(π1)/n21
⩾ ς(π1 × π2)+

1
2

⩾ 1
2 max {η(π1), η(π2)},

as required. □



153 Bushnell and Henniart

Example 3.9. In Example 3.6, we may choose π so that d(π) = 2. We then
get η(π× π̌) = 1

2η(π). The constant
1
2 is thus best possible for Artin exponents

as well.

4. First lower bound

We prove Theorem A, then deal with Theorem AS at the end of the section.

4.1. We make a simple reduction.

Proposition 4.1. Let σ ∈ ŴD
F be η-minimal. If the inequality

η(σ ⊗ τ) ⩾ 1
2 max{η(σ), η(τ)}

holds when τ ∈ ŴD
F is indecomposable, then it holds for all τ ∈ ŴD

F .

Proof. Let τ ∈ ŴD
F and write τ =

⊕
j∈J τj , where each τj is an indecomposable

element of ŴD
F . Put αj = dim τj/ dim τ , so that

∑
j∈J αj = 1. By hypothesis,

2η(σ ⊗ τj) ⩾ η(σ), so

2η(σ ⊗ τ) =
∑
j∈J

2αjη(σ ⊗ τj) ⩾
∑
j∈J

αjη(σ) = η(σ).

The hypothesis also gives 2η(σ ⊗ τj) ⩾ η(τj) so

2η(σ ⊗ τ) ⩾
∑
j∈J

αjη(τj) = η(τ),

as required. □

We therefore have to prove:

Theorem 4.2. If σ ∈ ŴD
F is η-minimal and τ ∈ ŴD

F is indecomposable, then

η(σ ⊗ τ) ⩾ 1
2 max{η(σ), η(τ)}.

This will take us to the end of Section 4.4.

4.2. Let σ ∈ ŴD
F . Say that σ is η-homogeneous if there exists a ∈ R such

that η(τ) = a, for every irreducible factor τ of σ on WF . When this holds, we
write ℓ0(σ) = a.

Example 4.3. If τ is irreducible and σ = Spr(τ), then σ is η-homogeneous
with ℓ0(σ) = η(τ). Moreover, ℓ0(σ) = η(σ) if ℓ0(σ) ̸= 0. If ℓ0(σ) = 0, then τ is
an unramified character and η(σ) = 1−r−1.

Proposition 4.4. Let σ ∈ ŴD
F be η-homogeneous and write σ =

⊕
j∈J Sprj (τj),

where the τj are irreducible and rj ⩾ 1.

(1) The representation σ is η-minimal if and only if each τj is η-minimal.
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(2) If σ is η-minimal, then

η(χ⊗ σ) = max {η(σ), η(χ)},

for all characters χ of WF .

Proof. Set a = ℓ0(σ). If a = 0, then σ is η-minimal, each Sprj (τj) is η-minimal

and (2) is implied by Fact 2.2. We assume henceforth that a > 0.
Take first the case where σ is indecomposable, say σ = Spr(τ). If dim τ = 1,

it is clear that σ is η-minimal if and only if η(τ) = 0, contrary to hypothesis.
Therefore dim τ > 1, so a = η(σ) = η(τ). Also, if χ is a character of WF , then
η(χ⊗σ) = η(χ⊗τ). In particular, η(χ⊗σ) ⩾ η(σ) if and only if η(χ⊗τ) ⩾ η(τ)
and (1) follows. For (2), suppose τ to be η-minimal and set η(χ) = c. If c > a,
then η(χ ⊗ τ) = c > a = η(σ), using Lemma 2.4. If, however, c < a, we
get η(χ ⊗ σ) = a = η(σ). Suppose finally that c = a. As τ is η-minimal,
η(χ⊗ τ) = η(τ) and (2) is done in this case. We have also shown that, if σ is
not minimal, there exists χ with η(χ) = a and η(χ⊗ σ) < η(σ).

For the general case, we set σ =
⊕

j∈J σj , where σj is indecomposable. Put

αj = dimσj/ dimσ, so that∑
j

αj = 1 and η(χ⊗ σ) =
∑
j

αjη(χ⊗ σj).

Suppose σj is not η-minimal, for some j ∈ J . We have just shown that there
exists χ with η(χ) = a and η(χ⊗σj) < η(σj). On the other hand, η(χ⊗σk) ⩽
η(σk) for k ̸= j, so

η(χ⊗ σ) =
∑
i∈J

αiη(χ⊗ σi) <
∑
i∈J

αiη(σj) = η(σ),

whence σ is not η-minimal.
Assume, therefore, that every σj is η-minimal. Let c = η(χ). If c ⩾ a,

the discussion of the indecomposable case gives η(χ ⊗ σj) = c, j ∈ J , so
η(χ⊗ σ) = c ⩾ η(σ). If, however, c < a, we get η(χ⊗ σ) = a = η(σ). Thus σ
is η-minimal and we have also proven (2). □

4.3. We use Proposition 4.4 to prove a special case of Theorem 4.2.

Proposition 4.5. Let σ ∈ ŴD
F be η-minimal and η-homogeneous. If τ ∈ ŴD

F

is irreducible, then

η(σ ⊗ τ) ⩾ 1
2 max {η(σ), η(τ)}.

Proof. Combining Proposition 4.4 with the decomposition technique used in
Section 4.1, we reduce to the case where σ is indecomposable and η-minimal.
Let a = ℓ0(σ).

Consider first the case where a = 0, that is, σ = Spr(χ) with χ an unramified
character of WF and r ⩾ 1. Thus η(σ) = (r−1)/r. On the other hand,
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σ ⊗ τ = Spr(χ⊗ τ) and so

η(σ ⊗ τ) =

{
η(τ) if η(τ) ̸= 0,

η(σ) if η(τ) = 0.

In the first case, we have η(τ) ⩾ 1 > η(σ) while, in the second, η(τ) ⩽ η(σ).
The result therefore holds when a = 0.

From now on, we assume a > 0. We write σ as Spr(ρ), where ρ is irreducible
and η-minimal. We have η(ρ) = η(σ) = a and dim ρ > 1. Assume initially that
there is no unramified character χ of WF such that χ⊗ρ ∼= τ̌ . This means that
no irreducible component of ρ⊗ τ is unramified, so Ar(σ⊗ τ) = rAr(ρ⊗ τ) and

2η(σ ⊗ τ) = 2η(ρ⊗ τ) ⩾ max {η(ρ), η(τ)},

by Corollary 3.8. Since η(σ) = η(ρ), we are done in this case.
For the remaining case, we may assume τ̌ ∼= ρ: in particular, η(τ) = a. Let

d be the number of unramified characters χ for which χ⊗ρ ∼= ρ. Thus d divides
m = dim ρ > 1. To estimate Ar(σ ⊗ τ) = Ar(Spr(1)⊗ ρ⊗ ρ̌), we write

ρ⊗ ρ̌ = ρ′ ⊕ χ1 ⊕ · · · ⊕ χd,

where the χi are unramified characters of WF and every irreducible component
of ρ′ has strictly positive exponent. Thus

η(ρ⊗ ρ̌) = (1− d/m2)η(ρ′).

Also, η(ρ⊗ ρ̌) ⩾ 1
2η(ρ) by Corollary 3.8. Taking this into account, we have

η(σ ⊗ τ) = η
(
(Spr(1)⊗ ρ′)⊕

d∑
i=1

Spr(χi)
)

= (1−d/m2) η(Spr(1)⊗ ρ′) + d(r−1)/rm2

= (1−d/m2) η(ρ′) + d(r−1)/rm2

⩾ (1−d/m2) η(ρ′)

⩾ 1
2η(ρ) =

1
2η(τ).

Since, in this case, η(ρ) = η(σ) the proof is complete. □

We may now deal with Theorem 4.2 in the case where σ is η-homogeneous.

Corollary 4.6. Let σ ∈ ŴD
F be η-minimal and η-homogeneous. If τ ∈ ŴD

F is
indecomposable, then η(σ ⊗ τ) ⩾ 1

2 max {η(σ), η(τ)}.

Proof. As in the proof of the proposition, it is enough to treat the case where
σ is indecomposable and η-minimal. Thus σ = Spr(σ

′) and τ = Sps(τ
′), for

integers r, s ⩾ 1 and irreducible representations σ′, τ ′. We have

σ ⊗ τ =
(
Spr(1)⊗ Sps(1)⊗ σ′)⊗ τ ′.
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The representation σ′′ = Spr(1)⊗Sps(1)⊗σ′ is η-minimal and η-homogeneous
with ℓ0(σ

′′) = ℓ0(σ) = η(σ′), so the proposition gives

η(σ ⊗ τ) = η(σ′′ ⊗ τ ′) ⩾ 1
2 max {η(σ′′), η(τ ′)}.

It is therefore enough to show that

(∗) max {η(σ′′), η(τ ′)} ⩾ max {η(σ), η(τ)}.

To do this, we write the tensor product Spr(1) ⊗ Sps(1) as a sum of inde-
composable representations: there are unramified characters χi and positive
integers ri, 1 ⩽ i ⩽ l, such that

Spr(1)⊗ Sps(1) =

l⊕
i=1

Spri(χi).

We have
∑l
i=1 ri = rs and, by Proposition 2.5, l = min {r, s}. Accordingly,

σ′′ =
l⊕
i=1

Spri(χi ⊗ σ′).

If σ′ is not unramified, then η(σ′′) = η(σ′) = η(σ). Likewise, if τ ′ is not
unramified then η(τ ′) = η(τ). So, if neither σ′ nor τ ′ is unramified, we get
max {η(σ′′), η(τ ′)} = max {η(σ), η(τ)}, proving (∗), whence the proposition, in
this case.

Suppose next that σ′ is unramified. By Proposition 2.5, we have

η(σ′′) =
∑
i

(ri−1)/rs = 1− l
rs ,

while η(σ) = (r−1)/r ⩽ η(σ′′). If τ ′ is not unramified, then η(τ ′) = η(τ) and
we are done. If τ ′ is unramified, then η(τ ′) = 0 and η(τ) = (s−1)/s ⩽ η(σ′′),
since l ⩽ r. This proves (∗) and the proposition in this case.

There remains the case of σ′ not unramified, τ ′ unramified. Following the
reduction at the beginning of the proof, the hypotheses apply equally to the
pair (τ, σ) in place of (σ, τ), so there is nothing more to do. □

4.4. We enter the final stage of the proof of Theorem 4.2. We proceed in two
steps.

Proposition 4.7. If σ ∈ ŴD
F is η-minimal then η(σ ⊗ τ) ⩾ 1

2 η(σ), for all

indecomposable τ ∈ ŴD
F .

Proof. Write σ = ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξr, where the ξi are indecomposable. Setting
dim ξi/ dimσ = αi, we have

η(σ ⊗ τ) =
r∑
i=1

αiη(ξi ⊗ τ).
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There is a character χ such that χ⊗τ is η-minimal. Since τ is indecomposable,
χ⊗ τ is η-homogeneous and Corollary 3.8 gives

η(ξi ⊗ τ) = η
(
(χ−1 ⊗ ξi)⊗ (χ⊗ τ)

)
⩾ 1

2 η(χ
−1 ⊗ ξi).

Consequently,

η(σ ⊗ τ) =

r∑
i=1

αiη(ξi ⊗ τ)

⩾ 1
2

r∑
i=1

αiη(χ
−1 ⊗ ξi)

= 1
2η(χ

−1 ⊗ σ).

As σ is η-minimal, so η(χ−1 ⊗ σ) ⩾ η(σ) and the result follows. □
For Theorem A, it remains only to prove:

Proposition 4.8. If σ ∈ ŴD
F is η-minimal and τ ∈ ŴD

F is indecomposable,
then η(σ ⊗ τ) ⩾ 1

2 η(τ).

Proof. The representation τ is η-homogeneous. If τ is η-minimal, the result
follows from Corollary 4.6 and Proposition 4.1. We therefore assume τ is not
η-minimal.

To proceed further, we need to extend 3.2 Proposition. Write

σ =
⊕
i∈I

Spri(ξi),

for irreducible representations ξi and integers ri ⩾ 1. Let c = max η(ξi). If
c = 0, all ξi are unramified and the proposition follows from Corollary 4.6. We
assume henceforward that c ⩾ 1.

Define σmax as the sum of all factors Spri(ξi) for which η(ξi) = c, and σ′ as
the sum of the others.

Lemma 4.9. The representation σ′ is either zero or η-minimal.

Proof. Assume σ′ ̸= 0. Let dmax = dimσmax and d′ = dimσ′. Set d =
dmax+d

′ = dimσ. Let ϕ be a character of WF and write s = η(ϕ). We
compare the expressions

dη(σ) = dmaxη(σmax) + d′η(σ′),

dη(ϕ⊗ σ) = dmaxη(ϕ⊗ σmax) + d′η(ϕ⊗ σ′).

Suppose that s < c. Every irreducible component ξ of σmax has η(ξ) = c ⩾ 1.
By Lemma 2.4, η(ϕ⊗ξ) = c, whence η(ϕ⊗σmax) = c = η(σmax). As η(ϕ⊗σ) ⩾
η(σ), so η(ϕ⊗ σ′) ⩾ η(σ′).

If, on the other hand, s ⩾ c, a similar argument gives η(ϕ⊗σ′) = s ⩾ c. We
show that c > η(σ′). To do this, we may assume σ′ to be indecomposable, say
σ′ = Spr(ξ) with ξ irreducible. If ξ is not unramified, then η(σ′) = η(ξ) < c,



Bounds for Rankin-Selberg exponents 158

by the definition of c. If ξ is unramified, then η(σ′) = 1−1
r < 1 ⩽ c. Overall,

η(ϕ⊗ σ′) = s ⩾ c > η(σ′) in this case also. Thus η(ϕ⊗ σ′) ⩾ η(σ′) for all ϕ, as
required. □

If the representation σ′ is zero, then σ = σmax is η-homogeneous and η-
minimal. The proposition in this case is given by Corollary 3.8. We assume
therefore that σ′ ̸= 0. Certainly σmax ̸= 0 so, using induction on the Jordan-
Hölder length of σ, we may assume

η(σ′ ⊗ τ) ⩾ 1
2 η(τ).

The indecomposable representation τ is not η-minimal (by assumption), and so
is not unramified on WF . If we write s = η(τ), then s ⩾ 1. Let χ be a character
such that χ⊗ τ is η-minimal. It follows from Lemma 2.4 that η(χ) = s.

Examining cases, suppose first that s > c. We show that η(σ ⊗ τ) = s >
s/2, implying the result in this situation. Let ξ (resp. θ) be an irreducible
composition factor of σ (resp. τ). Thus ς(θ) = s−1 > 0 and ς(ξ) = c−1.
By Fact 2.3, an irreducible component µ of ξ ⊗ θ satisfies ς(µ) = s−1. Thus
η(µ) = s = η(σ ⊗ τ), as asserted.

If, on the other hand, s < c, the same argument gives η(σmax ⊗ τ) = c. By
inductive hypothesis, η(σ′ ⊗ τ) ⩾ s/2. Writing α = dmax/d, β = d′/d, we have

η(σ ⊗ τ) = αη(σmax ⊗ τ) + βη(σ′ ⊗ τ)

⩾ αc+ 1
2βs ⩾

1
2s.

It remains to treat the case s = c. If ξ is an irreducible factor of σ′ ⊗ τ , Fact
2.3 implies η(ξ) = s. Thus η(σ′ ⊗ τ) = s = c and

η(σ ⊗ τ) = αη(σmax ⊗ τ) + βs.

However, η(σmax⊗ τ) = η
(
(χ−1⊗σmax)⊗ (χ⊗ τ)

)
while, by the very first case

of this proof, we have

η
(
(χ−1 ⊗ σmax)⊗ (χ⊗ τ)

)
⩾ 1

2 η(χ
−1 ⊗ σmax).

If ξ is an irreducible factor of σ′, then η(ξ) < s = c and η(χ−1 ⊗ ξ) = s. Since
σ is η-minimal,

η(χ−1 ⊗ σ) = αη(χ−1 ⊗ σmax) + βη(χ−1 ⊗ σ′)

= αη(χ−1 ⊗ σmax) + βs

⩾ η(σ) = αs+ βη(σ′).

That is,

αη(χ−1 ⊗ σmax) ⩾ (α−β)s+ βη(σ′)
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and, overall,

η(σ ⊗ τ) = αη
(
(χ−1 ⊗ σmax)⊗ (χ⊗ τ)

)
+ βs

⩾ 1
2αη(χ

−1 ⊗ σmax) + βs

⩾ 1
2 (α−β)s+

1
2βη(σ

′) + βs

⩾ 1
2 (α+β)s

= 1
2s =

1
2η(τ).

That is, η(σ ⊗ τ) ⩾ 1
2η(τ) as required. □

This completes the proofs of Theorem 4.2 and Theorem A. □

4.5. We digress to highlight a special case. Say that σ ∈ ŴD
F is unramified

if its restriction to WF is a sum of unramified characters. Any such σ is both
η-minimal and η-homogeneous.

Example 4.10. If σ ∈ ŴD
F is unramified, then η(σ ⊗ τ) ⩾ max{η(σ), η(τ)},

for all τ ∈ ŴD
F .

To justify this, one applies the argument of Section 3.1 twice to reduce to
the case where both σ and τ are indecomposable. The proof of Proposition 4.5
gives the result when τ is irreducible. In the proof of Corollary 4.6, we still get
η(σ⊗ τ) = η(σ′′ ⊗ τ ′), so η(σ⊗ τ) ⩾ max {η(σ′′), η(τ ′)}. In the same proof, we
have shown that max {η(σ′′), η(τ ′)} ⩾ max {η(σ), η(τ)}, whence the assertion.

Starting again from the first case of the proof of Proposition 4.5, one may
equally conclude:

Example 4.11. Let σ ∈ ŴD
F be unramified. If τ ∈ ŴD

F has no unramified
direct factor, then η(σ ⊗ τ) = η(τ).

For a tensor product of unramified representations, one may derive an ex-
plicit formula from Lemma 2.6.

4.6. We prove Theorem AS: if σ, τ ∈ Ŵss
F and if σ is ς-minimal, then ς(σ⊗τ) ⩾

1
2 max{ς(σ), ς(τ)}.

If σ and τ are irreducible, this follows from Proposition 3.4. An argument
identical to Proposition 4.1 shows it is enough to prove the theorem under the
additional hypothesis that τ is irreducible.

Say that σ ∈ Ŵss
F is ς-homogeneous if, for some a, we have ς(σ′) = a

for all irreducible components σ′ of σ. With this definition, the analogue of
Proposition 4.4 holds with the same proof. In light of the case already done,
where σ and τ are irreducible, the analogue of Proposition 4.5 is immediate
here and the Corollary is redundant. The propositions of Section 4.4 hold, with
identical proofs, and the theorem is proved. □
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5. Symmetric lower bound

We prove Theorem B and deal with Theorem BS at the end of the sec-
tion. We first accumulate some preliminary results concerning irreducible or
indecomposable representations.

5.1. We start with what amounts to a special case of the theorem.

Proposition 5.1. If σ, τ are irreducible representations of WF , then

ς(σ ⊗ τ̌) ⩾ max {ς(σ ⊗ σ̌), ς(τ ⊗ τ̌)}, and

η(σ ⊗ τ̌) ⩾ max {η(σ ⊗ σ̌), η(τ ⊗ τ̌)}.

Proof. For the first assertion, we follow [12] but use the notation and layout

of [5, Sections 2.5, 3.1] . The set Ŵ irr
F carries a canonical pairing ∆ with non-

negative real values [5, (2.5.3)]. It has the property ∆(σ, σ) ⩽ ∆(σ, τ), for

all τ ∈ Ŵ irr
F . As in [5, Section 3.1], there is a continuous, strictly increasing

function Σσ such that Σσ(∆(σ, τ)) = ς(σ ⊗ τ̌). Therefore ς(σ ⊗ σ̌) ⩽ ς(σ ⊗ τ̌),
as desired.

In the second assertion, suppose first that σ ̸∼= χ ⊗ τ , for any unramified
character χ of WF . It follows that η(σ ⊗ τ̌) = ς(σ ⊗ τ̌)+1. The first assertion
then gives η(σ ⊗ τ̌) ⩾ max {ς(σ ⊗ σ̌)+1, ς(τ ⊗ τ̌)+1}. However,

η(σ ⊗ σ̌) = ς(σ ⊗ σ̌) + 1− dσ/m
2,

where dσ is the number of unramified characters χ such that χ ⊗ σ ∼= σ and
m = dimσ. Likewise for τ , and the result follows.

If, on the other hand, there is an unramified character ϕ such that τ ∼= ϕ⊗σ,
we get η(σ ⊗ τ̌) = η(σ ⊗ σ̌) = η(τ ⊗ τ̌), and there is nothing to do. □

5.2. The exponent has a striking ultrametric property.

Proposition 5.2. If σ, τ, ρ ∈ Ŵ irr
F , then

ς(σ ⊗ τ̌) ⩽ max {ς(σ ⊗ ρ̌), ς(ρ⊗ τ̌)},
η(σ ⊗ τ̌) ⩽ max {η(σ ⊗ ρ̌), η(ρ⊗ τ̌)}.

Proof. The first inequality is [5, 3.1 Corollary]. To deduce the second, let dστ
be the number of unramified characters χ for which τ ∼= χ ⊗ σ, and similarly
for the other pairs. Let m = dimσ, n = dim τ and l = dim ρ. Thus

η(σ ⊗ τ̌) = ς(σ ⊗ τ̌)+1− dστ/mn,

and similarly for the others. The first part of the proposition yields

η(σ ⊗ τ̌) ⩽ max {η(σ ⊗ ρ̌) + dσρ/ml, η(ρ⊗ τ̌) + dρτ/nl} − dστ/mn.

This gives the result if dστ = dσρ = dρτ = 0. If dστ ̸= 0, then m = n
and dσρ = dρτ . Also, η(σ ⊗ τ̌) = η(σ ⊗ σ̌) and η(ρ ⊗ τ̌) = η(ρ ⊗ σ̌). The
desired inequality thus reduces to η(σ ⊗ σ̌) ⩽ η(σ ⊗ ρ̌), which follows from
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Proposition 4.1. Similarly, if dσρ ̸= 0, we have to check that η(σ ⊗ τ̌) ⩽
max {η(σ ⊗ σ̌), η(σ ⊗ τ̌)}, and this is immediate. □

5.3. We generalize Propositions 5.1 and 5.2 to indecomposable representa-
tions. To do this, we need some explicit formulas.

Let σ, τ be irreducible representations of WF of dimensionm,n respectively.
Let dσ be the number of unramified characters χ such that σ ∼= χ⊗ σ. Define
dτ similarly, and let dστ be the number of unramified characters χ such that
σ ∼= χ⊗ τ . Let r ⩾ s ⩾ 1 be integers, and set Σ = Spr(σ), T = Sps(τ).

Lemma 5.3. With the notation above, we have

η(Σ⊗ Ť) = η(σ ⊗ τ̌) + dστ (1−r−1)/mn,

η(Σ⊗ Σ̌) = η(σ ⊗ σ̌) + dσ(1−r−1)/m2,

η(T⊗ Ť) = η(τ ⊗ τ̌) + dτ (1−s−1)/n2.

Proof. The second and third relations are instances of the first, so we need only
prove that one.

We write σ⊗ τ̌ = ρ⊕χ1 ⊕χ2 ⊕ · · · ⊕χd, where every component of ρ is not
unramified and χj is an unramified character, 1 ⩽ j ⩽ d = dστ . Thus

η(σ ⊗ τ̌) = (mn−d)η(ρ)/mn.

We also have Ť = Sps(ζ), for some unramified character ζ, so

Σ⊗ Ť = Spr(1)⊗ Sps(ζ)⊗ σ ⊗ τ̌ .

Set R = Spr(1)⊗ Sps(ζ)⊗ ρ, so that η(R) = η(ρ). Expanding, we get

η(Σ⊗ Ť) = (mn−d)η(ρ)/mn+ dη(Spr(1)⊗ Sps(ζ)⊗Σjχj)/mn.

Recalling that r ⩾ s, Proposition 2.5 gives

η(Spr(1)⊗ Sps(ζ)⊗ ϕ) = 1−r−1,

for any unramified character ϕ. Therefore,

η(Spr(1)⊗ Sps(ζ)⊗Σjχj) = d−1
∑
j

η(Spr(1)⊗ Sps(ζ)⊗ χj) = 1−r−1

and, altogether,

η(Σ⊗ Ť) = (mn−d)η(ρ)/mn+ d(1−r−1)/mn

= η(σ ⊗ τ̌) + d(1−r−1)/mn,

as required. □

Proposition 5.4. If Σ,T ∈ ŴD
F are indecomposable, then

η(Σ⊗ Ť) ⩾ max {η(Σ⊗ Σ̌), η(T⊗ Ť)}.
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Proof. We write Σ = Spr(σ) and T = Sps(τ), for σ, τ ∈ Ŵ irr
F . Using the

notation of the lemma, suppose first that dστ = 0. Using Proposition 5.1 and
the formulas from the lemma, we get

η(Σ⊗ Ť) = η(σ ⊗ τ̌) = ς(σ ⊗ τ̌)+1

⩾ ς(σ ⊗ σ̌)+1 = η(σ ⊗ σ̌) + dσ/m
2 ⩾ η(Σ⊗ Σ̌),

and likewise η(Σ⊗ Ť) ⩾ η(T⊗ Ť).
Suppose therefore that dστ ̸= 0. There is then an unramified character χ for

which τ ∼= χ⊗ σ. In particular, m = n and dστ = dσ = dτ = d, say. From the
formulas above, we get η(Σ⊗ Ť) = η(Σ⊗ Σ̌) ⩾ η(T⊗ Ť), which is enough. □

Proposition 5.5. If Σ,T,R ∈ ŴD
F are indecomposable then

η(Σ⊗ Ť) ⩽ max{η(Σ⊗ Ř), η(R⊗ Ť)}.

Proof. There are representations σ, τ, ρ ∈ Ŵ irr
F and integers r, s, t such that

Σ = Spr(σ), T = Sps(τ) and R = Spt(ρ). Let dimσ = m, dim τ = n and
dim ρ = l. Define integers dστ , dσ etc., as before.

Take first the case where σ is not an unramified twist of τ . That is, dστ = 0
and η(Σ⊗ Ť) = η(σ ⊗ τ̌). If, for example, dσρ ̸= 0 then l = m and

η(Σ⊗ Ř) = η(σ ⊗ ρ̌) + dσρ(1−q−1)/m2 ⩾ η(σ ⊗ ρ̌),

where q = max{r, t}. If, on the other hand, dσρ = 0, we get the conclusion

η(Σ⊗ Ř) = η(σ⊗ ρ̌). Similarly for the pair (ρ, τ), so the desired inequality now
follows from Proposition 5.2.

We therefore assume dστ ̸= 0. Our assumption r ⩾ s implies η(Σ ⊗ Ť) =
η(Σ⊗ Σ̌), while η(Σ⊗ Σ̌) ⩽ η(Σ⊗ Ř), by Proposition 5.4. □

5.4. We now prove the main statement of Theorem B, that is:

Theorem 5.6. If σ1, σ2 ∈ ŴD
F , then

η(σ1 ⊗ σ̌2) ⩾ 1
2

(
η(σ1 ⊗ σ̌1) + η(σ2 ⊗ σ̌2)

)
.

Proof. We proceed by induction on r1r2, where ri is the number of isomorphism
classes of indecomposable direct factors of σi. The case r1r2 = 1 follows from
Proposition 5.4, so we assume r1r2 ⩾ 2.

If k is a positive integer, we may replace σ1 by kσ1 = σ1 ⊕ σ1 ⊕ · · · ⊕ σ1
(k copies) without changing r1 or the formula to be proved. Likewise for
σ2. We may therefore assume that dimσ1 = dimσ2. Next, we choose an
indecomposable direct factor τi of σi, i = 1, 2, so as to minimize η(τ1 ⊗ τ̌2).

Lemma 5.7. Using the preceding notation, there are positive integers k, a, b
such that

kσ1 = ρ1 ⊕ aτ1, kσ2 = ρ2 ⊕ bτ2,

where
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(a) dim ρ1 = dim ρ2 and either
(b) ρ1 has no direct factor equivalent to τ1 or
(c) ρ2 has no direct factor equivalent to τ2.

Proof. Let mi be the multiplicity of τi in σi and write di = dim τi. By symme-
try, we may assume d1m1 ⩾ d2m2. Thus

d1σ2 = ρ2 ⊕ d1m2τ2,

for a subspace ρ2 with no factor τ2. Likewise,

d1σ1 = ρ′1 ⊕ d1m1τ1,

for a subspace ρ′1 with no factor τ1. We have

dim ρ2 − dim ρ′1 = d21m1 − d1d2m2.

This integer is divisible by d1 and is non-negative. So, d1σ1 admits a decom-
position d1σ1 = ρ1 ⊕ aτ1 in which dim ρ1 = dim ρ2 and a is a positive integer.
The result follows with k = d1 and b = d1m2. □ □

We may replace (σ1, σ2) by (kσ1, kσ2) without changing anything. To sim-
plify notation, we assume that Lemma 5.7 holds with k = 1. The hypothesis
r1r2 > 1 implies that one of the spaces ρi is non-zero, so both are. Extend-
ing notation in the obvious way, we have r(ρ1)r(ρ2) < r1r2 so, by inductive
hypothesis,

2 η(ρ1 ⊗ ρ̌2) ⩾ η(ρ1 ⊗ ρ̌1) + η(ρ2 ⊗ ρ̌2).

Put

α =
dim ρ1
dimσ1

=
dim ρ2
dimσ2

, β = 1−α.

Applying the definition of η to the relations σ1 = ρ1 ⊕ aτ1, σ2 = ρ2 ⊕ bτ2, we
get

η(σ1 ⊗ σ̌2) = α2η(ρ1 ⊗ ρ̌2) + αβ
(
η(ρ1 ⊗ τ̌2)+η(τ1 ⊗ ρ̌2)

)
+ β2η(τ1 ⊗ τ̌2),

η(σ1 ⊗ σ̌1) = α2η(ρ1 ⊗ ρ̌1) + 2αβη(ρ1 ⊗ τ̌1) + β2η(τ1 ⊗ τ̌1),

η(σ2 ⊗ σ̌2) = α2η(ρ2 ⊗ ρ̌2) + 2αβη(ρ2 ⊗ τ̌2) + β2η(τ2 ⊗ τ̌2).

Proposition 5.4 implies that

2 η(τ1 ⊗ τ̌2) ⩾ η(τ1 ⊗ τ̌1) + η(τ2 ⊗ τ̌2).

The theorem will therefore follow from:

Lemma 5.8. With the preceding notation,

η(ρ1 ⊗ τ̌2) + η(τ1 ⊗ ρ̌2) ⩾ η(ρ1 ⊗ τ̌1) + η(τ2 ⊗ ρ̌2).
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Proof. Write ρ1 =
⊕

i∈I ξi and ρ2 =
⊕

j∈J θj , where ξi and θj are indecom-
posable. Thus

η(ρ1 ⊗ τ̌1) =
∑
i∈I

αiη(ξi ⊗ τ̌1), αi = dim ξi/dim ρ1,

and
∑
i∈I αi = 1. We have a similar formula for each of the three other terms in

the inequality to be proved. Combining these, and writing βj = dim θj/dim ρ2,
the desired relation reduces to∑

i∈I

αiη(ξi ⊗ τ̌2) +
∑
j∈J

βjη(τ1 ⊗ θ̌j) ⩾
∑
i∈I

αiη(ξi ⊗ τ̌1) +
∑
j∈J

βjη(τ2 ⊗ θ̌j).

We multiply each sum over i by 1 =
∑
j βj and each in j by 1 =

∑
i αi.

Comparing the αiβj-term on either side, we see it is enough to prove that

η(ξi ⊗ τ̌2) + η(τ1 ⊗ θ̌j) ⩾ η(ξi ⊗ τ̌1) + η(τ2 ⊗ θ̌j), i ∈ I, j ∈ J.

The choice of (τ1, τ2) gives

η(ξi ⊗ τ̌2) ⩾ η(τ1 ⊗ τ̌2), i ∈ I,

η(τ1 ⊗ θ̌j) ⩾ η(τ1 ⊗ τ̌2), j ∈ J.

We now apply Proposition 5.5 to get

η(ξi ⊗ τ̌1) ⩽ max
{
η(ξi ⊗ τ̌2), η(τ2 ⊗ τ̌1)

}
= η(ξi ⊗ τ̌2),

η(τ2 ⊗ θ̌j) ⩽ max
{
η(τ2 ⊗ τ̌1), η(τ1 ⊗ θ̌j)

}
= η(τ1 ⊗ θ̌j),

whence the lemma follows. □

This completes the proof of Theorem 5.6 and the main assertion of Theorem
B. The second assertion of Theorem B is Proposition 5.4. □

5.5. To prove Theorem BS, we can pass directly from the end of Section 5.1 to
the start of Section 5.4. From there on, the argument is identical: one simply
replaces η by ς and “indecomposable” by “irreducible” throughout.

6. Upper bounds

We prove Theorems C and CS.

6.1. We use a combinatorial device. Let A = Z
[
R
]
be the integral group ring

of the additive group of real numbers. We write the elements of A as finite
formal sums of symbols [α], α ∈ R. The ring A comes equipped with two
canonical homomorphisms

d : A −→ Z,
[α] 7−→ 1,

and
v : A −→ R,
[α] 7−→ α.

There is a unique bi-additive map A×A→ A, denoted (x, y) 7→ x∨ y, so that

[α]∨ [β] =
[
max {α, β}

]
, α, β ∈ R.
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Let A+ be the set of elements
∑
α cα[α] such that cα = 0 if α < 0 and cα ⩾ 0

otherwise.

Proposition 6.1. If σ, τ ∈ A+, then

v(σ∨ τ) ⩽ d(τ)v(σ) + d(σ)v(τ)−min {v(σ), v(τ)}.

Proof. If either σ or τ is the zero element of A, the assertion is trivial. We
therefore assume that both σ, τ ∈ A+ are non-zero and proceed by induction
on the integer d = d(σ+τ) ⩾ 2. In the first case d = 2, we have σ = [α],
τ = [β], for some positive real numbers α, β. The assertion is

max {α, β} ⩽ α+ β −min {α, β}.
This holds with equality. For the general inductive step, we may assume by
symmetry that σ = σ1+σ2, for non-zero elements σi of A+. By inductive
hypothesis,

v(σi∨ τ) ⩽ d(τ)v(σi) + d(σi)v(τ)−min {v(σi), v(τ)}, i = 1, 2.

Adding and using the inductive hypothesis, we get

v(σ∨ τ) ⩽ v(σ1∨ τ) + v(σ2∨ τ)
⩽ d(τ)v(σ) + d(σ)v(τ)−min {v(σ1), v(τ)} −min {v(σ2), v(τ)}
⩽ d(τ)v(σ) + d(σ)v(τ)−min {v(σ), v(τ)},

as required. □

Remark 6.2. If we fix positive integers d1, d2, and real numbers v1, v2, there
exist σ1, σ2 ∈ A+ such that di = d(σi), vi = v(σi), and

v(σ1∨σ2) = d2v1 + d1v2 −min {v1, v2}.
In other words, the inequality of the proposition is optimal.

6.2. We prove Theorem CS. Recall that the assertion of the theorem concern-
ing irreducible representations has been proved in Lemma 2.4.

A representation σ ∈ Ŵ irr
F gives an element S(σ) = dim(σ)[ς(σ)] of the ring

A of 5.1. For σ ∈ Ŵss
F , we define S(σ) ∈ A+ by

S(σ1 ⊕ σ2 ⊕ · · · ⊕ σr) =

r∑
i=1

S(σi), σi ∈ Ŵ irr
F .

This definition gives

v
(
S(σ)

)
= Sw(σ),

d
(
S(σ)

)
= dimσ,

σ ∈ Ŵss
F .

We know that ς(σ ⊗ τ) ⩽ max{ς(σ), ς(τ)} when both representations σ, τ are
irreducible. In our present notation, this says

Sw(σ ⊗ τ) ⩽ v
(
S(σ)∨S(τ)

)
, σ, τ ∈ Ŵ irr

F .
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Consequently, if ρ, θ ∈ Ŵss
F , then

Sw(ρ⊗ θ) ⩽ v
(
S(ρ)∨S(θ)

)
⩽ d

(
S(θ)

)
v
(
S(ρ)

)
+ d

(
S(ρ)

)
v
(
S(θ)

)
−min

{
v
(
S(ρ)

)
, v
(
S(θ)

)}
= dim(θ)Sw(ρ) + dim(ρ)Sw(θ)−min {Sw(ρ), Sw(θ)},

as required to prove Theorem CS. □

6.3. We can use exactly the same argument to prove Theorem C once we
establish:

Proposition 6.3. If R,T ∈ ŴD
F are indecomposable, then

η(R⊗ T) ⩽ max {η(R), η(T)}.

Proof. Let Σ ∈ ŴD
F be indecomposable. Thus

η(R⊗ T) ⩽ max {η(R⊗ Σ), η(Σ̌⊗ T)},
by Proposition 5.5. Taking for Σ the trivial character of WF , we get the
proposition. □

This completes the proof of Theorem C. □
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