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RINGS OF FUNCTIONS WITH INTEGER
DERIVATIVES AT X=1

GERALD PETIT AND DAVID L. DOWE

Communicated by Michel Waldschmidt

ABSTRACT. Starting with results for x to the power z, Dowe
and Landy (1990) and Dowe (1995) have derived several prop-
erties of classes of functions for which the derivative of order
k, evaluated at = 1, is an integer, or an integer divisible by
k(k>1).

For all natural numbers n, we examine here some general-
isations of these properties to the sets E,, of functions f (all
defined in a neighbourhood of z = 1), such that for k£ < n, the
derivative of order k of f is divisible by k! and for k& > n, the
derivative of order k of f at x = 1 is divisible by:

k!

=1k = +1) = s =l "y =nay.

1. Introduction

Let © be the set of real functions defined on a neighbourhood of
z = 1 and infinitely differentiable in their domain (without neces-
sarily being analytic about x = 1). For each integer n, define the
following subsets of Q: Ey = {f € Q;Vk € N, f®)(1) € Z} and
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54 Petit and Dowe

for all n > 1, E, is the set of functions f € 2 having the following
properties:
(i) V¢ e N, fO(1) € Z:
(ii) K f®)(1) for k=0, ..., n;
(iii) Gyl fM (1) for k > n.
where a|b stands for ” a divides b” and where f*)(1) is the derivative

of order k of f at x = 1. Examples of functions belonging to (all)
E,, include x — 2™, m € Z, since:

|
Ym > 0, Yk < m, x™ (k) =1 = L,
=z ( = ( ) ‘ 1 (m _ k)! (1a)
Vk > m, (lﬁm)(k)|:c:1 = U)a
Vm < 0,Yk, (2™)®|,_; = (=1) =T (1b)

Dowe and Landy ([4]) and Dowe ([2],[3]) gave detailed attention
to other examples and classes of examples and obtained several
results, including: = — 2% € Ey; for f € Ey (resp. E;) then z —
27@ € Ey (resp. Ey); Po f € Ey (resp. E;) where f € Ey (resp.
Ey) and P is a polynomial with integer coefficients; z — ﬁ € Ey
for f € Eq and f(1) = 1, etc.. Dowe ([2], p.2, p.5) also proves
closure of Ey and F; by addition/subtraction and multiplication.

The paper examines generalisations of these results in the follow-
ing manner: in section 2, a mapping of E,, onto E,,_; is introduced,
for use in the rest of the paper; in section 3, we show that the sets
E,, are embedded rings; in section 4, we examine closure properties
of the sets E, for composition and in section 5, we take the same
approach for exponentiation, yielding more limited results. Section
6 concludes with a discussion on further generalisations of algebraic
and analytic properties of the sets F,.
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2. A Mapping of F, onto F,
Let O be the set of functions defined in a neighbourhood of z = 1.

Several of the results obtained in the above mentioned earlier papers
use the following mapping of 2 into O:

A: Q=0
Af(x):%ifx#l
Af(1) = (1)

Since this mapping will be used several times in the remainder
of the paper, we begin with the following result:

Theorem 2.1.

(a) A is a linear mapping. Its kernel is the set of constant
functions in a neighbourhood of x = 1;
(b) (i) The kernel of the restriction of A to E, is the set of
constant integer functions in a neighbourhood of x = 1;
(ii) A maps E, onto E, 1 for alln > 1;
(c) Vn > 1,(f € E,) < (Af € E,_y and f(1) is an integer).

Proof. (a) and (b)(i) are straightforward by definition of A. To
begin proving (b)(ii), we next show that for f € Q, Af is infinitely
differentiable at x = 1 with:

fHI)

(Af)B(1) = P for all k> 0. (2a)

For f analytic about 1, the proof is straightforward by manipulation
of the Taylor series. Otherwise, suppose first that f(1) = f'(1) =
.. = f®)(1) = 0. In some neighbourhood of z = 1,

A=Ay = 5 op EUL 1) - syeon.

z—1 o Mz —1)p+t
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By (repeated use of) de 1'Hospital’s' rule,
()~ FO)E )

z—1 (x — 1)p+1 (p+1)7
thus:
k k41
(LI W0y _ e g 3= p C12 1400,
z—1 x—1 =0 Fp + 1 kE+1
since:

T

/(1+t /ZC’”t”dt ZC”/t”dt

0
i ) xp-l—l _ (1—|—$)k+1 -1
Fp+l k+1 ’

=0
=—1.

in particular for

In the general case where f)(1) # 0 for some j < k, the result
follows using:

(‘r - 1);11,

since g(1) = ¢'(1) = gl (1) = 0 and since in some neighbour-

hood of z = 1 one has f )(z) = ) for £ > k and (71“(1;:{(1))('6) —

O (a
(0 T (5O (1) = (3g)9(1) = 2200 22220
T : r T
for k£ > 0, establishing (2a).

Now if f € E,, (Af)®) (1) = f(k]:ii)l(l) is an integer for k£ > 0; and
Af € E, _ since:

f(k+1)(1)
k+1
as (k+ 1)![f*+Y(1) and

k! for all £ <n —1; (2b)

IThe use of the expression "I’'Hospital’s rule” is debatable.
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k! FED(1)
G—m=1) Ftl

forall k >n — 1. (2¢)

k41)!
as (k(+J1ri)n)! S,

Finally let f € E, 1. A((x —1)f) = fand (z — 1)f € E,, since:
(z = 1)H®A) = kfE D) for k > 1. (2d)

Thus by (b)(i), the reciprocal image of f € E,_; is the set {(x —
1)f +t;t € Z} C E, . This completes the proof of (b)(ii); (c) is
then straightforward, using (2a), (2b) and (2c¢) above. O

Corollary 2.2.2 Let s > 1 and f € Q. Then f € E, if and only if
f=(x—=1)°g+ P, where g € Ey and P is the null polynomial, or
a polynomial of degree less than s — 1 with integer coefficients.

Proof. By induction on s > 1. For f € E;,Af € Ey and f(1) =
P is an integer by Theorem 2.1 (c¢). Conversely, using Theorem
2.1 (a) as well as (2d) above, if f = (z —1)g + P where Af =
g € Ey and P is a constant (integer) polynomial, then f € Ej.
Assume that the result holds for some s > 1 and take f € F ;.
Since Af € Fs by Theorem 1 (¢), f = (z —1)**'g+ (z —1) P,
where ¢ € Ey and P is the null polynomial, or a polynomial of
degree less than s — 1 with integer coefficients. (z — 1) P is thus
the null polynomial, or a polynomial of degree less than s with
integer coefficients. Conversely, if f = (z —1)*"'g + P, where
g € Ey and P is the null polynomial, or a polynomial of degree less
than s with integer coefficients, then Af = (z — 1)* g + @, where
g € Ey and @ is the null polynomial, or a polynomial of degree less
than s — 1 with integer coefficients; hence Af € Eg; and since f(1)
is an integer, f € Fy; by Theorem 2.1 (c). O

2See also [2], lemma 6, p.4 and corollary 7, p.5.
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3. The Rings FE,

We now begin to use Theorem 2.1 in order to derive:

Theorem 3.1.

(a) (i) Enpr C By
(ii) Yn > 0, E,, is a ring;

(b) Define E as the set of functions f € Q such that:
0) Wk, f9(1) €
(ii) Vk, k! f*)(1).
Then E is a ring;

(c) F={fe€Vk, f®(1) =0} is an ideal of Q.

Proof. (a)(i) Let f € E,41.

Ifi = nthen n!|(n + 1)!|f@(1); ifi > n then 5 ,\ n+1 | fO(1).
Thus f € E,.

(a) (ii) Let f,g € E,, where f is defined on a neighbourhood V
and ¢ on a neighbourhood W of 1. Then f 4+ g and f g are defined
on VNW and:

- It is straightforward that f 4+ ¢ € E), as derivatives add up;

- We then notice that for n = 0, f,g € Ey = fg € Ey, by
Leibniz’s identity (see e.g. [1], Théoréme A, p.141), which gener-
alises the derivation of the product rule. In order to prove that F,
is closed under multiplication, we proceed by induction, assuming
that the result holds for some n —1 > 0. By theorem 2.1(c) above,
it is necessary and sufficient to prove that A(fg) € E,_;, since
fg(1) is an integer.

Suppose first that g(1) = 0. Since f € E, ; ((a)(i) above), and
Ag € FE, 1 (theorem 1(c) above), it follows that fAg € E, ;.
Now:

Vo # 1, Af g)(a) =

T99) _ pa) gt

-1
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A(fg)(1) = (fg)(1) = f(1)g'(1) = f(1) Ag(1)

Thus, fAg = A(fg) and so A(fg) € E, 1, hence fg € E,
when g(1) = 0.

In the general case where ¢g(1) # 0, it suffices to use h = g — g(1)
to conclude, since fg=fh+ fg(1) € E,.

o0
(b) Exx = N E, is a ring as an intersection of rings;
n=0

(c) is clear from Leibniz’s identity mentioned earlier, since for
feQand g€ F,

k
(f )M (1) = S CP fP(1) g*P (1) = 0 for all k > 0.
p=0

The following is immediate:

Corollary 3.2. If n is an integer®, P is a polynomial with integer
coefficients and f € F,,, then Po f € F,,.

4. Closure Results under Composition

Theorem 4.1. If f,g € Es and g(1) = 1, then fog € E for
s > 0.

Proof. By induction on s. Take s =0. Forn > 1 and f,g € Ey:

(fog)™(1) k
! (1) (n) n
= k1+2k2_§+nk _ kl!.r.l..kn! (g (1))’“...(9 (1)) f(k1+...+kn)(g(1))

(Faa di Bruno’s formula, see e.g. [1], Théoréme A, p.148).

3See also [2], theorems 5 and 8 ((i) to (iii)) concerning results for n = 0, 1.
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The differenciation rules for the composition and product of func-
tions imply that the coefficients (kl!.T.L.!kn!) (55)"...(5)" in the above
formula are integers ( see also [2], Corollary 3 p.2, or [1], Théoréme

A, p.145); and (f o g)™(1) is obviously an integer.

Suppose the result holds for some s. In order to prove that it
also holds for s + 1, we use theorem 2.1 above. Take f,g € Esiy
with ¢g(1) = 1. First, suppose that there is some neighbourhood of
1 where g(x) # 1 except for x = 1. In this neighbourhood put:

(fog)(z) = (fog)1) _ (fog)(x) - f(1)

o(z) = o(2) = o) =@ 1 A1

and ¢(1) = f'(1).

Then ¢(xz) = Af(g(x)). Since Af € E; (theorem 2.1(b)) and
g € Es1q1 C Eg (theorem 3.1 (a)(i)), it follows that ¢ € E;. Now,
A(fog)=¢Ag and Ag € E;, thus A(f o g) € E; by theorem 3.1
(a)(ii). Finally, fog € Es;; by theorem 2.1(c), since f o g(1) is an
integer.

If there exists & > 1 such that ¢*)(1) # 0, there is a neigh-
bourhood of 1 where g(z) # 1 except for x = 1. Otherwise,
if Yk > 1, ¢"™(1) = 0, then by Faa di Bruno’s formula above,
(fog)(k)(l) = Oak Z 1 and ng € Es+1- 0

Corollary 4.2. Suppose f € Ey; then:
(a) If f(1) =1 then Log f and % € Ey;
(b) If ) is an integer then exp f € Ey .

Proof. Either: [2], theorem 5 (iv), (vi) and (vii) pp.2-3, or:
(a) is straightforward using theorem 4.1.

For (b), put §(z) = f(z) — f(1)+ 1. 6 € Ep and §(1) = 1.
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By theorem 4.1, g : © — exp(d(z) — 1) = exp((f(x) — f(1))) €
Ey, since x — ¢! € Fy. Thus,

z = exp f(z) = exp(f(z) - f(1)) exp f(1) € Eo.

(Il
Corollary 4.3. The group of multiplication units of Ey is Uy =
{f€Es;f(1)==+1}.
Proof. Note that since z — 1 € Ey (see (1(b) above), % € E;

€
when f € E; and f(1) =1 or f(1) = —1, by theorem 4.1. O

Corollary 4.2(b) above leads us to looking at further extensions
of closure results for exponentiation.

5. Closure Results under Exponentiation

The following seems to tell us that we cannot go very far in that
direction.

Theorem 5.1. If f,g € E and f(1) =1 then f9 € E; for s =0, 1.
For s > 1, f9 ¢ E, in general.

Note at once that the result is straightforward for s = 0, us-
ing corollary 4.2(b) of theorem 4.1 above, since Log f € E, and
e9lo9/(1) = 1 is an integer.

For s=1,put f =1+ u,(u(l) =0), Hy=1 and for £ > 1, let:

Hz) = (I (o = m)() = TT (ot) = m).

We now use two lemmas.

Lemma 5.2. For s > 0 and f,g € Es, in some neighbourhood of
r=1,

(1)) = 32 0 ) o) or > 0
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Proof. For « real, recall the Taylor expansion of y — (1 + y)”
about zero:

(1+y)a:l_i_ia(a—l)...k(!a—k+l)yk

ala—1)..(a —n)
(n+1)!

(1 +C)a—n—1yn+1’ (51)
for n > 1, where |c| < |y|.

Now put a=g(x ) y = u(x) and write (for p = 0):

=5 ) ) S )

for N >0, Where le(z)] < |u(x)].

Choosing a neighbourhood of z = 1 where e.g. |u(z)| < 1/2,
lg| being bounded in that neighbourhood, it is easily checked that
the above series is uniformly convergent as N goes to infinity. This
completes the proof of lemma 5.2 for p = 0.

Recall also that given a set of functions f1, ..., (Where m > 1),
all having a derivative of order k < p for some x, Leibniz’s identity
can be further generalised (see e.g. [1], Théoréme C, p.143) to:

(hoedm)P@ = 3 k%k!wfﬂ<x>...<fm><km>(x>

ki+...4+km yY

_ T (£, 5.2
k +§c = kl 1:[ fn o2

1T m=p =
Let £ > 1 and let K be the set of (kq,...,k/) = k such that

ki + ...+ k¢ =p. For p > 1, according to (5.2), write:
ey = 25 A T e —m) (@)

H C keK IREEEA A n=0 (53)
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For s > 0, choose an upper bound M, of |(u¢)®”| and an upper
bound ug of [u|, for i = 0,...s, in a neighbourhood of z = 1.

For ¢ > p, each summand in (5.3) contains at least ¢ — p k;’s
which are null.
The summand is therefore bounded above by:

(Mo + (€= 1) up)" " (M, + (£~ 1), )7 k'pi'k'

Now, choose a neighbourhood of x = 1 where u, is smaller than
L (u(1) = 0).

In this neighbourhood, the absolute value of the sum in (5.3) is
bounded above by:

i ;
(Mo + (= D u) 7 (4 (- Dy Y
kit kp=p 1R

= (Mo + (€ = 1)ug) ™" (M, + (€ = 1)uy)" 7.

Now the series with general term:

(Mo + (€ — Dug)™P (M, + (€ — L)u,)? €7
0!
— uge < 1.

0g41 (Mo-l—fuo)e

ay ~ /41

is convergent as
=00

Thus the series with general term fy(z) = (%t u®)®)(z) is uni-
formly convergent in a neighbourhood of 1 and the result follows
by induction on p. This completes the proof of Lemma 5.2 for all

p. U

Lemma 5.3.
(a) “ € Ey;

L

(b) ()P (1) =0 for £ >k > 0.

L=l ¢ Eyand f=u+1¢

Proof. (a) By theorem 4.1, since x —
E, C Ey.
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(b) is clear using e.g. Faa di Bruno’s formula, and the fact that
u(l)=0.0

Proof of Theorem 5.1:
We only need to turn to s = 1. Using lemma 5.2 we get:

]

Z 1) for p > 0,

and using lemma 5.3(b) above:

p ué

(F)P (1) = 3 (Hy )™ (1) for p > 0.

£=0

It now suffices to prove that (H, %)(7’)(1) is an integer divisible
by p for ¢ < p.

(Hy )" 2 CrHI (1) ()P ().

(Leibniz’s identity, and lemma 5.3(b), which implies that the
above summation starts from k = /).

Since By is a ring, H, € Ey. For j > 1, put H”)(1) = jH;. Then:

(1, 5y 1) = D) (ue)@)(l);;; e 0= R By ()P ),
10 0) = P 0 ) 40 (Tl s ()00

Now, it is easily checked that % is an integer and since uf € E,
p(u)"(1).

;From lemma 2(a), szz Hy (% )(k)(l) is an integer.
And thus, (H, %)( J(1) is an integer divisible by p for £ < p.

Finally, the result does not extend to s > 1: for example z — x €
E; but z + 2® ¢ Ey, as (#7)®)(1) = 3 is not divisible by 3 x 2 = 6.
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Dowe ([2], corollary 11, p.9) further shows that for £ > 2, k(k — 1)
divides (z%)*)(1) if and only if (k — 1) divides (k —2)! . O

Corollary 5.4." If f € Ey (resp. E), then z + 27 € Ey (resp.
E;).

Notes

e Beyond corollary 4.2 of theorem 4.1 and theorem 5.1 above,
results concerning exponentiation include:
(h € Ey) = (2" € FEy) & (h'Logz € E) (a consequence
of a private communication by H.S. Wilf, see [2] theorem 9,
p.8);
e The converse of theorem 5.1 is not true, since e.g. ¢ : x —
exp(z — 1) € Ey; g(z) = /@ with f: 2 — 50;11, (1) =1,

but f ¢ Ey as f'(1) = 3. However Dowe ([2], theorem

5 (viii), p.3) derives partial converse results, which can be
generalised as follows, using theorems 4.1 and 5.1 above:

Suppose u = f9, u(l) =1 and u € E, (resp. E;). Then:

(i) Log f € Ey, Log f(1) € {—1,1} = g € E,
(ii) g € Ey (resp. Ey), g(1) € {-1,1} = f € E; (resp.
Ey).

6. Discussion and Conclusions

The above closure results could lead to further generalisations,
such as:

e For n > 1, generate E,, building from "minimal” subsets,
as well as from the ring and restricted closure properties
examined above. From the corollary to theorem 2.1, one
first remark is that it is enough to work in E,. Further
examination of the algebraic and analytic properties of Ej
could be performed.

4See also [2], theorem 5 (v) p.3, theorem 8 (iv) p.5 .
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e Given a subset ¥ of the set of complex numbers and n > 0,
extend the definition of the sets E, to sets F,(X) of func-
tions f € €2 such that:

(i) f(k)( eXfork=0,.
(ii) (k n)! L2 e 3 for - > n.

The followmg could be investigated: when ¥ is endowed
with algebraic properties (group, ring), these are transported
to F,(X) and all the above results (where ¥ = 7Z) hold.
When ¥ is a unit ring with unit group U, the units of £, (%)
are the functions f for which f(1) € U (generalising corol-
lary 4.3 of theorem 4.1 above).

Further properties could be examined, that could give
better hindsight into the algebraic structure of E,(X).

e Following Dowe’s suggestion ([2], p.7), formulate and prove
extensions of the above to fractional derivatives - thus de-
parting from induction methods largely used in the present
paper.
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