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t. Starting with results for x to the power x, Doweand Landy (1990) and Dowe (1995) have derived several prop-erties of 
lasses of fun
tions for whi
h the derivative of orderk, evaluated at x = 1, is an integer, or an integer divisible byk (k � 1).For all natural numbers n, we examine here some general-isations of these properties to the sets En of fun
tions f (allde�ned in a neighbourhood of x = 1), su
h that for k � n, thederivative of order k of f is divisible by k! and for k > n, thederivative of order k of f at x = 1 is divisible by:k (k � 1):::(k � n+ 1) = k!(k � n)! = n! ( kn ) = n!Cnk :1. Introdu
tionLet 
 be the set of real fun
tions de�ned on a neighbourhood ofx = 1 and in�nitely di�erentiable in their domain (without ne
es-sarily being analyti
 about x = 1). For ea
h integer n, de�ne thefollowing subsets of 
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54 Petit and Dowefor all n � 1, En is the set of fun
tions f 2 
 having the followingproperties:(i) 8` 2 N , f (`)(1) 2 Z;(ii) k!jf (k)(1) for k = 0; :::; n;(iii) k!(k�n)! jf (k)(1) for k � n.where ajb stands for "a divides b" and where f (k)(1) is the derivativeof order k of f at x = 1. Examples of fun
tions belonging to (all)En in
lude x 7! xm; m 2 Z, sin
e:8m � 0; (8k � m; (xm)(k)jx=1 = m!(m� k)! ;8k > m; (xm)(k)jx=1 = 0); (1a)8m < 0; 8k; (xm)(k)jx=1 = (�1)k (�m� 1 + k)!(�m� 1)! : (1b)Dowe and Landy ([4℄) and Dowe ([2℄,[3℄) gave detailed attentionto other examples and 
lasses of examples and obtained severalresults, in
luding: x 7! xx 2 E1; for f 2 E0 (resp. E1) then x 7!xf(x) 2 E0 (resp. E1); P Æ f 2 E0 (resp. E1) where f 2 E0 (resp.E1) and P is a polynomial with integer 
oeÆ
ients; x 7! 1f(x) 2 E0for f 2 E0 and f(1) = 1, et
.. Dowe ([2℄, p.2, p.5) also proves
losure of E0 and E1 by addition/subtra
tion and multipli
ation.The paper examines generalisations of these results in the follow-ing manner: in se
tion 2, a mapping of En onto En�1 is introdu
ed,for use in the rest of the paper; in se
tion 3, we show that the setsEn are embedded rings; in se
tion 4, we examine 
losure propertiesof the sets En for 
omposition and in se
tion 5, we take the sameapproa
h for exponentiation, yielding more limited results. Se
tion6 
on
ludes with a dis
ussion on further generalisations of algebrai
and analyti
 properties of the sets En.



Rings of fun
tions with integer derivatives at x=1 552. A Mapping of En onto En�1Let O be the set of fun
tions de�ned in a neighbourhood of x = 1.Several of the results obtained in the above mentioned earlier papersuse the following mapping of 
 into O:� : 
! O�f(x) = f(x)�f(1)x�1 if x 6= 1�f(1) = f 0(1)Sin
e this mapping will be used several times in the remainderof the paper, we begin with the following result:Theorem 2.1.(a) � is a linear mapping. Its kernel is the set of 
onstantfun
tions in a neighbourhood of x = 1;(b) (i) The kernel of the restri
tion of � to En is the set of
onstant integer fun
tions in a neighbourhood of x = 1;(ii) � maps En onto En�1 for all n � 1;(
) 8n � 1; (f 2 En), (�f 2 En�1 and f(1) is an integer).Proof. (a) and (b)(i) are straightforward by de�nition of �. Tobegin proving (b)(ii), we next show that for f 2 
; �f is in�nitelydi�erentiable at x = 1 with:(�f)(k)(1) = f (k+1)(1)k + 1 for all k � 0: (2a)For f analyti
 about 1, the proof is straightforward by manipulationof the Taylor series. Otherwise, suppose �rst that f(1) = f 0(1) =::: = f (k)(1) = 0. In some neighbourhood of x = 1,(f(x)� f(1)x� 1 )(k) = kXp=0Cpk (�1)p p!(x� 1)p+1 (f(x)� f(1))(k�p):



56 Petit and DoweBy (repeated use of) de l'Hospital's1 rule,limx!1 (f(x)� f(1))(k�p)(x� 1)p+1 = f (k+1)(1)(p+ 1)! ;thus:limx!1(f(x)� f(1)x� 1 )(k) = f (k+1)(1) kXp=0Cpk (�1)pp+ 1 = f (k+1)(1)k + 1 ;sin
e: xZ0 (1 + t)kdt = xZ0 kXp=0Cpk tpdt = kXp=0Cpk xZ0 tpdt= kXp=0Cpk xp+1p+ 1 = (1 + x)k+1 � 1k + 1 ;in parti
ular for x = �1.In the general 
ase where f (j)(1) 6= 0 for some j � k, the resultfollows using: g(x) = f(x)� kXp=0 f (p)(1)p! (x� 1)p;sin
e g(1) = g0(1) = ::: = g(k)(1) = 0 and sin
e in some neighbour-hood of x = 1 one has f (`)(x) = g(`)(x) for ` > k and (f(x)�f(1)x�1 )(k) =(g(x)�g(1)x�1 )(k) . Thus (�f)(k)(1) = (�g)(k)(1) = g(k+1)(1)k+1 = f(k+1)(1)k+1for k � 0, establishing (2a).Now if f 2 En, (�f)(k)(1) = f(k+1)(1)k+1 is an integer for k � 0; and�f 2 En�1 sin
e: k!jf (k+1)(1)k + 1 for all k � n� 1; (2b)as (k + 1)!jf (k+1)(1) and1The use of the expression "l'Hospital's rule" is debatable.



Rings of fun
tions with integer derivatives at x=1 57k!(k � (n� 1))! jf (k+1)(1)k + 1 for all k > n� 1: (2
)as (k+1)!(k+1�n)! jf (k+1)(1).Finally let f 2 En�1. �((x� 1)f) = f and (x� 1)f 2 En, sin
e:((x� 1)f)(k)(1) = kf (k�1)(1) for k � 1: (2d)Thus by (b)(i), the re
ipro
al image of f 2 En�1 is the set f(x �1)f + t; t 2 Zg � En . This 
ompletes the proof of (b)(ii); (
) isthen straightforward, using (2a), (2b) and (2
) above. 2Corollary 2.2.2 Let s � 1 and f 2 
. Then f 2 Es if and only iff = (x� 1)s g + P , where g 2 E0 and P is the null polynomial, ora polynomial of degree less than s� 1 with integer 
oeÆ
ients.Proof. By indu
tion on s � 1. For f 2 E1;�f 2 E0 and f(1) =P is an integer by Theorem 2.1 (
). Conversely, using Theorem2.1 (a) as well as (2d) above, if f = (x� 1) g + P where �f =g 2 E0 and P is a 
onstant (integer) polynomial, then f 2 E1.Assume that the result holds for some s � 1 and take f 2 Es+1.Sin
e �f 2 Es by Theorem 1 (
), f = (x� 1)s+1 g + (x� 1)P ,where g 2 E0 and P is the null polynomial, or a polynomial ofdegree less than s � 1 with integer 
oeÆ
ients. (x� 1)P is thusthe null polynomial, or a polynomial of degree less than s withinteger 
oeÆ
ients. Conversely, if f = (x� 1)s+1 g + P , whereg 2 E0 and P is the null polynomial, or a polynomial of degree lessthan s with integer 
oeÆ
ients, then �f = (x� 1)s g + Q, whereg 2 E0 and Q is the null polynomial, or a polynomial of degree lessthan s� 1 with integer 
oeÆ
ients; hen
e �f 2 Es; and sin
e f(1)is an integer, f 2 Es+1 by Theorem 2.1 (
). 22See also [2℄, lemma 6, p.4 and 
orollary 7, p.5.



58 Petit and Dowe3. The Rings EnWe now begin to use Theorem 2.1 in order to derive:Theorem 3.1.(a) (i) En+1 � En;(ii) 8n � 0; En is a ring;(b) De�ne E1 as the set of fun
tions f 2 
 su
h that:(i) 8k; f (k)(1) 2 Z;(ii) 8k; k!jf (k)(1).Then E1 is a ring;(
) F = ff 2 
; 8k; f (k)(1) = 0g is an ideal of 
.Proof. (a)(i) Let f 2 En+1.If i = n then n!j(n+ 1)!jf (i)(1); if i > n then i!(i�n)! j i!(i�(n+1))! jf (i)(1).Thus f 2 En:(a) (ii) Let f; g 2 En, where f is de�ned on a neighbourhood Vand g on a neighbourhood W of 1. Then f � g and f g are de�nedon V \W and:- It is straightforward that f � g 2 En as derivatives add up;- We then noti
e that for n = 0, f; g 2 E0 ) f g 2 E0, byLeibniz's identity (see e.g. [1℄, Th�eor�eme A, p.141), whi
h gener-alises the derivation of the produ
t rule. In order to prove that Enis 
losed under multipli
ation, we pro
eed by indu
tion, assumingthat the result holds for some n� 1 � 0. By theorem 2.1(
) above,it is ne
essary and suÆ
ient to prove that �(f g) 2 En�1, sin
ef g(1) is an integer.Suppose �rst that g(1) = 0. Sin
e f 2 En�1 ((a)(i) above), and�g 2 En�1 (theorem 1(
) above), it follows that f �g 2 En�1.Now: 8x 6= 1; �(f g)(x) = fg(x)x� 1 = f(x)�g(x)



Rings of fun
tions with integer derivatives at x=1 59�(f g)(1) = (f g)0(1) = f(1) g0(1) = f(1)�g(1)Thus, f �g = �(f g) and so �(f g) 2 En�1, hen
e f g 2 Enwhen g(1) = 0.In the general 
ase where g(1) 6= 0, it suÆ
es to use h = g� g(1)to 
on
lude, sin
e f g = f h + f g(1) 2 En.(b) E1 = 1Tn=0En is a ring as an interse
tion of rings;(
) is 
lear from Leibniz's identity mentioned earlier, sin
e forf 2 
 and g 2 F ,(f g)(k)(1) = kXp=0Cpk f (p)(1) g(k�p)(1) = 0 for all k � 0: 2The following is immediate:Corollary 3.2. If n is an integer3, P is a polynomial with integer
oeÆ
ients and f 2 En, then P Æ f 2 En.4. Closure Results under CompositionTheorem 4.1. If f; g 2 Es and g(1) = 1, then f Æ g 2 Es fors � 0.Proof. By indu
tion on s. Take s = 0. For n � 1 and f; g 2 E0:(f Æ g)(n)(1)= Pk1+2k2+:::+nkn=n n!k1!:::kn!(g(1)(1)1! )k1 :::(g(n)(1)n! )knf (k1+:::+kn)(g(1))(Faa di Bruno's formula, see e.g. [1℄, Th�eor�eme A, p.148).3See also [2℄, theorems 5 and 8 ((i) to (iii)) 
on
erning results for n = 0; 1.



60 Petit and DoweThe di�eren
iation rules for the 
omposition and produ
t of fun
-tions imply that the 
oeÆ
ients ( n!k1!:::kn!) ( 11!)k1:::( 1n!)kn in the aboveformula are integers ( see also [2℄, Corollary 3 p.2, or [1℄, Th�eor�emeA, p.145); and (f Æ g)(n)(1) is obviously an integer.Suppose the result holds for some s. In order to prove that italso holds for s + 1, we use theorem 2.1 above. Take f; g 2 Es+1with g(1) = 1. First, suppose that there is some neighbourhood of1 where g(x) 6= 1 ex
ept for x = 1. In this neighbourhood put:'(x) = (f Æ g)(x)� (f Æ g)(1)g(x)� g(1) = (f Æ g)(x)� f(1)g(x)� 1 ; x 6= 1and '(1) = f 0(1):Then '(x) = �f(g(x)). Sin
e �f 2 Es (theorem 2.1(b)) andg 2 Es+1 � Es (theorem 3.1 (a)(i)), it follows that ' 2 Es. Now,�(f Æ g) = '�g and �g 2 Es, thus �(f Æ g) 2 Es by theorem 3.1(a)(ii). Finally, f Æ g 2 Es+1 by theorem 2.1(
), sin
e f Æ g(1) is aninteger.If there exists k � 1 su
h that g(k)(1) 6= 0, there is a neigh-bourhood of 1 where g(x) 6= 1 ex
ept for x = 1. Otherwise,if 8k � 1; g(k)(1) = 0, then by Faa di Bruno's formula above,(f Æ g)(k)(1) = 0; k � 1 and f Æ g 2 Es+1. 2Corollary 4.2. Suppose f 2 E0; then:(a) If f(1) = 1 then Log f and 1f 2 E0;(b) If ef(1) is an integer then exp f 2 E0 .Proof. Either: [2℄, theorem 5 (iv), (vi) and (vii) pp.2-3, or:(a) is straightforward using theorem 4.1.For (b), put Æ(x) = f(x)� f(1) + 1. Æ 2 E0 and Æ(1) = 1.



Rings of fun
tions with integer derivatives at x=1 61By theorem 4.1, g : x 7! exp(Æ(x)� 1) = exp((f(x)� f(1))) 2E0, sin
e x 7! ex�1 2 E0. Thus,x 7! exp f(x) = exp(f(x)� f(1)) exp f(1) 2 E0: 2Corollary 4.3. The group of multipli
ation units of Es is Us =ff 2 Es; f(1) = �1g.Proof. Note that sin
e x 7! 1x 2 E1 (see (1(b) above), 1f 2 Eswhen f 2 Es and f(1) = 1 or f(1) = �1, by theorem 4.1. 2Corollary 4.2(b) above leads us to looking at further extensionsof 
losure results for exponentiation.5. Closure Results under ExponentiationThe following seems to tell us that we 
annot go very far in thatdire
tion.Theorem 5.1. If f; g 2 Es and f(1) = 1 then f g 2 Es for s = 0; 1.For s > 1, f g =2 Es in general.Note at on
e that the result is straightforward for s = 0, us-ing 
orollary 4.2(b) of theorem 4.1 above, sin
e Log f 2 E0 andegLogf(1) = 1 is an integer.For s = 1, put f = 1 + u; (u(1) = 0); H0 = 1 and for ` � 1, let:H`(x) = ( `�1Ym=0(g �m))(x) = `�1Ym=0(g(x)�m):We now use two lemmas.Lemma 5.2. For s � 0 and f; g 2 Es, in some neighbourhood ofx = 1, (f g)(p)(x) = 1X̀=0 (H` u``! )(p)(x) for p � 0:



62 Petit and DoweProof. For � real, re
all the Taylor expansion of y 7! (1 + y)�about zero:(1 + y)� = 1 + nXk=1 �(�� 1):::(�� k + 1)k! yk+ �(�� 1):::(�� n)(n + 1)! (1 + 
)��n�1yn+1; (5.1)for n � 1, where j
j � jyj.Now put � = g(x); y = u(x) and write (for p = 0):f g(x) = NX̀=0H`(x)u`(x)`! + HN+1(x)(N + 1)! (u(x))N+1(1 + 
(x))g(x)�N�1;for N � 0, where j
(x)j � ju(x)j.Choosing a neighbourhood of x = 1 where e.g. ju(x)j < 1=2,jgj being bounded in that neighbourhood, it is easily 
he
ked thatthe above series is uniformly 
onvergent as N goes to in�nity. This
ompletes the proof of lemma 5.2 for p = 0.Re
all also that given a set of fun
tions f1; :::fm, (where m � 1),all having a derivative of order k � p for some x, Leibniz's identity
an be further generalised (see e.g. [1℄, Th�eor�eme C, p.143) to:(f1:::fm)(p)(x) = Xk1+:::+km=p p!k1!:::km! (f1)(k1)(x):::(fm)(km)(x)= Xk1+:::+km=p p!k1!:::km! mYn=1(fn)(kn)(x) (5.2)Let ` � 1 and let K be the set of (k1; :::; k`) = k su
h thatk1 + :::+ k` = p. For p � 1, a

ording to (5.2), write:(H``! u`)(p)(x) = 1̀! Xk2K p!k1!:::k`! `�1Yn=0(u(g � n))(kn)(x) (5.3)



Rings of fun
tions with integer derivatives at x=1 63For s � 0, 
hoose an upper bound Ms of j(u g)(i)j and an upperbound us of ju(i)j, for i = 0; :::s, in a neighbourhood of x = 1.For ` � p, ea
h summand in (5.3) 
ontains at least ` � p ki'swhi
h are null.The summand is therefore bounded above by:(M0 + (`� 1) u0)`�p (Mp + (`� 1) up)p p!k1!:::k`! :Now, 
hoose a neighbourhood of x = 1 where u0 is smaller than1e (u(1) = 0).In this neighbourhood, the absolute value of the sum in (5.3) isbounded above by:(M0 + (`� 1) u0)`�p (Mp + (`� 1) up)p Xk1+:::k`=p p!k1!:::k`!= (M0 + (`� 1)u0)`�p (Mp + (`� 1)up)p `p:Now the series with general term:a` = (M0 + (`� 1)u0)`�p (Mp + (`� 1)up)p `p`!is 
onvergent as a`+1a` �l!1 (M0+` u0)e`+1 ! u0e < 1.Thus the series with general term f`(x) = (H``! u`)(p)(x) is uni-formly 
onvergent in a neighbourhood of 1 and the result followsby indu
tion on p. This 
ompletes the proof of Lemma 5.2 for allp. 2Lemma 5.3.(a) u``! 2 E0;(b) (u``! )(k)(1) = 0 for ` > k � 0.Proof. (a) By theorem 4.1, sin
e x 7! (x�1)``! 2 E0 and f = u+1 2Es � E0.



64 Petit and Dowe(b) is 
lear using e.g. Faa di Bruno's formula, and the fa
t thatu(1) = 0. 2Proof of Theorem 5.1:We only need to turn to s = 1. Using lemma 5.2 we get:(f g)(p)(1) = 1X̀=0 (H` u``! )(p)(1) for p � 0;and using lemma 5.3(b) above:(f g)(p)(1) = pX̀=0 (H` u``! )(p)(1) for p � 0:It now suÆ
es to prove that (H` u``! )(p)(1) is an integer divisibleby p for ` � p.(H` u``! )(p)(1) = pXk=`CkpH(p�k)` (1) (u``! )(k)(1):(Leibniz's identity, and lemma 5.3(b), whi
h implies that theabove summation starts from k = `).Sin
e E1 is a ring, H` 2 E1. For j � 1, put H(j)` (1) = jHj. Then:(H` u``! )(p)(1) = H`(1)`! (u`)(p)(1)+p�1Xk=` p!(p� k)! k! (p� k)Hp�k (u``! )(k)(1);(H` u``! )(p)(1) = H`(1)`! (u`)(p)(1) + p (p�1Xk=`Ckp�1Hp�k (u``! )(k)(1)):Now, it is easily 
he
ked that H`(1)`! is an integer and sin
e u` 2 E1,p j(u`)(p)(1).>From lemma 2(a), p�1Pk=`Ckp�1Hp�k (u``! )(k)(1) is an integer.And thus, (H` u``! )(p)(1) is an integer divisible by p for ` � p.Finally, the result does not extend to s > 1: for example x 7! x 2E2 but x 7! xx =2 E2, as (xx)(3)(1) = 3 is not divisible by 3 � 2 = 6.



Rings of fun
tions with integer derivatives at x=1 65Dowe ([2℄, 
orollary 11, p.9) further shows that for k � 2; k(k � 1)divides (xx)(k)(1) if and only if (k � 1) divides (k � 2)! . 2Corollary 5.4.4 If f 2 E0 (resp. E1), then x 7! xf(x) 2 E0 (resp.E1).Notes� Beyond 
orollary 4.2 of theorem 4.1 and theorem 5.1 above,results 
on
erning exponentiation in
lude:(h 2 E1) ) (xh 2 E2) , (h0 Log x 2 E1) (a 
onsequen
eof a private 
ommuni
ation by H.S. Wilf, see [2℄ theorem 9,p.8);� The 
onverse of theorem 5.1 is not true, sin
e e.g. g : x 7!exp(x� 1) 2 E0; g(x) = xf(x) with f : x 7! x�1Log x ; f(1) = 1,but f =2 E0 as f 0(1) = 12 . However Dowe ([2℄, theorem5 (viii), p.3) derives partial 
onverse results, whi
h 
an begeneralised as follows, using theorems 4.1 and 5.1 above:Suppose u = f g; u(1) = 1 and u 2 E0 (resp. E1). Then:(i) Log f 2 E0, Log f(1) 2 f�1; 1g ) g 2 E0(ii) g 2 E0 (resp. E1), g(1) 2 f�1; 1g ) f 2 E0 (resp.E1). 6. Dis
ussion and Con
lusionsThe above 
losure results 
ould lead to further generalisations,su
h as:� For n � 1, generate En, building from "minimal" subsets,as well as from the ring and restri
ted 
losure propertiesexamined above. From the 
orollary to theorem 2.1, one�rst remark is that it is enough to work in E0. Furtherexamination of the algebrai
 and analyti
 properties of E0
ould be performed.4See also [2℄, theorem 5 (v) p.3, theorem 8 (iv) p.5 .



66 Petit and Dowe� Given a subset � of the set of 
omplex numbers and n � 0,extend the de�nition of the sets En to sets En(�) of fun
-tions f 2 
 su
h that:(i) f(k)(1)k! 2 � for k = 0; :::; n;(ii) (k � n)! f(k)(1)k! 2 � for k � n.The following 
ould be investigated: when � is endowedwith algebrai
 properties (group, ring), these are transportedto En(�) and all the above results (where � = Z) hold.When � is a unit ring with unit group U, the units of En(�)are the fun
tions f for whi
h f(1) 2 U (generalising 
orol-lary 4.3 of theorem 4.1 above).Further properties 
ould be examined, that 
ould givebetter hindsight into the algebrai
 stru
ture of En(�).� Following Dowe's suggestion ([2℄, p.7), formulate and proveextensions of the above to fra
tional derivatives - thus de-parting from indu
tion methods largely used in the presentpaper. A
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