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SPATIAL STATISTICS FOR LATTICE POINTS ON THE

SPHERE I: INDIVIDUAL RESULTS
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Dedicated to Freydoon Shahidi on the occasion of his 70-th birthday

Abstract. We study the spatial distribution of point sets on the sphere
obtained from the representation of a large integer as a sum of three
integer squares. We examine several statistics of these point sets, such as

the electrostatic potential, Ripley’s function, the variance of the number
of points in random spherical caps, and the covering radius. Some of the
results are conditional on the Generalized Riemann Hypothesis.
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1. Introduction

The goal of this paper is to study the spatial distribution of point sets on
the sphere S2 obtained from the representation of a large integer as a sum of
three squares. Some of the results were announced in [4].

Let E(n) be the set of integer solutions of the equation x2
1 + x2

2 + x2
3 = n:

E(n) = {x ∈ Z3 : |x|2 = n}.

This set might be empty; a necessary and sufficient condition for E(n) ̸= ∅ that
is for n to be a sum of three squares, is that n ̸= 4a(8b− 1). We denote by

N = Nn := #E(n).

It is known that Nn ≪ n1/2+o(1) and if there are primitive lattice points,
that is x = (x1, x2, x3) with gcd(x1, x2, x3) = 1 (which happens if an only if
n ̸= 0, 4, 7 mod 8) then there is a lower bound of Nn ≫ n1/2−o(1). For more
details concerning Nn see Section 2.

Once there are many points in E(n), one can ask how they distribute on the
sphere. Linnik conjectured, and proved assuming the Generalized Riemann
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Hypothesis (GRH), that for n ̸= 0, 4, 7 mod 8, the projected lattice points

Ê(n) :=
1√
n
E(n) ⊂ S2

become uniformly distributed on the unit sphere S2 as n → ∞ along this
sequence. That is, for a nice subset Ω ⊂ S2 let

Z(n; Ω) := #(Ê(n) ∩ Ω).

Then as n → ∞ along this sequence

(1.1)
1

Nn
Z(n,Ω) ∼ σ(Ω),

where σ is the normalized area measure on S2 (σ(S2) = 1). This was proved
unconditionally by Duke [6, 7] and Golubeva and Fomenko [10].

We will consider various statistics of the point sets Ê(n) ⊂ S2, with the
aim of comparing these statistics to those of random points, that is N points
chosen independently and uniformly, and contrast them with those of “rigid”
point sets, by which we mean points on a planar lattice, such as the honeycomb
lattice. See [4] for a detailed discussion and proofs of the statements below
concerning random points.

1.1. Electrostatic energy. The electrostatic energy of N points P1, . . . , PN

on S2 is given by

E(P1, . . . , PN ) :=
∑
i ̸=j

1

|Pi − Pj |
.

This energy E depends on both the global distribution of the points as well
as a moderate penalty for putting the points to close to each other. The
configurations with minimal energy are rigid in various senses [5] and we will

see below in Corollary 1.6 that our points Ê(n) are far from being rigid.
More generally, the Riesz s-energy is defined as

Es(P1, . . . , PN ) :=
∑
i ̸=j

1

|Pi − Pj |s
.

The minimum energy configuration is known to satisfy [30, 31]

I(s)N2 − βN1− s
2 ≤ min

P1,...,PN

Es(P1, . . . , PN ) ≤ I(s)N2 − αN1− s
2 ,

when 0 < s < 2, for some 0 < α ≤ β < ∞ (depending on s), where

I(s) =

∫∫
S2×S2

1

||x− y||s
dσ(x)dσ(y) =

21−s

2 − s
.

We will show that for 0 < s < 2, Ê(n) give points with asymptotically
optimal s-energy:
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Theorem 1.1. Fix 0 < s < 2. Suppose n → ∞ such that n ̸= 0, 4, 7 mod 8.
Then there is some δ > 0 so that

Es(Ê(n)) = I(s)N2 + O(N2−δ).

For a recent application of this result, see [25].

1.2. Point pair statistics: Ripley’s function. The point pair statistic and
its variants is at the heart of our investigation. It is a robust statistic as for
as testing the randomness hypothesis and it is called Ripley’s function in the
statistics literature [27]. For P1, . . . , PN ∈ S2 and 0 < r < 2, set

Kr(P1, . . . , PN ) :=
∑
i ̸=j

|Pi−Pj |<r

1

to be the number of ordered pairs of distinct points at (Euclidean) distance at
most r apart. For fixed ϵ > 0, uniformly for N−1+ϵ ≤ r ≤ 2, one has that for
N random points (the binomial process)

Kr(P1, . . . , PN ) ∼ 1

4
N(N − 1)r2.

Based on the results below as well as some numerical experimentation, we

conjecture that for n square-free the points Ê(n) behave randomly with respect
to Ripley’s statistic at scales N−1+ϵ

n ≤ r ≤ 2; that is

Conjecture 1.2. For squarefree n ̸= 7 mod 8,

Kr(Ê(n)) ∼ N2r2

4
, as n → ∞.

We show that Conjecture 1.2 is true at least in terms of an upper bound
which is off only by a multiplicative constant.

Theorem 1.3. Assume the Generalized Riemann Hypothesis (GRH). Then for
fixed ϵ > 0 and N−1+ϵ ≤ r ≤ 2,

Kr(Ê(n)) ≪ϵ N
2r2

for square-free n ̸= 7 mod 8, where the implied constant depends only on ϵ.

Remark 1.4. We do not need the full force of GRH here, but rather that there
are no “Siegel zeros”.

1.3. Nearest neighbour statistics. Our study of Ripley’s function allows us
to investigate the distribution of nearest neighbour distances in E(n): For N
points P1, . . . , PN ∈ S2 let dj denote the distance from Pj to the remaining
points. Since the balls about the Pj ’s of radius dj/2 are disjoint, it follows from

considerations of area that
∑N

j=1 d
2
j ≤ 42. Hence the mean value of the dj ’s is

at most 4/
√
N . For rigid configurations as well as the ones that minimize the

electrostatic energy, each one of the dj ’s is of this size [5]. This is not true for
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random points, however it is still true for these that almost all the points are
of order N−1/2 apart.

It is more convenient to work with the squares of these distances. In order
to space these numbers at a scale for which they have a limiting distribution in
the random case (see [4]), we rescale them by their mean for the random case,
i.e. replace d2j by N

4 d
2
j . Thus for P1, . . . , PN ∈ S2 define the nearest neighbour

spacing measure µ(P1, . . . , PN ) on [0,∞) by

µ(P1, . . . , PN ) :=
1

N

N∑
j=1

δN
4 d2

j
,

where δξ is a delta mass at ξ ∈ R. Note that the mean of µ is at most 1 and
that for random points we have

µ(P1, . . . , PN ) → e−xdx, as N → ∞.

Based on this and on numerical experiments we conjecture:

Conjecture 1.5. As n → ∞ along square-free integers, n ̸= 7 mod 8,

µ(Ê(n)) → e−xdx.

Using Theorem 1.3 and its proof we deduce the following basic result about

the nearest neighbour measures µ(Ê(n)):

Corollary 1.6. Assume GRH. If ν is a weak limit of the µ(Ê(n)), n ̸= 7 mod 8
squarefree, then ν is absolutely continuous, in fact there is an absolute constant
c4 > 0 such that

ν ≤ c4dx.

Corollary 1.6 implies that the Ê(n)’s are not rigid for large n since for rigid
configurations, µP1,...,PN

→ δπ/
√
12. Moreover, since Corollary 1.6 implies that

such a weak limit ν cannot charge {0} positively, it follows that almost all

the points of Ê(n) are essentially separated with balls of radius approximately
N−1/2 from the rest.

1.4. The number variance in shrinking sets. We consider families of sets
Ωn which shrink as n → ∞, say spherical caps Cap(ξ, rn) = {x ∈ S2 :
dist(x, ξ) ≤ rn} of radius rn, or more generally annuli Arn,Rn(ξ) = {x ∈ S2 :
rn ≤ dist(x, ξ) ≤ Rn}. Uniform distribution (1.1) remains true if the sets are
allowed to shrink with n provided area(Ωn) ≫ n−α for some small α > 0, but
one expects this to be true a as long as the expected number Nn·area(Ωn) ≫ nϵ.
This conjecture (stated by Linnik [18, Chapter XI]) has some profound impli-
cations. For instance, applied to annuli centered at the north pole, it implies
another conjecture of Linnik, that every integer n (n ̸= 0, 4, 7 mod 8) can be
written as a sum of two square and a mini-square: n = x2 + y2 + z2, with
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z = O(nϵ) for all ϵ > 0. It also implies an old conjecture about the gaps
between sums of two squares, see Section 6.

We can ask for a version for “random” sets, meaning we fix a nice set Ωn ⊂ S2

and investigate the statistics of the number of points Z(n; gΩn) where g ∈
SO(3) is a random rotation. Examples of such sets would be spherical caps
Cap(ξ, rn), or annuli Arn,Rn(ξ), when the center ξ is chosen uniformly on S2

(which is equivalent to choosing a random rotation).
The mean value is tautologically equal to the total number of lattice points

times the area, that is ∫
SO(3)

Z(n; gΩn)dg = Nnσ(Ωn).

where dg is the Haar probability measure on SO(3).
We turn to study the variance. Note that for “random” points, the variance

of the number of points is the expected number of points, so one expects that

Conjecture 1.7. Let Ωn be a sequence of spherical caps, or annuli. If N−1+ϵ
n ≪

σ(Ωn) ≪ N−ϵ
n as n → ∞, n ̸= 0, 4, 7 mod 8, then

(1.2)

∫
SO(3)

∣∣∣Z(n; gΩn) −Nnσ(Ωn)
∣∣∣2dg ∼ Nnσ(Ωn).

Theorem 1.8. Let Ωn be a sequence of spherical caps, or annuli. Assume the
Lindelöf Hypothesis for standard GL(2)/Q L-functions. Then for squarefree
n ̸= 7 mod 8, we have

(1.3)

∫
SO(3)

∣∣∣Z(n; gΩn) −Nnσ(Ωn)
∣∣∣2dg ≪ϵ n

ϵNnσ(Ωn), ∀ϵ > 0.

1.5. The covering radius. Given P1, . . . , PN ∈ S2, the covering radius M(P1,
. . . , PN ) is the least r > 0 so that every point of S2 is within distance at most
r of some Pj . An area covering argument shows that for any configuration

M(P1, . . . , PN ) ≥ 4√
N

.

For random points, M ≤ N−1/2+o(1). An effective version of the equidistribu-

tion of Ê(n) [10, 7] yields some α > 0 such that M(Ê(n)) ≪ N−α
n . Linnik’s

conjecture in particular gives

Conjecture 1.9. M(Ê(n)) = N
−1/2+o(1)
n as n → ∞.

We will show (Section 5.2) that (1.3) implies a quantitative upper bound on
the covering radius towards Conjecture 1.9:

Corollary 1.10. For n ̸= 0, 4, 7 mod 8, if (1.3) holds then

M(Ê(n)) ≪ N−1/4−o(1)
n .
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Under the same assumptions, Theorem 1.8 implies that for a sequence of
spherical caps Cap(x, rn), of area An,

(1.4) σ
{
x ∈ S2 : Ê(n) ∩ Cap(x; rn) = ∅

}
≪ϵ

nϵ

NnAn
, ∀ϵ > 0 .

Thus almost all caps with area ≫ N
−1+o(1)
n contain points from Ê(n). Put

another way, the almost all covering exponent

(1.5) − sup
(
δ : lim

n→∞
σ
{
x ∈ S2 : Ê(n) ∩ Cap(x,N−δ) ̸= ∅

}
= 1

)
is equal to −1/2 (which is optimally small).

The ergodic method developed by Linnik [18] that was mentioned in the first
paragraph allowed him to prove (1.1) for n’s in special arithmetic progressions,
such as those n’s for which a fixed auxiliary prime p splits in Q(

√
−n). In

[9], Ellenberg, Michel and Venakatesh outline an argument combining Linnik’s
method with the spectral gap property for an associated Hecke operator Tp on
L2(S2) [20], to show that for n’s restricted to such a sequence, the almost all
covering exponent is equal to −1/2 (they carry the details of the argument for
the congruence analogue of the problem in [8, 9]).

In the sequel to this paper we examine Conjectures 1.2 and 1.7 for all n’s.
In particular we establish (1.3) for n’s of the form n = dm2 with d fixed and
squarefree, while if d is varying and m ≫ nϵ (ϵ > 0 arbitrary) then the almost
all covering radius is shown to be −1/2. The main result in part II will be the
proof of Conjectures 1.2 and 1.7 for almost all n.

2. Arithmetic background

2.1. The number of lattice points Nn. We first recall what is known about
the number of lattice points Nn = #E(n), that is the number of representations
of n as a sum of three squares. Gauss’ formula expresses Nn in terms of class
numbers. For n square-free, n > 3, it says that

Nn =

{
12h(dn), n = 1, 2, 5, 6 mod 8

24h(dn), n = 3 mod 8,

where if n is square-free, dn is the discriminant of the imaginary quadratic field
Q(

√
−n), that is dn = −4n if −n = 2, 3 mod 4 and dn = −n if −n = 1 mod 4,

and h(dn) is the class number of Q(
√
−n).

Using Dirichlet’s class number formula, one may then express Nn by means
of the special value L(1, χ−n) of the associated quadratic L-function, where
χ−n is the corresponding quadratic character

χ−n(m) =

(
dn
m

)
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defined in terms of the Kronecker symbol. It is a Dirichlet character modulo
|dn|. The resulting formula, for n ̸= 7 mod 8 square-free, is

(2.1) Nn =
24

π

√
nL(1, χdn).

For any n we have an upper bound on the number of such points of

Nn ≪ n1/2+ϵ

for all ϵ > 0.
In order that there be primitive lattice points (that is x = (x1, x2, x3) with

gcd(x1, x2, x3) = 1) it is necessary and sufficient that n = b2m with b odd
and m ̸= 7 mod 8 square-free, equivalently that n ̸= 0, 4, 7 mod 8. If there are
primitive lattice points then by Siegel’s theorem we get a lower bound

Nn ≫ n1/2−ϵ.

2.2. The arithmetic function A(n, t). Let A(n, t) be the number of (or-
dered) pairs (x,y) ∈ E(n) × E(n) with inner product x · y = t, equivalently
|x− y|2 = 2(n− t):

A(n, t) = #{(x,y) ∈ Z3 × Z3 : |x|2 = |y|2 = n, x · y = t},
which is the number of representions of the binary form nu2 + 2tuv + nv2 as a
sum of three squares:

(2.2)

3∑
j=1

(xju + yjv)2 = nu2 + 2tuv + nv2.

The arithmetic function A(n, t) was studied by Venkov [28] [29, Chaper 4.16],
Pall [23, 24] and others, who gave an exact formula for it as a product of local
densities. The formulas in [24, Theorem 4] imply that

A(n, t) = 24α2(n, t)
∏

p|n2−t2

p ̸=2

αp(n, t),

the product over odd primes dividing the discriminant n2−t2, where the factors
αp(n, t) are given as follows:

The 2-adic density α2(n, t) equals either one or zero (we will not need to
specify when either happens).

To specify αp(n, t) for odd primes p, we need some notations: For a prime
p and an integer m we denote by ordp(m) the largest integer k so that pk | m
(when t = 0 we use the convention ordp(0) = ∞). If p is an odd prime then(

m
p

)
is the Legendre symbol.

Assume now that p is odd. Then the quadratic form (2.2) is equivalent over
the p-adic integers Zp to a diagonal one

ϵ1p
a1u2 + ϵ2p

a2v2
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with ϵi being p-adic units and 0 ≤ a1 ≤ a2 are given by

a1 = min(ordp(n), ordp(t)) = ordp(gcd(n, t))

a1 + a2 = ordp(n2 − t2)

Then

• If a1, a2 = 1 mod 2, then

(2.3) αp(n, t) = p
a1−1

2

1 − 1
p(a1+1)/2

1 − 1
p

(1 +

(
−ϵ1ϵ2
p

)
).

• If a1 = 1 mod 2, a2 = 0 mod 2, then

(2.4) αp(n, t) = p
a1−1

2

1 − 1
p(a1+1)/2

1 − 1
p

(1 +

(
−ϵ2
p

)
).

• If a1 = 0 mod 2, a2 = 1 mod 2, then

(2.5) αp(n, t) = p(a1−2)/2
1 − 1

pa1/2

1 − 1
p

(1 +

(
−ϵ1
p

)
) + pa1/2

a2−a1∑
k=0

(
−ϵ1
p

)k

.

• If a1, a2 = 0 mod 2, then

(2.6) αp(n, t) = 2p(a1−2)/2
1 − 1

pa1/2

1 − 1
p

+ pa1/2
a2−a1∑
k=0

(
−ϵ1
p

)k

.

In particular, if p ∤ 2n then a1 = 0 and ϵ1 = n, so that
(

−ϵ1ϵ2
p

)
= χ−n(p) and

αp(n, t) =

ordp(n
2−t2)∑

j=0

χ−n(pj).

Moreover, if n is square-free and p | n is odd then the above formulas show
that if p ∤ t (which is equivalent to p ∤ n2 − t2 in that case) then αp(n, t) = 1,
while if p | gcd(n, t), so that a1 = 1 and p2 | n2 − t2, then αp(n, t) ≤ 2.

We use (2.3), (2.4), (2.5), (2.6) to bound A(n, t) by the value of a multi-
plicative function at n2 − t2: First assume that n is squarefree. Let fn be the
multiplicative function whose values on prime powers are: fn(2k) = 1, while
for p ̸= 2,

(2.7) fn(pk) =


∑k

j=0 χ−n(pj), p ∤ n
1, p | n and k = 1

2, p | n and k ≥ 2.

Then the above computations yield that if n is square-free and p is odd, then
αp(n, t) ≤ fn(pk), k = ordp(n2 − t2), hence:
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Lemma 2.1. If n is square-free, and |t| < n, then

A(n, t) ≤ 24fn(n2 − t2).

More generally, for n which are not square-free, we have

Lemma 2.2. Let

m =
∏

ordp(gcd(n,t))≥2

pordp(gcd(n,t))

and write n = mn1, t = mt1. Let fm,n be the multiplicative function defined
by fn,m(2k) = 1, and for p odd

(2.8) fm,n(pk) =


k + 1, p | m∑k

j=0

(
−n
p

)j

, p ∤ n
1, p ∤ m, p | n, k = 1

2, p ∤ m, p ∤ n, k ≥ 2.

Then for all ϵ > 0,

A(n, t) ≪ m
1
2 τ(m)fn,m(n2

1 −m2
1),

where τ(m) is the divisor function.

2.3. Linnik’s fundamental lemma. We will need an upper bound for A(n, t)
valid for general n:

Proposition 2.3. If |t| < n, then

A(n, t) ≪ gcd(n, t)1/2nϵ, ∀ϵ > 0 .

This kind of bound, a consequence of Lemma 2.2, was stated and used by
Linnik [17], who omitted the factor of gcd(n, t)1/2. A correct version was given
by Pall [23, Section 7], [24, Theorem 4], see also [8, Section 4] for a discussion
of the case when n is square-free.

Proposition 2.3 allows us to deduce a mean equidistribution statement for
regions which on average contain one lattice point. To do so, divide the sphere√
nS2 into boxes {Aj} of size ≈ n1/4 (so there are about n1/2 such boxes); so

one expects that there should be at most nϵ lattice points in each such box.
We show that this expectation is met in the mean square, that is

Theorem 2.4. ∑
j

(
#Aj ∩ E(n)

)2

≪ n1/2+ϵ, ∀ϵ > 0.
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Proof. Theorem 2.4 is an immediate consequence of Proposition 2.3, since∑
j

(
#Aj ∩ E(n)

)2

≪ #{x, y ∈ E(n) : |x− y| ≪ n1/4}

≪
∑

n−n1/2≤t≤n

A(n, t).

Applying Proposition 2.3 now gives∑
j

(
#Aj ∩ E(n)

)2

≪ nϵ
∑

n−n1/2≤t≤n

gcd(n, t)1/2.

Thus it suffices to show that the mean value of gcd(n, t) over the interval
I = [n−

√
n, n] is at most nϵ. Writing

gcd(n, t) =
∑

d|n,d|t

1,

and switching order of summation gives∑
t∈I

gcd(n, t) =
∑
d|n

#{t ∈ I : d | t} ≤
∑
d|n

|I|
d

+ O(1)

≪ |I| log n + O(nϵ) ≪
√
n log n,

proving Theorem 2.4. □

3. Electrostatic energy

In this section, we show that Ê(n) give points with asymptotically optimal
s-energy:

Es(P1, . . . , PN ) :=
∑
i ̸=j

1

|Pi − Pj |s
.

In what follows we take 0 < s < 2.

Theorem 3.1. Fix 0 < s < 2. Suppose n → ∞ such that n ̸= 0, 4, 7 mod 8.
Then there is some δ > 0 so that

Es(Ê(n)) = I(s)N2
n + O(N2−δ

n ),

where

I(s) =

∫∫
S2×S2

1

||x− y||s
dσ(x)dσ(y) =

21−s

2 − s
.
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3.1. A division into close and distant pairs. We denote by

x 7→ x̂ =
x√
n

the projection from the sphere |x|2 = n to the unit sphere S2. We fix a small
ρ > 0 and divide the pairs of points in E(n)×E(n) into close pairs and distant

pairs, depending on whether ||x̂− ŷ|| < n−ρ or not. The projected points Ê(n)
are well separated: ||x̂ − ŷ|| ≥ n−1/2, hence we may take ρ ≤ 1/2. We treat
the contribution of close pairs by using the upper bound of Proposition 2.3 for
the number A(n, t) of pairs x,y ∈ E(n) with inner product ⟨x,y⟩ = t, and that
of the distant pairs by using a quantitative form of the equidistribution of the

sets Ê(n) on the sphere.

3.1.1. The contribution of nearby points.

Lemma 3.2. The contribution of nearby pairs is bounded by∑
x̸=y∈E(n)

||x̂−ŷ||<n−ρ

1

||x̂− ŷ||s
≪ n1−ρ(2−s)+ϵ.

Proof. The squares of the distances between points in E(n) are of the form
||x̂− ŷ||2 = 2h/n for some integer h, since

||x̂− ŷ||2 =
||x− y||2

n
=

2n− 2⟨x,y⟩
n

,

and ||x− y||2 = 2h is equivalent to ⟨x,y⟩ = n− h. Hence the number of pairs
of points x,y ∈ E(n) at distance ||x− y||2 = 2h is A(n, n− h), that is

#{x,y ∈ E(n) : ||x̂− ŷ|| =

√
2h

n
} = A(n, n− h).

Therefore the contribution of close pairs to the sum Es, that is pairs of points
with ||x̂− ŷ|| < n−ρ, is:∑

x̸=y∈E(n)
||x̂−ŷ||<n−ρ

1

||x̂− ŷ||s
= ns/2

∑
1≤h≤ 1

2n
1−2ρ

A(n, n− h)

(2h)s/2
.

According to Proposition 2.3,

A(n, n− h) ≪ nϵ gcd(n, n− h)1/2 = nϵ gcd(n, h)1/2.

Hence the contribution of close pairs is bounded by∑
x̸=y∈E(n)

||x̂−ŷ||<n−ρ

1

||x̂− ŷ||s
≪ ns/2+ϵ

∑
1≤h≤n1−2ρ

gcd(n, h)

(2h)s/2
≪ n1−ρ(2−s)+ϵ,

as claimed. □
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As a consequence, we may replace the potential ||x̂− ŷ||−s by its truncated
form

Fn(x̂, ŷ) = min(
1

||x̂− ŷ||s
,

1

nsρ
)

to get

(3.1) Es(E(n)) =
∑

x̸=y∈E(n)

Fn(x̂, ŷ) + O(n1−ρ(2−s)+ϵ),

where the remainder term is negligible relative to the main term N2
nI(s)

since N2
n ≫ n1−ϵ by Siegel’s theorem.

3.1.2. Distant pairs. For a fixed x0 ∈ E(n), consider the s-energy sum

S(x0) :=
1

Nn

∑
x∈E(n)
x̸=x0

Fn(x̂, x̂0) =
1

Nn

∑
x∈E(n)
x̸=x0

min(nsρ,
1

||x̂− x̂0||s
),

where Nn = #E(n).

Proposition 3.3. For 0 < s < 2, there is some η > 0 so that as n → ∞,
n ̸= 0, 4, 7 mod 8,

S(x0) = I(s) + O(n−η+sρ + n−ρ(2−s)),

where

I(s) =

∫
S2

1

||x− x̂0||s
dσ(x) =

21−s

2 − s
.

As an immediate consequence of Proposition 3.3 we see, on using Nn ≫
n1/2−ϵ, that ∑

x̸=y∈E(n)

Fn(x̂, ŷ) = N2
nI(s) + O

(
nϵ(n−η+sρ + n−ρ(2−s))

)
.

Taking into account (3.1) we get

Es(E(n)) = I(s)N2
n + O

(
nϵ(n−η+sρ + n−ρ(2−s))

)
.

Taking ρ = η/2 we find

Es(E(n)) = I(s)N2
n(1 + O(n−η(1− s

2 )+ϵ)) ,

which proves Theorem 3.1. It remains to prove Proposition 3.3.
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3.2. Using equidistribution.

3.2.1. Discrepancy on R/Z. We begin with a short review of discrepancy on
the circle, see [16]: For a sequence on the circle X ⊂ R/Z, we define Weyl sums
by

W (k,N) :=
1

N

∑
n≤N

e(kxn).

Uniform distribution of X is equivalent to W (k,N) → 0 for all k ̸= 0.
The discrepancy of the sequence is defined as

DN (X) := sup
I

∣∣∣∣ 1

N
#{n ≤ N : xn ∈ I} − length(I)

∣∣∣∣ ,
where the supremum is over all intervals I ⊂ R/Z. Uniform distribution is
equivalent to DN → 0. A quantitative measure, which also allows to treat
shrinking intervals, is given by the Erdös-Turán inequality, one variant being:
For all M ≥ 1,

DN (X) ≪ 1

M + 1
+

M∑
k=1

1

k
|W (k,N)| .

We also recall Koksma’s inequality on R/Z, which bounds the sampling
error in terms of the discrepancy: Let X ⊂ [0, 1] be a sequence of points, with
discrepancy DN (X). If f is continuous on [0, 1] and of bounded variation, with
total variation V (f), then

(3.2)

∣∣∣∣∣∣ 1

N

∑
n≤N

f(xn) −
∫ 1

0

f(x)dx

∣∣∣∣∣∣ ≪ DN (X) · V (f).

3.2.2. Spherical coordinates. Fix a point x0 on the unit sphere S2 ⊂ R3, and
define spherical coordinates with x0 as the North Pole as follows: For a point
x ∈ S2, denote by θ ∈ [0, π] the angle of inclination, that is the angle between
the zenith direction (the ray between the origin and x0) and the ray from
the origin to x, and by ϕ ∈ [0, 2π) the azimuthal angle, which is the angle
between a fixed direction in the plane through the origin orthogonal to the
zenith direction, and the ray from the origin to the projection of x on that
plane. Thus we have

|x− x0|2 = 2(1 − cos θ).

In these coordinates, the normalized area measure on S2 is dσ = 1
4π sin θdθdϕ.

We say that a function on S2 is zonal if it is invariant under rotation around
the line between x0 an the origin, that is depends only on the angle of inclination
θ. For any even 2π-periodic function g(θ) we may define a zonal function on
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the sphere S2 by setting G(x) = G(ϕ, θ) = g(θ). The average of G over the
sphere is related to the average of g over the interval [0, π] via∫

S2

G(x)dσ(x) =
1

2

∫ π

0

g(θ) sin θdθ.

3.2.3. Uniform distribution and discrepancy on the sphere. Let Hν be the space
of spherical harmonics of degree ν. These are eigenfunctions of the Laplace-
Beltrami operator on S2, with eigenvalue ν(ν + 1). The dimension of the space
is dimHν = 2ν +1. The span of all the spherical harmonics is dense in L2(S2).
Hence to prove equidistribution of the sets E(n) on the sphere it suffices to show
that for all spherical harmonics H ∈ Hν of positive degree, the corresponding
Weyl sums

W (H,n) :=
1

#E(n)

∑
x∈E(n)

Hν(
x√
n

)

tend to zero.
For a sequence of points X ⊂ S2, the spherical cap discrepancy is defined as

DN (X) := sup
C

∣∣∣∣ 1

N
#{n ≤ N : xn ∈ C} − σ(C)

∣∣∣∣ ,
where the supremum is over all spherical caps, and σ is the normalized area
measure.

A bound for the discrepancy on the sphere, analogous for the Erdös-Turán
bound, is given by [11]: For all M ≥ 1,

(3.3) DN (X) ≪ 1

M + 1
+

M∑
ν=1

1

ν

dimHν∑
j=1

|W (Hν,j , N)| ,

where Hν,j denotes an orthonormal basis of Hν .

3.2.4. Weyl sums on the sphere. A fundamental bound for Fourier coefficients
of half-integer weight forms, due to Iwaniec [13], allows one to prove uniform
distribution of the points E(n) on the sphere [6, 10]. We will need a quantitative
version of that bound given in [10], see also [7]: There are constants γ > 0
(small) and A > 0 so that if Hν ∈ Hν is a spherical harmonic of degree ν > 0,
then

W (Hν , n) ≪ n1/2

Nn
n−γνA||Hν ||∞

(recall Nn := #E(n)).
We take n’s for which there is a primitive point in E(n), equivalently n ̸=

0, 4, 7 mod 8, then
√
n/Nn ≪ nϵ, ∀ϵ > 0. Moreover, we replace the L∞ norm

by the L2 norm via the inequality

||H||∞ ≤
√

dim(Hν) · ||Hν ||2, ∀Hν ∈ Hν

which gives:
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Lemma 3.4. There are δ > 0, B > 0 so that

W (Hν , n) ≪ n−δνB ||Hν ||2
for all Hν ∈ Hν , ν > 0.

Applying the discrepancy bound (3.3) with M ≃ nδ/(B+1), we get that the

spherical cap discrepancy D(Ê(n)) satisfies

D(Ê(n)) ≪ n−η, η =
δ

B + 1
.

3.3. Proof of Proposition 3.3. Consider the sequence of points in the inter-
val [0, 1] given by

zj =
||x̂j − x̂0||2

4
=

1 − cos θj
2

∈ [0, 1].

The area (with respect to σ) of the cap ||x − x0|| < 2
√
t is t, which is the

length of the interval for the corresponding points 0 ≤ z = ||x − x0||2/4 ≤ t.
Hence the discrepancy of the sequence zj on the interval [0, 1] is bounded by
the spherical cap discrepancy of the sequence x̂j , which is ≪ n−η. Hence by
Koksma’s inequality (3.2), for any continuous function g of bounded variation
on [0, 1] we have ∣∣∣∣ 1

N

∑
g(zj) −

∫ 1

0

g(t)dt

∣∣∣∣ ≪ n−η · V (g).

Now take

gn(z) = min(
1

(2z1/2)s
, nsρ),

and

Gn(x̂) = gn(
||x̂− x̂0||2

4
) = min(

1

||x̂− x̂0||s
, nsρ).

The total variation of gn is

V (gn) ≪ max gn = nsρ.

Hence we find that
1

N n

∑
x∈E(n)
x̸=x0

Gn(
x√
n

) =

∫
S2

Gn(x)dσ(x) + O(n−η+sρ).

The mean of Gn is∫
S2

Gn(x)dσ(x) =

∫
S2

1

||x− x̂0||s
dσ(x) + O(n−ρ(2−s)),

since the difference between the two integrals is certainly bounded by∫
|x−x̂0|<n−ρ

1

||x− x̂0||s
dσ(x) =

∫ n−2ρ/4

0

1

(2
√
z)s

dz ≪ n−ρ(2−s)
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(recall we assume that 0 < s < 2).
In conclusion, we find that

S(x0) = I(s) + O(n−η+sρ + n−ρ(2−s)),

proving Proposition 3.3. □

4. Upper bounds on Ripley’s function

4.1. Nair’s Theorem. We will need to use a result of M. Nair [22] on mean
values of multiplicative functions of polynomial arguments over short intervals.
Nair’s theorem, following several prior developments in the subject surveyed in
[22], deals with the following situation: Let M be the class of multiplicative,
non-negative functions f satisfying

• f(pk) ≤ Ak
0 ,

• f(n) ≤ A1(ϵ)nϵ for all ϵ > 0.

We are given an integer polynomial P (t) =
∑g

j=0 ajt
j ∈ Z[t] of degree g,

assumed to have distinct roots, with discriminant D, and such that P (t) has
no fixed prime divisor. We define the height of P by ||P || := maxj |aj |. Let

ρ(m) = #{x mod m : P (x) = 0 mod m},
and let

D =
∏

pa||D
ρ(p) ̸=0

pa.

Theorem 4.1 (Nair [22]). Fix α, δ ∈ (0, 1). Then for f ∈ M, xα < y < x,
x ≫ ||P ||δ,∑

x−y<m<x

f(|P (m)|) ≪α,δ,A1 c(D)y
∏
p≤x

(1 − ρ(p)

p
) exp(

∑
p≤x

f(p)ρ(p)

p
),

where the implied constants depend only on the constant A1 for the family M,
on α, δ and on the reduced discriminant D.

We want to use the result for the multiplicative functions fn of (2.7), the
polynomial P (t) = n2 − t2, and x = n− 1. In this case, we have

ρ(m) = #{x mod m : x2 = n2 mod m},
hence

ρ(p) =

{
2 p ∤ 2n,

1 p | 2n,

and moreover, ρ(pk) = 2 for p ∤ 2n. In particular

D = D = −4n2.

Thus the unspecified dependence on D in Nair’s theorem is an issue we need
to address.
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Examining the proof of Nair’s theorem shows that there are only two places
where the dependence on D appears:

a) In [22, Lemma 2(iii)], in the estimate∑
m≤t

F (m)ρ(m)

m
≪D exp(

∑
p≤t

F (p)ρ(p)

p
),

where F ∈ M. The dependence (at the bottom of page 262) is in bounding
the sum over higher prime powers∑

p≤t

∑
ℓ≥2

F (pℓ)ρ(pℓ)

pℓ
≪ 1.

In our case, since ρ(pℓ) ≤ 2 this bound is clearly uniform in D ≈ n2.
b) In the proof of his main theorem, in [22, Equation (6.3) on p. 265], he

employs the estimate

y
∑

z1/2<a≤z
P+(a)<log x log log x

ρ(a)

a
≤ c(D)y7/8,

where z = y1/2 and P+(a) denotes the greatest prime factor of a. In our case,
use ρ(a) ≪ aϵ (independent of n) to bound the sum by

y
∑

z1/2<a≤z
P+(a)<log x log log x

ρ(a)

a
≪ y

zϵ

z1/2
Ψ(z; log x log log x),

where Ψ(x, z) is the number of a < x with P+(a) < z, which is known to satisfy
([22, Lemma 3])

Ψ(x; log x log log x) ≪ exp(
3 log x√
log log x

) ≪ xϵ .

Hence in our case, we certainly have

y
∑

z1/2<a≤z
P+(a)<log x log log x

ρ(a)

a
≪ y7/8

uniformly in n (recall xα < y < x).

4.2. Reduction to bounding mean values of multiplicative functions.
For 0 ≤ a < b < n we set

(4.1) M(n; a, b) = #{|x|2 = |y|2 = n, a < |x− y|2 < b}

so that

Kr(Ê(n)) = M(n; 0, r2n).
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Recall that we denote by χ−n the quadratic character associated to the field
Q(

√
−n). We claim:

Proposition 4.2. Fix 0 < α < 1. Assume that n is square-free, n ̸= 7 mod 8,
a < b < n and nα < b− a < n. Then

(4.2) M(n; a, b) ≪ (b− a) · exp(2
∑
p<n

χ−n(p)

p
).

Proof. The condition a < |x−y|2 < b is equivalent to the inner product of x,y
satisfying

n− b

2
< x · y < n− a

2
,

and hence

M(n; a, b) =
∑

n− b
2<t<n− a

2

A(n, t),

where A(n, t) is the number of pairs of vectors x,y ∈ E(n) with inner product
x · y = t, equivalently |x− y|2 = 2(n− t).

According to Lemma 2.1, we may bound A(n, t) by the value of a multi-
plicative function at n2 − t2:

A(n, t) ≤ 24fn(n2 − t2),

where fn is the multiplicative function given by (2.7). Therefore we find that
we can bound

M(n; a, b) ≪
∑

n− b
2<t<n− a

2

fn(n2 − t2).

This is a sum of a multiplicative function at polynomial values, summed over
an interval (n − b/2, n − a/2), for which one can give an upper bound using
Nair’s theorem [22] described in Section 4.1. The conclusion is that

M(n; a, b) ≪ (b− a)
∏

p<n− a
2

(1 − 2

p
) exp

( ∑
p<n− a

2

2fn(p)

p

)
.

Since fn(p) = 1 + χ−n(p) (for all p with the convention χ−n(p) = 0 if p | 2n),
we get

M(n; a, b) ≪ (b− a) exp
(
2

∑
p<n− a

2

χ−n(p)

p

)
.

This is (4.2) except that the sum is over primes p < n− a/2 instead of p < n.
To recover (4.2), note that since 0 ≤ a < n, we have∣∣∣∣∣∣

∑
n− a

2<p<n

χ−n(p)

p

∣∣∣∣∣∣ ≤
∑

n/2<p<n

1

p
≪ 1

log n
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by Mertens’ theorem, and hence

M(n; a, b) ≪ (b− a) exp
(
2
∑
p<n

χ−n(p)

p

)
as claimed. □

Corollary 4.3. Assume that n is square-free, n ̸= 7 mod 8. Then assuming
the Generalized Riemann Hypothesis (GRH),

Kr(Ê(n)) ≪ N2
nr

2.

Proof. Taking a = 0 and b = r2n in Proposition 4.2 gives, for n−1/2+δ < r < n,
that

Kr(Ê(n)) = M(n; 0, r2n) ≪ r2n exp
(
2
∑
p<n

χ−n(p)

p

)
,

Using the Gauss-Dirichlet formula Nn = cn
√
nL(1, χdn) of (2.1) gives for n

squarefree

Kr(Ê(n)) ≪ r2N2
n

(exp(
∑

p<n
χ−n(p)

p )

L(1, χ−n)

)2

.

It is a consequence of GRH, that∑
p<x

χ−n(p) ≪ x1/2(nx)ϵ, ∀ϵ > 0.

This implies
1

L(1, χ−n)
exp(

∑
p<n

χ−n(p)

p
) = O(1),

which gives our claim (in fact what we require is the absence of “Siegel zeros”).
□

We record the corresponding result when n is not necessarily squarefree:

Corollary 4.4. Assume that n ̸= 7 mod 8, and n−1/2+δ < r < 1. Then
assuming the Generalized Riemann Hypothesis,

Kr(Ê(n)) ≪
(∑♭

m|n

m− 1
2+ϵ

)
· nL(1, χ−n)2r2

for all ϵ > 0, the sum
∑♭

m
running over all m | n which are squarefull, that

is such that m =
∏

p p
kp with all kp ≥ 2.

Proof. We first show that, as in Proposition 4.2, that for n2δ < b− a < n

(4.3) M(n; a, b) ≪ (b− a)
(∑♭

m|n

m− 1
2+ϵ

)
L(1, χ−n)2,
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which will prove the Lemma, since Kr(Ê(n)) = M(n; 0, r2n).
According to Lemma 2.2

A(n, t) ≪ m1/2τ(m)fm,n(n2
1 − t21),

where

m =
∏

ordp(gcd(n,t))≥2

pordp(gcd(n,t))

with n = mn1, t = mt1, and fm,n is the multiplicative function (2.8). There-
fore, with a = ma1, b = mb1,
(4.4)

M(n; a, b) =
∑

n− b
2<t<n− a

2

A(n, t) ≪
∑♭

m

m1/2τ(m)
∑

n1− b1
2 <t1<n1− a1

2

fm,n(n2
1−t21),

the sum
∑♭

m
running over all m | n which are squarefull, that is such that

m =
∏

p p
kp with all kp ≥ 2.

For m, n fixed estimate the inner sum using Nair’s theorem, noting that
b1 − a1 = b−a

m ∈ (n2δ, n), obtaining the bound∑
n1− b1

2 <t1<n1− a1
2

fm,n(n2
1 − t21) ≪ (b1 − a1)

∏
p<n1− a1

2

(1 − 2

p
) exp

( ∑
p<n1− a1

2

2fm,n(p)

p

)

≪ b− a

m
exp

(
2
∑
p|m

1

p
+ 2

∑
p<n− a1

2

p∤m

χ−n(p)

p

)

≪ b− a

m
(log logm)C exp

(
2

∑
p<n− a1

2

χ−n(p)

p

)
≪ b− a

m1−ϵ
L(1, χ−n)2

(the last inequality assumes GRH, or the absence of Siegel zeros). Inserting
into (4.4) proves (4.3). □

4.3. Proof of Corollary 1.6. We now show that weak limits of the nearest
neighbour spacing measures

(4.5) µ(Ê(n)) :=
1

N

N∑
j=1

δN
4 d2

j

are absolutely continuous, in fact that there is some c4 > 0 so that any weak
limit ν of (4.5) for n ̸= 7 mod 8 squarefree, satisfies ν ≤ c4dx. For this we
need to show that for any fixed 0 ≤ α < β < ∞, the proportion of normalized
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nearest neighbour spacings N
4 d

2
j which lie in the interval [α, β] satisfies

1

N
#{j ≤ N : α ≤ N

4
d2j < β} ≤ c4(β − α).

Since the number of normalized nearest neighbour spacings in an interval is
bounded by the number of all normalized spacings in that interval, it suffices
to show that

1

Nn
#{|x|2 = |y|2 = n : α <

Nn

4
| x√

n
− y√

n
| < β} ≤ c4(β − α).

The LHS is, in the notation of (4.1), equal to

1

Nn
M(n;α

4n

Nn
, β

4n

Nn
) ≪ (β − α)n

N2
n

exp
(

2
∑
p<n

χ−n(p)

p

)
by Proposition 4.2. Using (2.1) for n ̸= 7 mod 8 squarefree, we replace n/N2

n

by 1/L(1, χ−n)2, and as in the proof of Corollary 4.3 we use GRH to deduce

that exp
(

2
∑

p<n
χ−n(p)

p

)
/L(1, χ−n)2 = O(1). □

5. The number variance

5.1. Proof of Theorem 1.8. For 0 ≤ ρ1 < ρ2 and z ∈ S2 let

Aρ1,ρ2(z) = {w ∈ S2 : ρ1 ≤ dist(z, w) ≤ ρ2}.
(so for ρ1 = 0 we get a spherical cap).

The variance over all annuli of radii ρ1 < ρ2 is

V (n; ρ1, ρ2) :=

∫
S2

(
Z(n;Aρ1,ρ2(z)) −A

)2

dσ(z),

where A = area(Aρ1,ρ2(z)) is the common area of all these annuli.
We want to show that, assuming the Lindelöf Hypothesis for standard GL(2)/Q

L-functions, for any sequence n → ∞, with n ̸= 7 mod 8 squarefree, we have

V (n; ρ1, ρ2) :=

∫
S2

(
Z(n;Aρ1,ρ2(z)) −A

)2

dσ(z) ≪ϵ n
ϵNn ·A ∀ϵ > 0,

where A = area(Aρ1,ρ2(z)) is the common area of the annuli.
For m = 0, 1, . . . , and j = 1, 2, . . . , 2m + 1, let ϕj,m be an orthonormal

basis of eigenfunction of the Laplacian ∆ of the sphere, i.e. of the spherical
harmonics of degree m. For such a ϕj,m the Weyl sum is defined by

(5.1) Wϕj,m(n) :=
∑

x∈E(n)

ϕj,m(
x

|x|
).

Let k(z, ζ) be a point pair invariant on S2 [26]. Then (in L2)

(5.2) k(z, ζ) =
∞∑

m=0

hk(m)
2m+1∑
j=1

ϕj,m(z)ϕj,m(ζ)
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with

hk(m) =

∫
S2

k(z, ζ)ωm(ζ)dζ,

where ωm(ζ) is the zonal spherical harmonic about z, normalized to take value
1 at ζ = z, and dζ = 4πdσ(z) is the un-normalized area measure on S2. Thus
(see e.g. [20])

hk(m) = 2π

∫ 1

0

k(t)Pm(t)dt,

where Pm(t) is the Legendre polynomial.
We have

Z(n;Aρ1,ρ2(z)) =
∑

x∈E(n)

k(
x

|x|
)

for the point pair invariant

k(z, ζ) = 1Aρ1,ρ2 (z)
(ζ),

where 1Ω is the indicator function of the set Ω, and therefore we get from (5.2)
that

(5.3) V (n; ρ1, ρ2) =
∞∑

m=1

hρ1,ρ2(m)2
2m+1∑
j=1

|Wϕj,m(n)|2.

The key arithmetic ingredient is the explicit formula for the Weyl sums in
terms of special values of L-functions. The particular version that we use is due
to [3] and [2] as explicated in [21] and coupled with [15]. We choose the ϕj,m to
be an orthonormal basis of Hecke eigenfunctions for the action of the Hamilton
quaternions on S2 (see [21]). Each such ϕj,m has a Jacquet-Langlands lift to a
holomorphic Hecke cusp form fj,m for Γ0(8), of weight 2m+ 2. Let L(s, f) and

L(s, Sym2 f) denote the finite parts of the corresponding L-functions. Then for
n squarefree

(5.4) |Wϕj,m(n)|2 = c
n1/2L( 1

2 , fj,m)L( 1
2 , fj,m × χ−n)

L(1, Sym2 fj,m)
.

Here c > 0 is an absolute constant (independent of ϕj,m, m and n) and χ−n is
the quadratic Dirichlet character corresponding to the extension Q(

√
−n). For

the indefinite ternary form y2 −xz, instead of the definite form x2 + y2 + z2 at
hand, the explicit formula (5.4) is given in [19, (5.1)] and it follows in a similar
way from [14] and [1].
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From (5.4) and1 the Lindelöf Hypothesis applied to the L-functions L(s, fj,m)
and L(s, fj,m × χ−n), (5.3) becomes

V (n; ρ1, ρ2) ≪ϵ

∞∑
m=1

hρ1,ρ2(m)2n1/2
2m+1∑
j=1

mϵnϵ

= n
1
2+ϵ

∞∑
m=1

hρ1,ρ2(m)2m1+ϵ, ∀ϵ > 0.

(5.5)

The simple estimate hρ1,ρ2(m) ≪ m−3/2 (see [20, p. 169]) yields (for any
X ≫ 1)

V (n; ρ1, ρ2) ≪ϵ X
ϵn1/2+ϵ

∑
m≤X

mhρ1,ρ2(m)2 + n1/2+ϵ
∑
m>X

m−2+ϵ

≪ Xϵn1/2+ϵ

∫
S2

|χAρ1,ρ2
(ζ)|2dσ(ζ) + n1/2+ϵX−1+ϵ.

Choosing X = n gives

V (n; ρ1, ρ2) ≪ϵ n
1/2+ϵ′A ≪ AN1+ϵ′′

n ,

as claimed.

5.2. Proof of Corollary 1.10. We show that Conjecture 1.7 implies Corol-
lary 1.10.

Proof. Assume the covering radius of Ê(n) is bigger than ρ, so that there is
some point ξ0 ∈ S2 so that that the cap Cap(ξ0, ρ) ⊂ S2 contains no projected
lattice point 1√

n
E(n). Therefore, if 0 < δ ≤ ρ/2, then for all ξ ∈ Cap(ξ0, ρ/2),

the caps Cap(ξ, δ) also do not contain any projected lattice points, that is

Z(n; Cap(ξ, δ)) = 0, ∀ξ ∈ Cap(ξ0, ρ) .

It follows that

(5.6)

∫
S2

∣∣∣Z(n; Cap(ξ, δ)) −Nn area(Cap(ξ, δ))
∣∣∣2dσ(ξ) ≫ ρ2N2

nδ
4.

Combining (5.6) and Conjecture 1.7 gives

ρ2δ2 ≪ N−1
n .

Taking δ = ρ/2 we obtain

ρ ≪ N−1/4
n ,

as claimed. □

1We also need a good lower bound for L(1,Sym2 fj,m), which unconditionally is due to

Hoffstein-Lockhart [12]
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6. Gaps between sums of two squares

We denote by S2 = {n1 < n2 < . . . } the sequence of integers which are sums
of two squares. An old conjecture asserts that the gaps between consecutive
elements of S2 satisfy ni+1 − ni ≪ nϵ

i , for all ϵ > 0. Note that primes p =
1 mod 4 are also conjectured to have this property, and since such primes are
in S2 this a fortiori implies the above conjecture. However, all that is known is

the elementary bound ni+1 − ni ≪ n
1/4
i . In this section we point out that the

covering radius conjecture 1.9 implies the above conjecture on gaps between
sums of two squares.

For Y ≫ 1, let S2(Y ) = S2 ∩ [Y, 2Y ), and let

G(Y ) = max{ni+1 − ni : ni ∈ S2(Y )}

be the maximal gap between sums of square in the interval [Y, 2Y ),

G(Y ) = n′′ − n′

with n′ < n′′ consecutive elements of S2(Y ). We want to show that Conjec-
ture 1.9 implies that G(Y ) ≪ Y ϵ, for all ϵ > 0.

Assume then that G(Y ) > Y ϵ. By Brun’s sieve, every interval of length
≥ G(Y )/8 contains an integer m which is not divisible by any small prime
p ≤ G(Y )δ, for δ > 0 sufficiently small. Hence we may find an integer m for
which

(6.1) |m− n′ + n′′

4
| < 1

8
G(Y ),

and free of any prime factors less than G(Y )δ:

(6.2) p | m ⇒ p > G(Y )δ.

Take n = m2 and the point m := (0, 0,m) ∈ E(n) (note n = 1, 5 mod 8).
Then by Conjecture 1.9 there is x = (x1, x2, x3) ∈ E(n), x ̸= m so that

|m− x|2 = x2
1 + x2

2 + (m− x2)2 < G(Y )δm,

Thus

x2
1 + x2

2 < G(Y )δm,

and since x2
1 + x2

2 + x2
3 = m2, we have

x2
1 + x2

2 = (m− x3)(m + x3) .

We claim that m + x3 ∈ S2. To see this, note that if p = 3 mod 4 divides
the sum of two squares x2

1 + x2
2, then ordp(x2

1 + x2
2) is even. It follows that if

p = 3 mod 4 is a prime such that p | m + x3 and ordp(m + x3) is odd, then
p | m− x3 and hence p | m. Since moreover,

m− x3 =
x2
1 + x2

2

m + x3
<

x2
1 + x2

2

m
< G(Y )δ
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we conclude that p ≤ m − x3 < G(Y )δ, which is excluded by (6.2). Hence
ordp(m + x3) is even for any prime p = 3 mod 4, that is m + x3 ∈ S2 is a sum
of two squares.

Since 2m = (m + x3) + (m− x3), we obtain

dist(2m,S2) < G(Y )δ.

Hence

1

2
G(Y ) = dist(

n′ + n′′

2
,S2) ≤ |n

′ + n′′

2
−2m|+dist(2m,S2) <

1

4
G(Y )+G(Y )δ

by (6.1). This is a contradiction for Y ≫ 1.
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men, Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 4 (1940) 363–402.

[18] Y.V. Linnik, Ergodic Properties of Algebraic Fields, translated from the Russian by
M.S. Keane, Ergebnisse der Mathematik und ihrer Grenzgebiete 45, Springer-Verlag,

1968.
[19] S.-C. Liu, R. Masri and M.P. Young, Subconvexity and equidistribution of Heegner

points in the level aspect, Compos. Math. 149 (2013), no. 7, 1150–1174.

[20] A. Lubotzky, R. Phillips and P. Sarnak, Hecke operators and distributing points on the
sphere. I, in: Frontiers of the Mathematical Sciences: 1985 (New York, 1985), Comm.
Pure Appl. Math. 39 (1986), no. S, suppl. S149–S186.

[21] W. Luo, A note on the distribution of integer points on spheres, Math. Z. 267 (2011),

no. 3–4, 965–970.
[22] M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62

(1992), no. 3, 257–269.
[23] G. Pall, Quaternions and sums of three squares, Amer. J. Math. 64 (1942) 503–513.

[24] G. Pall, Representation by quadratic forms, Canad. J. Math. 1 (1949) 344–364.
[25] Z. Rudnick, I. Wigman and N. Yesha, Nodal intersections for random waves on the

3-dimensional torus, Ann. Inst. Fourier, to appear.
[26] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemann-

ian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956)
47–87.

[27] D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statistics,

John Wiley & Sons, Chichester, 1987.
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