A characterization of orthogonality preserving operators

Document Type : Research Paper


1 Department of Mathematics‎, ‎University of Guilan‎, ‎P.O‎. ‎Box 1914‎, ‎Rasht‎, ‎Iran.

2 Institute of Higher Education of ACECR(Academic Center of Education and Culture Research)‎, ‎Rasht branch‎, ‎Iran.

3 Department of Mathematics, University Campus 2, University of Guilan, P.O. Box 1914, Rasht, Iran

4 (As a faculty member of (and supported by) Islamic Azad University, Zabol branch, Zabol, Iran. )


‎In this paper‎, ‎we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$‎. ‎We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator‎. ‎Also‎, ‎we prove that every compact normal operator is a strongly orthogonality preserving operator‎.


Main Subjects

J. Alonso and C. Benitez, Orthogonality in normed linear spaces: A survey. Part I: Main properties, Extracta Math. 3 (1988) 1--15.
J. Alonso and C. Benitez, Orthogonality in normed linear spaces: A Survey. Part II: Relation between main orthogonalities, Extracta Math. 4 (1989) 121--131.
L. Arambasic and R. Rajic, A strong version of Birkhoff-James orthogonality in Hilbert C*-modules, Ann. Funct. Anal. 5 (2014), no. 1, 109--120.
G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 1, 169--172.
A. Blanco and A. Turnsek, On maps that preserve orthogonality in normed spaces, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 709--716.
M. Burgos, F.J. Fernandez-Polo, J.J. Garces and A.M. Peralta, Orthogonality preservers revisited, Asian-Eur. J. Math. 2 (2009), no. 3, 387--405.
J. Chmielinski, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl. 304 (2005) 158--169.
J. Chmielinski, Operators reversving orthogonality in normed spaces, Adv. Oper. Theory 1 (2016), no. 1, 8--14.
M. Frank, A. S. Mishchenko and A. A. Pavlov, Orthogonality-preserving, C*-conformal and conformal module mappings on Hilbert C*-modules, J. Funct. Anal. 260 (2011) 327--339.
D. Ilisevic and A. Turnsek, Approximately orthogonality preserving mappings on C*- modules, J. Math. Anal. Appl. 341 (2008) 298--308.
W. Kaup, A Reimann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983) 503--529.
D. Koehler and P. Rosenthal, On isometries of normed linear spaces, Studia Math. 36 (1970) 213--216.
A. Koldobski, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 835--837.
G.J. Murphy, C*-algebras and Operator Theory, Academic Press, San Diego, 1990.
J. Sikorska, Orthogonalities and functional equations, Aequationes Math. 89 (2015) 215--277.
P. Wojcik, Linear mappings preserving ρ-orthogonality, J. Math. Anal. Appl. 386 (2012), no. 1, 171--176.
P. Wojcik, Linear mappings approximately preserving orthogonality in real normed spaces, Banach J. Math. Anal. 9 (2015) 134--141.
A. Zamani and M.S. Moslehian, Approximate Robert orthogonality, Aequationes Math. 89 (2015), no. 3, 529--541.
A. Zamani, M.S. Moslehian and M. Frank, Angle preserving mappings, Z. Anal. Anwend. 34 (2015) 485--500.