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ABSTRACT. In wireless communication systems, space-time codes are ap-
plied to encode data when multiple antennas are used in the receiver and
transmitter. The concept of diversity is very crucial in designing space-
time codes. In this paper, using the equivalent definition of full diversity
space-time codes, we first characterize all real and complex 2 X 2 rate
one linear dispersion space-time block codes that are full diversity. This
characterization is used to construct full diversity codes which are not
derived from Alamouti scheme. Then, we apply our results to character-
ize all real subspaces of M>(C) and M2(R) whose nonzero elements are
invertible. Finally, for any natural number n > 1, we construct infinitely
many inequivalent subspaces of M, (C) whose nonzero elements are in-
vertible.
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1. Introduction

The use of multiple antennas in wireless communication systems has been
shown to be an effective approach in order to improve the performance of the
system. To encode data in a Multiple Input Multiple Output (MIMO) commu-
nication system, space-time codes have been introduced. Since the introduction
of these codes a lot of effort has been devoted to apply different areas of mathe-
matics such as linear algebra, Galois theory, noncommutative algebra, number
theory etc. to construct codes satisfying certain conditions [4,6,9-11, 15, 16].
Among these areas, linear algebra plays the key role since these codes are in
fact matrices whose entries are linear combinations of variables. That is:
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Characterization of 2 X 2 space-time codes 2484

Definition 1.1. Let ¢,n and k be natural numbers. A linear dispersion (LD)
space-time block code is a ¢ x n matrix C(s) whose entries are linear combi-
nations of complex variables si,..., s, and their conjugates $1,..., S, where
s = (81,...,5k). A real LD code is a t x n matrix C(x) whose entries are
linear combinations of real variables x1,...,x; with real coefficients where
€r = ($1,...,$k).

In this definition, n represents the number of antennas in the transmitter
and t is the number of time slots used to transmit k& symbols. The rate of
C' is defined as R = % One of the main advantages of MIMO systems is
that they are capable of providing higher diversity at the receiver [7]. Rank
criterion [18] is the main motivation for the mathematical definition of a full

diversity space-time code.

Definition 1.2. An LD code is called full diversity on the set S C C (constel-
lation set) if for any two distinct vectors z,w € S* the determinant of the n xn
matrix (C(z) — C(w))*(C(z) — C(w)) is nonzero. We call an LD code full diver-
sity if it is full diversity on C; Similarly a real LD code is called full diversity
if det(C(2) — C(w))T(C(z) — C(w)) # 0 for all distinct vectors z,w € R*.

Although most of the well-known LD codes such as the golden code and
LD codes based on division algebras [4, 16] are full diversity on certain subsets
of C, those LD codes which are full diversity on the whole complex numbers
are of special importance since they can be applied in different communication
systems using different constellation sets. According to Definition 1.2, a square
LD code C(s) is full diversity on C if and only if det(C(z)) # 0 for every vector
0 # z € C*. Apparently any full diversity LD code defines a real vector space
whose nonzero matrices are full rank. We call such spaces full rank spaces.
Conversly, choosing a basis for a full rank space one can define a full diversity
LD code. Therefore, the maximum rates of full diversity real and complex
n X n LD codes are equal to the maximum dimensions of real and complex
full rank spaces divided by n, which are equal to @ and b%l respectively
where n = (2a +1)2°, b = ¢ + 4d, p(n) = 2°+ 8d and a, b, ¢, d are nonnegative
integers with 0 < ¢ < 4 [1]. So, the maximum rate of 2 x 2 real and complex
full diversity LD codes is 1. Full diversity LD codes with maximum rate are
called full diversity full rate. Multiplying a full diversity full rate LD code
by fixed invertible matrices P and @ from left and right respectively, one can
obtain a new full diversity full rate LD code. The class of orthogonal space-time

codes is an important class of full diversity LD codes [11,15]. Alamouti code
C = S;, 2,2 ) is one of these LD codes [2]. In fact for any two complex
—S2 51

numbers u, v # 0 the LD code
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is a full diversity full rate linear dispersion (FDFRLD) code if u is not a negative
multiple of v. One may conjecture that all 2 x 2 FDFRLD codes have the form

g

(L) c=p( . %)

where f and g are linear combinations of s, s2,$7 and $3. In this paper, we
first characterize all real full diversity LD codes and then by characterizing all
2 x 2 FDFRLD codes we show that there exist 2 x 2 FDFRLD codes which are
not of form (1.1). Tt is worth to mention that full diversity LD codes are usually
of high performance in practice. Therefore, once full diversity LD codes are
characterized, this characterization can be used to construct high performance
LD codes with additional properties. For instance, the well known Sezginer’s
code [17], which has a low decoding complexity, is the summation of two full
diversity LD codes characterized in Theorem 3.5.

In the last section we study full rank spaces. Spaces of matrices whose nonzero
elements have constant rank £ have been studied by many researchers under

the name of k—spaces [3,5,12,13,20,21]. Two k—spaces V and W in M, (C)
are called equivalent if V' = PWQ for some invertible matrices P, Q € M, (C).
The construction of inequivalent k—spaces has been also considered [3]. We

characterize 2 x 2 full rank spaces and construct infinitely many n X n inequiv-
alent full rank spaces of M, (C).

Notations: Superscripts (-)7 , (-)*, and (-) indicate transpose, Hermitian trans-
pose and complex conjugations, respectively. I, denotes the identity matrix of
size a x a and M,(R) denotes the set of all a x a matrices with real entries. C
stands for the complex field and R stands for the field of real numbers. The
notation || - || indicates ordinary vector norm. The notations det(-) and tr(-)
denote determinant and trace of a matrix respectively. For a set X C M,,(C),
the term spang(X) denotes the real span of X.

2. Characterization of 2 x 2 real full diversity full rate linear
dispersion codes

In this section we characterize all 2 x 2 real FDFRLD codes. We start with
a simple lemma.

Lemma 2.1. If C(x) is a full diversity full rate 2 X 2 real LD code then
det(C(x)) = f2+ g? or det(C(z)) = — f* — g* where f and g are linear combi-
nations of x1 and xs.

Proof. Since det(C(z)) is a quadratic form, by [14, Theorem 3.1.5], det(C(x))
has one of the forms f2 + g2, —f? — g or f2 — g but since this code is full
diversity the last one is not possible and so the lemma has been proved. |
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Theorem 2.2. Fvery rate one full diversity 2 x 2 real LD code C(x) has the
form

(2.1) P( _fg ?)Q,

where [f,g]T = Alz1,22]7 and A, P and Q are real 2 x 2 invertible matrices.

Proof. Without loss of generality by Lemma 2.1 assume that det(C) = f2+ g2
Let [f,g]T = Alz1,72]T. Since the code is full diversity, A is invertible and
so from [x1,79]7 = A71[f,g]", we can write the entries of the code as linear
combinations of f and g. Hence the code can be written as C = fA; — gAs
where A1, As € M5(R). Note that since A is invertible, f and g can take all real
values independently. If we let f =1 and g = 0, we conclude that det(A;) = 1.
Multiplying the code by A7 dose not change the determinant and so we can

assume that A; = I5. Let Ay = ( Z ) so the code takes the form

d
( f—ag —bg )
—cg  [—dg
and so f2 + g2 =det(C) = f? — (a + d)fg + (ad — bc)g?. Therefore tr(Ay) =
a+d = 0 and det(Az) = ad —bc = 1. So the characteristic polynomial of
Ay is 2% + 1. Using the rational form of Ay, there exists a nonsingular matrix

S € M>(R) such that SA;S5~! = ( (1) _01 ) Multiplying the code by S from
the left and by S~! from the right leaves A; = I and so the code takes the
form (2.1). O

3. Characterization of 2 x 2 complex full diversity full rate codes

In this section we characterize all 2 x 2 FDFRLD codes. We start with the
following definition.

Definition 3.1. Given a square LD code C(s), the determinant area of C(s)
is defined as the set det(C(s)) = {det(C(z)) : z € C*}.

If we consider the determinant of an LD code as a continuous function from
C* to C, then the image of this function is the determinant area of the code.
The determinant area of Alamouti code is the set of nonnegative numbers. But,

S1 S92
—VSy  USy
fixed complex numbers, is the set of all nonnegative combinations of v and v
as illustrated in Figure 1.

the determinant area of the code C = ( ) when v and v are two

Definition 3.2. A subset D of a real vector space is called a convex cone if
for any two vectors « and y € D and any pair of positive scalars a and 5 we
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FIGURE 1. proper closed convex cone

have ax 4+ By € D. We call a convex cone a proper closed convex cone if it is
closed and —z ¢ D for any 0 # z € D.

Let P and @ be two invertible n x n matrices and C(s) be a full diversity
LD code. Then, PC(s)Q is also full diversity and its determinant area is
just a rotation of the determinant area of C(s). In the following theorem the
determinant area of a 2 x 2 full diversity LD code is described.

Theorem 3.3. The determinant area of a 2x2 FDFRLD code C(s) is a proper
closed convex cone.

Proof. To prove the theorem we first prove that the determinant area is closed
and connected. To this end, note that the function f(s) =det(C(s)) is a con-
tinuous function from C? to C, f(0) = 0, if s # 0 then f(s) # 0, and for every
t € R, f(ts) = t2f(s). Let A= {s € C?:|| s ||<1}. Ais a compact set so
f(A) is a compact set as well. For every s € C? there exists ¢ > 0 such that
es € A and so €2f(s) € f(A). So, det(C(s)) = {My: M >0, y € f(A)}.
Now det(C(s)) is a closed set because if Myyy, — z then since f(A) is compact,
there exists a subsequence yg, such that yx, — y € f(A4). We can assume that
yr 7 0. So there exists M € R such that My, — M and My, yr, — My = z.
So z €det(C(s)). For the connectedness, note that the set C2\ {0} is a con-
nected set and hence the set f(C?\ {0}) =det(C) \ {0} is also connected.

Now we prove that if 0 # 2z €det(C(s)) then —z ¢det(C(s)). We con-
sider the real vector space corresponding to C(s). By contradiction suppose
that there exist two nonzero matrices A; and A, in this space such that
det(A;) = —det(Az). Multiplying the code by A7', we have a new code
whose corresponding vector space, called V', contains I, and A = A1_1A2.
I, and A are linearly independent since if A = 2l then det(A4) = x? > 0 but
det(A) = —1. So for every x € R, A+ zly # 0 and since the new code is
full diversity, det(A + xI3) # 0. So A dose not have any real eigenvalue and
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since det(A) = —1, its eigenvalues lie on one side of the x-axis. Without loss of
generality we assume that the eigenvalues are above the x-axis. Recalling that
dim(V) = 4, choose B € V such that the set {I3, A, B} is linearly indepen-
dent. We can assume that B has an eigenvalue with negative imaginary part
(otherwise consider —B). Now by continuity of eigenvalues, for some ¢ € R,
tA+ (1 —1t)B has a real eigenvalue. This is a contradiction since tA + (1 —¢)B
is not a scalar multiple of I and again dose not have any real eigenvalue. So
the determinant area of such an LD code is a closed subset of C such that
det(C(s)) \ {0} is connected; for any z €det(C(s)) and any positive number
a, az €det(C(s)) and —z ¢det(C(s)) which means that det(C(s)) is a proper
closed convex cone. O

If s; = x; + iy;, then any linear combination of s; and s; is a lin-
ear combination of z; and y; and conversely any linear combination of x;
and y; is a linear combination of s; and s;. So we can consider entries
of an LD code as complex linear combinations of x1,v1,...,Zk,yx where
1,Y1,---, %k, Y are real variables. If A is a real invertible 2k x 2k matrix
and [f1,..., for]T = Alz1,91,. .., 2k, yx]T then for every full diversity LD code
C(x1,Y1, .-, %k, Yy ) the new code Cpewy, = C(f1,. .., far) is also full diversity.
If F(x1,9y1,-..,2k,yx) = det(C(s)) then det(Chrew(s)) = F(f1,-.., for). Ob-
viously F(z1,y1,...,Zk, yk) is a form of degree n; that is a polynomial whose
monomials are of degree n. Specially if n = 2 then this form is a quadratic form.
Any quadratic form can be written as xMaz” where x = (z1,y1, ..., 2k, yx) and
M is a symmetric 2k x 2k matrix. Notice that every m x m real symmetric
matrix can be written as QT diag(\y, ..., \n)Q where @ is a real orthogonal
matrix and Aq1,..., A, € R. Moreover, every real positive definite matrix is in
form PT P for some P € M,,(R) [3].

Theorem 3.4. Let C be a2 x 2 FDFRLD code. Then
(3.1) det(C(s)) = a1 ff + a2 f3 + asgi + asg5

for some complex numbers aq,...,as and (f1, fa,91,92)F = A(ml,yl,mg,yg)T
for some real invertible 4 x 4 matriz A.

Proof. Using Theorem 3.3 and multiplying the code by a constant matrix and
rotating the determinant area, we can assume that the determinant area lies on
the right side of the y-axis and so the determinant of any nonzero matrix in the
corresponding space has a positive real part. Assume that det(C(s)) = xMaT
and M = M;+iM; where My, My € My(R) are symmetric. Since for all € R,
xMiz” > 0, M, is positive definite. Therefore there exists a nonsingular real
4 x 4 matrix P such that M; = PTP. Now (P~1)TMyP~! is a real symmetric
matrix so there exist A1, A2, A3, Ay € R and a real orthogonal 4 x 4 matrix @
such that (P~)TMyP~! = QTAQ, where A =diag(A1, A2, A3, \y). Then M =
PTQT(I +iMN)QP. Let A= QP and a; = 1 +1i)\; and (f1, f2, g1, 92)7 = AxT.
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Then
det(C(s)) = eMaT = zATdiag(a1, az, as, ay) AxT
= (f1, f2, 91, g2)diag(ar, az, a3, as)(f1, f2, 91, 92)"
= a1 f{ + azf3 + azgi + asgs.
O

Since the LD code in the previous theorem is full diversity, any nonzero
linear combination of a1, as,as and a4 with nonnegative coefficients is nonzero
or equivalently, a1, as,as and a4 lie on one side of a line passing through the
origin.

Before proving the result of this section we note that the code
c=( bifi+ibafo  bsgr +ibago )
—(b3g1 —ibaga) b1fi —ibaf2
has determinant equal to a1 fZ + aaf3 + azg? + asg3, providing b? = a; for
1=1,2,3,4.

Theorem 3.5. Every FDFRLD 2 x 2 code has the form

P by f1 +iba fo bsg1 + ibsgo )Q
—u(b3gr — ibaga) bifi —ibafy 7

where by,ba, b3, by and u are complex numbers such that any nonzero linear
combination of b?,b3, ub3 and ub3 with nonnegative coefficients is nonzero, P
and Q are 2 x 2 invertible matrices and (f1, f2,91,92)" = A(x1,y1,22,y2)T for
some invertible real 4 X 4 matriz A.

Proof. Let C be a 2 x 2 FDFRLD code. By Theorem 3.4 | the determinant
of C is in form (3.1) where all a;’s lie on one side of a line passing through
the origin and (f1, f2,91,92)7 = A(x1,91,72,y2)T for some real invertible 4 x 4
matrix A. Using the same argument as in the proof of Theorem 2.2, the code
can be written as f1A; + foAs + g1 A3z + g2 Ay where A;’s are 2 X 2 complex
matrices. Note that since A is invertible, fi, f2,g1 and g can take all real
values independently. Letting f; = 1 for some i € {1,2} and g1 =g = f; =0
for j # i, since the code is full diversity, we conclude that the matrix A; is
invertible. Similarly, A3 and A4 are invertible. Multiplying the code by A7*,
we can assume that A; = I,. Upper triangularizing A, leaves Ay = I5. So,

(3.2)

letting As = ( @

0 2 ) and g; = go = 0 the code takes the form

( fi+afs bfa )
0 fi+cfa

whose determinant is fZ +acf? + (a+c) f1 f2 with a,c # 0. Since the coefficient
of f1f2 in (3.1) is zero, we have a = —¢, hence the eigenvalues of A, are distinct
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and so Aj is diagonalizable. Therefore we can assume that b = 0 and so letting

_ di ds _ (€61 €2
Az = ( ds dy ) and Ay = ( I ), the code takes the form
( fi+afs+digr +e1g2 dag1 + €292 )
dzg1 + e3g2 f1—afs+digs +esga
Again calculating the determinant of the above code and comparing with (3.1)
we have di = d4 = e; = e4 = 0 and dses + eads = 0. Letting —3—2 = 2—2 =u
and by = 1,bp = —ia,bs = do,by = —ies we observe that the code takes the

desired form. Note that since As, A4 are nonsingular, then ds,ds, ez, e3 # 0.
To complete the proof, we note that codes of form (3.2) are full diversity. O

We call the code (3.2) an LD code with parameters (A, P, Q, by, b2, b3, by, w).
We use the characterization in Theorem 3.5 to construct LD codes which are
not of form (1.1).

Corollary 3.6. Let all complex numbers b?,b3,b3 and b3 lie on one side of a
line passing through the origin and have distinct arguments. Then, the LD code
with parameters (A, P,Q,by,ba, b3, by, 1) is not of form (1.1).

Proof. Without loss of generality assume that by and b3 are positive combi-
nations of b; and by and A = I;. Then the code has determinant equal to
b2x? + b3y? + b3x3 + biy3. Tt suffices to show that it can not be written as
bIfI? + b3]g|>. Let b3 = ab? + Bb7 and b3 = b3 + Ob2 where «, 3,7 and
6 are positive real numbers. If b3z? + b3y? + bix3 + b3ys = b3|f|? + b3|g|?
then b7(af + ay? + ya3) + b3(y3 + Byi + 023) = bi|f|* + bilg|* and so
IfI? = f2+ f2 = 22 + ay} + va3, where f; and f, represent real and imaginary
part of f respectively. Let fi = ai1x1 +asy1 +azxe and fo = ajx1 +abys +ahxs.

Since f? + f3 = 2?2 + ay? + yx3, we have ajay = —ald), ajaz = —alad},
azaz = —ahaly, a3 +a? =1, a3 +ad? = a > 0, and a3 + a¥ = 8 > 0. Thus
(arazaz)? = (araz)(araz)(azas) = —(ajahay)? and so ajasaz = 0. Without
loss of generality assume that a; = 0 so @] # 0 and equalities ajas = —ajah
and ajaz = —ajal imply that o, = a4 = 0. So ag,as # 0 but this contradicts
asaz = —ahal,. O

As mentioned before the determinant area of Alamouti code is a half line.
Next, we characterize all full diversity LD codes whose determinant areas are
half lines.

Corollary 3.7. If the determinant area of an LD code is a half line then the
code has the form

[y
(3.3) P( a5 f )Q,
where a is a positive real number and f and g are two linear combinations of
$1, 81,82 and $y.
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Proof. Let (A, P,Q,by,ibs, b3, ibs, u) be parameters of an LD code whose deter-
minant area is a half line. Then, since the numbers b7, b3, ub2 and ub3 have the
same argument, there exists a real number 6 such that 62i9b%,62i0b%7 e%eub?.57
and eQieubi are positive numbers and so e¥by; and e?by are both real. Multi-
e? 0

0 e ), the code will take the form

plying the code by (

( by f1 + bl fo bsg1 + ibygo )
—u(byg1 —ibyge) by f1 —ibyfa 7’

/ i0 : 2102 " uby ub?

where b; = €"b;. Since ubg’,ubj are positive numbers so e TAE
3 3
b/ b/2 b/ b/ b/ b/

uf/4 = u,42 are positive. Letting a = uf/?’ = |uf/3| = |ul = |uf/4| = uflzl,
by LA by by by by

f=0b1f1+ibhfs and g = byg1 + @b g2 the code takes the form (3.3). O

and

4. Full rank subspaces of M, (C)

Although the study of full rank spaces began long time ago, recently it has
been shown that these spaces are very applicable specially in the theory of
space-time codes [11, 19]. In this section, as mentioned before, we introduce
infinitely many inequivalent full rank real subspaces of M,,(C). If an LD code is
full diversity, its corresponding subspace is full rank. In the following corollary,
using Theorems 2.2 and 3.5 we characterize all real full rank subspaces of Ms(R)
and M2 ((C)

Corollary 4.1. Any full rank subspace of Ms(R) of dimension 2 is equivalent
to SpanR{Ig, ( 0 1 )} and any full rank subspace of dimension 4 in My(C)

-1 0
1s equivalent to a space of the form

b 0 0 b 0 b
SpanR{I%( 02 by ),( bs 5)7< —by 61)}

where by, b, by € C and any linear combination of 1,b3,b3 and b3 with nonneg-
ative coefficients is nonzero.

Similar to space-time codes, we define the determinant area of a full rank
space V as detV = {det(A) : A € V}}. So, the determinant areas of two equiv-
alent full rank subspaces differ by a rotation. To prove our main result, we use
the theory of orthogonal design. A [p,n, k] orthogonal design is a p X n ma-
trix C' whose nonzero entries are z1, ..., 2k, —21,- . ., —2 and their conjugates
FyeevyZhy—F1, -, — 2k such that C*C = (|z1|> + - + |2x]?) L, [11]. Clearly,
an [n,n, k] orthogonal design is a full diversity LD code whose corresponding
real space is of dimension 2k. So k < b+ 1, where n = (2a + 1)2°. When n
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is odd, k = 1. In [11] the author introduced an n x n orthogonal design with
k =0+ 1 for any even number n having the form

N M
where N = 21z and M is an § X 3 matrix whose entries are 0, £29,..., 2
and +27,...,+2;. Now, using this construction we prove the following theorem.

Theorem 4.2. If n is even and n = 2%(2b + 1), then for any | € N with
2 <1 < 2b+ 2, there exist infinitely many inequivalent full rank spaces of
dimension [.

Proof. Letting z; = 0 In (4.1), we have MM* = M*M = (|z]*+- - -+ |z |*) Iz

Let 0< O <mu=en, Li = (uwy +iy1)In and Lo = (uwy — iy1)I» where x;
and y; are real and imaginary parts of z; respectively. Let

L4 M
S,

Then, det(Cy) =det(L1Ly + MM*) =det((u’z? + yi)Iz + (|22|* + -+ +
lze*)12) = (ua? 4+ yf + |z* + - + |2[*)2. So, Cp is full diversity and
the determinant area of Cy, being the set of all linear combinations of u? and
1 with positive coefficients, is a proper closed convex cone with angel . When
0, # 0, the spaces corresponding to Cy, and Cp, are inequivalent since the

determinant area of equivalent spaces differ by a rotation. So, the theorem is
established. 0

(4.2) Co = (
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