
Bulletin of the Iranian Mathematial Soiety Vol. 30 No. 1 (2004), pp 53-67.RINGS OF FUNCTIONS WITH INTEGERDERIVATIVES AT X=1G�ERALD PETIT AND DAVID L. DOWECommuniated by Mihel WaldshmidtAbstrat. Starting with results for x to the power x, Doweand Landy (1990) and Dowe (1995) have derived several prop-erties of lasses of funtions for whih the derivative of orderk, evaluated at x = 1, is an integer, or an integer divisible byk (k � 1).For all natural numbers n, we examine here some general-isations of these properties to the sets En of funtions f (allde�ned in a neighbourhood of x = 1), suh that for k � n, thederivative of order k of f is divisible by k! and for k > n, thederivative of order k of f at x = 1 is divisible by:k (k � 1):::(k � n+ 1) = k!(k � n)! = n! ( kn ) = n!Cnk :1. IntrodutionLet 
 be the set of real funtions de�ned on a neighbourhood ofx = 1 and in�nitely di�erentiable in their domain (without nees-sarily being analyti about x = 1). For eah integer n, de�ne thefollowing subsets of 
: E0 = ff 2 
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54 Petit and Dowefor all n � 1, En is the set of funtions f 2 
 having the followingproperties:(i) 8` 2 N , f (`)(1) 2 Z;(ii) k!jf (k)(1) for k = 0; :::; n;(iii) k!(k�n)! jf (k)(1) for k � n.where ajb stands for "a divides b" and where f (k)(1) is the derivativeof order k of f at x = 1. Examples of funtions belonging to (all)En inlude x 7! xm; m 2 Z, sine:8m � 0; (8k � m; (xm)(k)jx=1 = m!(m� k)! ;8k > m; (xm)(k)jx=1 = 0); (1a)8m < 0; 8k; (xm)(k)jx=1 = (�1)k (�m� 1 + k)!(�m� 1)! : (1b)Dowe and Landy ([4℄) and Dowe ([2℄,[3℄) gave detailed attentionto other examples and lasses of examples and obtained severalresults, inluding: x 7! xx 2 E1; for f 2 E0 (resp. E1) then x 7!xf(x) 2 E0 (resp. E1); P Æ f 2 E0 (resp. E1) where f 2 E0 (resp.E1) and P is a polynomial with integer oeÆients; x 7! 1f(x) 2 E0for f 2 E0 and f(1) = 1, et.. Dowe ([2℄, p.2, p.5) also proveslosure of E0 and E1 by addition/subtration and multipliation.The paper examines generalisations of these results in the follow-ing manner: in setion 2, a mapping of En onto En�1 is introdued,for use in the rest of the paper; in setion 3, we show that the setsEn are embedded rings; in setion 4, we examine losure propertiesof the sets En for omposition and in setion 5, we take the sameapproah for exponentiation, yielding more limited results. Setion6 onludes with a disussion on further generalisations of algebraiand analyti properties of the sets En.



Rings of funtions with integer derivatives at x=1 552. A Mapping of En onto En�1Let O be the set of funtions de�ned in a neighbourhood of x = 1.Several of the results obtained in the above mentioned earlier papersuse the following mapping of 
 into O:� : 
! O�f(x) = f(x)�f(1)x�1 if x 6= 1�f(1) = f 0(1)Sine this mapping will be used several times in the remainderof the paper, we begin with the following result:Theorem 2.1.(a) � is a linear mapping. Its kernel is the set of onstantfuntions in a neighbourhood of x = 1;(b) (i) The kernel of the restrition of � to En is the set ofonstant integer funtions in a neighbourhood of x = 1;(ii) � maps En onto En�1 for all n � 1;() 8n � 1; (f 2 En), (�f 2 En�1 and f(1) is an integer).Proof. (a) and (b)(i) are straightforward by de�nition of �. Tobegin proving (b)(ii), we next show that for f 2 
; �f is in�nitelydi�erentiable at x = 1 with:(�f)(k)(1) = f (k+1)(1)k + 1 for all k � 0: (2a)For f analyti about 1, the proof is straightforward by manipulationof the Taylor series. Otherwise, suppose �rst that f(1) = f 0(1) =::: = f (k)(1) = 0. In some neighbourhood of x = 1,(f(x)� f(1)x� 1 )(k) = kXp=0Cpk (�1)p p!(x� 1)p+1 (f(x)� f(1))(k�p):



56 Petit and DoweBy (repeated use of) de l'Hospital's1 rule,limx!1 (f(x)� f(1))(k�p)(x� 1)p+1 = f (k+1)(1)(p+ 1)! ;thus:limx!1(f(x)� f(1)x� 1 )(k) = f (k+1)(1) kXp=0Cpk (�1)pp+ 1 = f (k+1)(1)k + 1 ;sine: xZ0 (1 + t)kdt = xZ0 kXp=0Cpk tpdt = kXp=0Cpk xZ0 tpdt= kXp=0Cpk xp+1p+ 1 = (1 + x)k+1 � 1k + 1 ;in partiular for x = �1.In the general ase where f (j)(1) 6= 0 for some j � k, the resultfollows using: g(x) = f(x)� kXp=0 f (p)(1)p! (x� 1)p;sine g(1) = g0(1) = ::: = g(k)(1) = 0 and sine in some neighbour-hood of x = 1 one has f (`)(x) = g(`)(x) for ` > k and (f(x)�f(1)x�1 )(k) =(g(x)�g(1)x�1 )(k) . Thus (�f)(k)(1) = (�g)(k)(1) = g(k+1)(1)k+1 = f(k+1)(1)k+1for k � 0, establishing (2a).Now if f 2 En, (�f)(k)(1) = f(k+1)(1)k+1 is an integer for k � 0; and�f 2 En�1 sine: k!jf (k+1)(1)k + 1 for all k � n� 1; (2b)as (k + 1)!jf (k+1)(1) and1The use of the expression "l'Hospital's rule" is debatable.



Rings of funtions with integer derivatives at x=1 57k!(k � (n� 1))! jf (k+1)(1)k + 1 for all k > n� 1: (2)as (k+1)!(k+1�n)! jf (k+1)(1).Finally let f 2 En�1. �((x� 1)f) = f and (x� 1)f 2 En, sine:((x� 1)f)(k)(1) = kf (k�1)(1) for k � 1: (2d)Thus by (b)(i), the reiproal image of f 2 En�1 is the set f(x �1)f + t; t 2 Zg � En . This ompletes the proof of (b)(ii); () isthen straightforward, using (2a), (2b) and (2) above. 2Corollary 2.2.2 Let s � 1 and f 2 
. Then f 2 Es if and only iff = (x� 1)s g + P , where g 2 E0 and P is the null polynomial, ora polynomial of degree less than s� 1 with integer oeÆients.Proof. By indution on s � 1. For f 2 E1;�f 2 E0 and f(1) =P is an integer by Theorem 2.1 (). Conversely, using Theorem2.1 (a) as well as (2d) above, if f = (x� 1) g + P where �f =g 2 E0 and P is a onstant (integer) polynomial, then f 2 E1.Assume that the result holds for some s � 1 and take f 2 Es+1.Sine �f 2 Es by Theorem 1 (), f = (x� 1)s+1 g + (x� 1)P ,where g 2 E0 and P is the null polynomial, or a polynomial ofdegree less than s � 1 with integer oeÆients. (x� 1)P is thusthe null polynomial, or a polynomial of degree less than s withinteger oeÆients. Conversely, if f = (x� 1)s+1 g + P , whereg 2 E0 and P is the null polynomial, or a polynomial of degree lessthan s with integer oeÆients, then �f = (x� 1)s g + Q, whereg 2 E0 and Q is the null polynomial, or a polynomial of degree lessthan s� 1 with integer oeÆients; hene �f 2 Es; and sine f(1)is an integer, f 2 Es+1 by Theorem 2.1 (). 22See also [2℄, lemma 6, p.4 and orollary 7, p.5.



58 Petit and Dowe3. The Rings EnWe now begin to use Theorem 2.1 in order to derive:Theorem 3.1.(a) (i) En+1 � En;(ii) 8n � 0; En is a ring;(b) De�ne E1 as the set of funtions f 2 
 suh that:(i) 8k; f (k)(1) 2 Z;(ii) 8k; k!jf (k)(1).Then E1 is a ring;() F = ff 2 
; 8k; f (k)(1) = 0g is an ideal of 
.Proof. (a)(i) Let f 2 En+1.If i = n then n!j(n+ 1)!jf (i)(1); if i > n then i!(i�n)! j i!(i�(n+1))! jf (i)(1).Thus f 2 En:(a) (ii) Let f; g 2 En, where f is de�ned on a neighbourhood Vand g on a neighbourhood W of 1. Then f � g and f g are de�nedon V \W and:- It is straightforward that f � g 2 En as derivatives add up;- We then notie that for n = 0, f; g 2 E0 ) f g 2 E0, byLeibniz's identity (see e.g. [1℄, Th�eor�eme A, p.141), whih gener-alises the derivation of the produt rule. In order to prove that Enis losed under multipliation, we proeed by indution, assumingthat the result holds for some n� 1 � 0. By theorem 2.1() above,it is neessary and suÆient to prove that �(f g) 2 En�1, sinef g(1) is an integer.Suppose �rst that g(1) = 0. Sine f 2 En�1 ((a)(i) above), and�g 2 En�1 (theorem 1() above), it follows that f �g 2 En�1.Now: 8x 6= 1; �(f g)(x) = fg(x)x� 1 = f(x)�g(x)



Rings of funtions with integer derivatives at x=1 59�(f g)(1) = (f g)0(1) = f(1) g0(1) = f(1)�g(1)Thus, f �g = �(f g) and so �(f g) 2 En�1, hene f g 2 Enwhen g(1) = 0.In the general ase where g(1) 6= 0, it suÆes to use h = g� g(1)to onlude, sine f g = f h + f g(1) 2 En.(b) E1 = 1Tn=0En is a ring as an intersetion of rings;() is lear from Leibniz's identity mentioned earlier, sine forf 2 
 and g 2 F ,(f g)(k)(1) = kXp=0Cpk f (p)(1) g(k�p)(1) = 0 for all k � 0: 2The following is immediate:Corollary 3.2. If n is an integer3, P is a polynomial with integeroeÆients and f 2 En, then P Æ f 2 En.4. Closure Results under CompositionTheorem 4.1. If f; g 2 Es and g(1) = 1, then f Æ g 2 Es fors � 0.Proof. By indution on s. Take s = 0. For n � 1 and f; g 2 E0:(f Æ g)(n)(1)= Pk1+2k2+:::+nkn=n n!k1!:::kn!(g(1)(1)1! )k1 :::(g(n)(1)n! )knf (k1+:::+kn)(g(1))(Faa di Bruno's formula, see e.g. [1℄, Th�eor�eme A, p.148).3See also [2℄, theorems 5 and 8 ((i) to (iii)) onerning results for n = 0; 1.



60 Petit and DoweThe di�ereniation rules for the omposition and produt of fun-tions imply that the oeÆients ( n!k1!:::kn!) ( 11!)k1:::( 1n!)kn in the aboveformula are integers ( see also [2℄, Corollary 3 p.2, or [1℄, Th�eor�emeA, p.145); and (f Æ g)(n)(1) is obviously an integer.Suppose the result holds for some s. In order to prove that italso holds for s + 1, we use theorem 2.1 above. Take f; g 2 Es+1with g(1) = 1. First, suppose that there is some neighbourhood of1 where g(x) 6= 1 exept for x = 1. In this neighbourhood put:'(x) = (f Æ g)(x)� (f Æ g)(1)g(x)� g(1) = (f Æ g)(x)� f(1)g(x)� 1 ; x 6= 1and '(1) = f 0(1):Then '(x) = �f(g(x)). Sine �f 2 Es (theorem 2.1(b)) andg 2 Es+1 � Es (theorem 3.1 (a)(i)), it follows that ' 2 Es. Now,�(f Æ g) = '�g and �g 2 Es, thus �(f Æ g) 2 Es by theorem 3.1(a)(ii). Finally, f Æ g 2 Es+1 by theorem 2.1(), sine f Æ g(1) is aninteger.If there exists k � 1 suh that g(k)(1) 6= 0, there is a neigh-bourhood of 1 where g(x) 6= 1 exept for x = 1. Otherwise,if 8k � 1; g(k)(1) = 0, then by Faa di Bruno's formula above,(f Æ g)(k)(1) = 0; k � 1 and f Æ g 2 Es+1. 2Corollary 4.2. Suppose f 2 E0; then:(a) If f(1) = 1 then Log f and 1f 2 E0;(b) If ef(1) is an integer then exp f 2 E0 .Proof. Either: [2℄, theorem 5 (iv), (vi) and (vii) pp.2-3, or:(a) is straightforward using theorem 4.1.For (b), put Æ(x) = f(x)� f(1) + 1. Æ 2 E0 and Æ(1) = 1.



Rings of funtions with integer derivatives at x=1 61By theorem 4.1, g : x 7! exp(Æ(x)� 1) = exp((f(x)� f(1))) 2E0, sine x 7! ex�1 2 E0. Thus,x 7! exp f(x) = exp(f(x)� f(1)) exp f(1) 2 E0: 2Corollary 4.3. The group of multipliation units of Es is Us =ff 2 Es; f(1) = �1g.Proof. Note that sine x 7! 1x 2 E1 (see (1(b) above), 1f 2 Eswhen f 2 Es and f(1) = 1 or f(1) = �1, by theorem 4.1. 2Corollary 4.2(b) above leads us to looking at further extensionsof losure results for exponentiation.5. Closure Results under ExponentiationThe following seems to tell us that we annot go very far in thatdiretion.Theorem 5.1. If f; g 2 Es and f(1) = 1 then f g 2 Es for s = 0; 1.For s > 1, f g =2 Es in general.Note at one that the result is straightforward for s = 0, us-ing orollary 4.2(b) of theorem 4.1 above, sine Log f 2 E0 andegLogf(1) = 1 is an integer.For s = 1, put f = 1 + u; (u(1) = 0); H0 = 1 and for ` � 1, let:H`(x) = ( `�1Ym=0(g �m))(x) = `�1Ym=0(g(x)�m):We now use two lemmas.Lemma 5.2. For s � 0 and f; g 2 Es, in some neighbourhood ofx = 1, (f g)(p)(x) = 1X̀=0 (H` u``! )(p)(x) for p � 0:



62 Petit and DoweProof. For � real, reall the Taylor expansion of y 7! (1 + y)�about zero:(1 + y)� = 1 + nXk=1 �(�� 1):::(�� k + 1)k! yk+ �(�� 1):::(�� n)(n + 1)! (1 + )��n�1yn+1; (5.1)for n � 1, where jj � jyj.Now put � = g(x); y = u(x) and write (for p = 0):f g(x) = NX̀=0H`(x)u`(x)`! + HN+1(x)(N + 1)! (u(x))N+1(1 + (x))g(x)�N�1;for N � 0, where j(x)j � ju(x)j.Choosing a neighbourhood of x = 1 where e.g. ju(x)j < 1=2,jgj being bounded in that neighbourhood, it is easily heked thatthe above series is uniformly onvergent as N goes to in�nity. Thisompletes the proof of lemma 5.2 for p = 0.Reall also that given a set of funtions f1; :::fm, (where m � 1),all having a derivative of order k � p for some x, Leibniz's identityan be further generalised (see e.g. [1℄, Th�eor�eme C, p.143) to:(f1:::fm)(p)(x) = Xk1+:::+km=p p!k1!:::km! (f1)(k1)(x):::(fm)(km)(x)= Xk1+:::+km=p p!k1!:::km! mYn=1(fn)(kn)(x) (5.2)Let ` � 1 and let K be the set of (k1; :::; k`) = k suh thatk1 + :::+ k` = p. For p � 1, aording to (5.2), write:(H``! u`)(p)(x) = 1̀! Xk2K p!k1!:::k`! `�1Yn=0(u(g � n))(kn)(x) (5.3)



Rings of funtions with integer derivatives at x=1 63For s � 0, hoose an upper bound Ms of j(u g)(i)j and an upperbound us of ju(i)j, for i = 0; :::s, in a neighbourhood of x = 1.For ` � p, eah summand in (5.3) ontains at least ` � p ki'swhih are null.The summand is therefore bounded above by:(M0 + (`� 1) u0)`�p (Mp + (`� 1) up)p p!k1!:::k`! :Now, hoose a neighbourhood of x = 1 where u0 is smaller than1e (u(1) = 0).In this neighbourhood, the absolute value of the sum in (5.3) isbounded above by:(M0 + (`� 1) u0)`�p (Mp + (`� 1) up)p Xk1+:::k`=p p!k1!:::k`!= (M0 + (`� 1)u0)`�p (Mp + (`� 1)up)p `p:Now the series with general term:a` = (M0 + (`� 1)u0)`�p (Mp + (`� 1)up)p `p`!is onvergent as a`+1a` �l!1 (M0+` u0)e`+1 ! u0e < 1.Thus the series with general term f`(x) = (H``! u`)(p)(x) is uni-formly onvergent in a neighbourhood of 1 and the result followsby indution on p. This ompletes the proof of Lemma 5.2 for allp. 2Lemma 5.3.(a) u``! 2 E0;(b) (u``! )(k)(1) = 0 for ` > k � 0.Proof. (a) By theorem 4.1, sine x 7! (x�1)``! 2 E0 and f = u+1 2Es � E0.



64 Petit and Dowe(b) is lear using e.g. Faa di Bruno's formula, and the fat thatu(1) = 0. 2Proof of Theorem 5.1:We only need to turn to s = 1. Using lemma 5.2 we get:(f g)(p)(1) = 1X̀=0 (H` u``! )(p)(1) for p � 0;and using lemma 5.3(b) above:(f g)(p)(1) = pX̀=0 (H` u``! )(p)(1) for p � 0:It now suÆes to prove that (H` u``! )(p)(1) is an integer divisibleby p for ` � p.(H` u``! )(p)(1) = pXk=`CkpH(p�k)` (1) (u``! )(k)(1):(Leibniz's identity, and lemma 5.3(b), whih implies that theabove summation starts from k = `).Sine E1 is a ring, H` 2 E1. For j � 1, put H(j)` (1) = jHj. Then:(H` u``! )(p)(1) = H`(1)`! (u`)(p)(1)+p�1Xk=` p!(p� k)! k! (p� k)Hp�k (u``! )(k)(1);(H` u``! )(p)(1) = H`(1)`! (u`)(p)(1) + p (p�1Xk=`Ckp�1Hp�k (u``! )(k)(1)):Now, it is easily heked that H`(1)`! is an integer and sine u` 2 E1,p j(u`)(p)(1).>From lemma 2(a), p�1Pk=`Ckp�1Hp�k (u``! )(k)(1) is an integer.And thus, (H` u``! )(p)(1) is an integer divisible by p for ` � p.Finally, the result does not extend to s > 1: for example x 7! x 2E2 but x 7! xx =2 E2, as (xx)(3)(1) = 3 is not divisible by 3 � 2 = 6.



Rings of funtions with integer derivatives at x=1 65Dowe ([2℄, orollary 11, p.9) further shows that for k � 2; k(k � 1)divides (xx)(k)(1) if and only if (k � 1) divides (k � 2)! . 2Corollary 5.4.4 If f 2 E0 (resp. E1), then x 7! xf(x) 2 E0 (resp.E1).Notes� Beyond orollary 4.2 of theorem 4.1 and theorem 5.1 above,results onerning exponentiation inlude:(h 2 E1) ) (xh 2 E2) , (h0 Log x 2 E1) (a onsequeneof a private ommuniation by H.S. Wilf, see [2℄ theorem 9,p.8);� The onverse of theorem 5.1 is not true, sine e.g. g : x 7!exp(x� 1) 2 E0; g(x) = xf(x) with f : x 7! x�1Log x ; f(1) = 1,but f =2 E0 as f 0(1) = 12 . However Dowe ([2℄, theorem5 (viii), p.3) derives partial onverse results, whih an begeneralised as follows, using theorems 4.1 and 5.1 above:Suppose u = f g; u(1) = 1 and u 2 E0 (resp. E1). Then:(i) Log f 2 E0, Log f(1) 2 f�1; 1g ) g 2 E0(ii) g 2 E0 (resp. E1), g(1) 2 f�1; 1g ) f 2 E0 (resp.E1). 6. Disussion and ConlusionsThe above losure results ould lead to further generalisations,suh as:� For n � 1, generate En, building from "minimal" subsets,as well as from the ring and restrited losure propertiesexamined above. From the orollary to theorem 2.1, one�rst remark is that it is enough to work in E0. Furtherexamination of the algebrai and analyti properties of E0ould be performed.4See also [2℄, theorem 5 (v) p.3, theorem 8 (iv) p.5 .



66 Petit and Dowe� Given a subset � of the set of omplex numbers and n � 0,extend the de�nition of the sets En to sets En(�) of fun-tions f 2 
 suh that:(i) f(k)(1)k! 2 � for k = 0; :::; n;(ii) (k � n)! f(k)(1)k! 2 � for k � n.The following ould be investigated: when � is endowedwith algebrai properties (group, ring), these are transportedto En(�) and all the above results (where � = Z) hold.When � is a unit ring with unit group U, the units of En(�)are the funtions f for whih f(1) 2 U (generalising orol-lary 4.3 of theorem 4.1 above).Further properties ould be examined, that ould givebetter hindsight into the algebrai struture of En(�).� Following Dowe's suggestion ([2℄, p.7), formulate and proveextensions of the above to frational derivatives - thus de-parting from indution methods largely used in the presentpaper. AknowledgementThe authors are very grateful to Professor F. Gramain (Univer-sity Jean Monnet, Saint-Etienne, Frane) for his orretions andsuggestions to the original version (2000) of this paper.Referenes[1℄ L. Comtet, Analyse Combinatoire, Tome Premier, Presses Universitairesde Frane, Colletion Sup (le Math�ematiien), 1970.[2℄ D. L. Dowe, Classes of funtions with Integer Derivatives at x=1, TehnialReport #95/217, Dept Computer Siene, Monash University, Melbourne,(1995), 10pp.[3℄ D. L. Dowe, Classes of funtions with integer derivatives at x=1, fI Pro.21st Australasian Conf. on Combinatorial Mathematis and Combinato-rial Computing fP (21ACCMCC), Deakin University, Geelong, Vitoria,Australia, July 1995, (1995), 11{12.[4℄ D. L. Dowe and S. B. Landy, The derivatives of x to the power x at x =1, Austral. Math. So. Gaz. 17 (4)(1990), 95-98.
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