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Abstract. In this paper, we characterize the class of orthogonality pre-
serving operators on an infinite-dimensional Hilbert space H as scalar

multiples of unitary operators between H and some closed subspaces of
H. We show that any circle (centered at the origin) is the spectrum of
an orthogonality preserving operator. Also, we prove that every compact

normal operator is a strongly orthogonality preserving operator.
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1. Introduction

In a real normed linear space (X, ∥.∥), one may encounter in various defini-
tions of orthogonality between two elements x, y ∈ X such as

• Roberts orthogonality (1934): ∥x− λy∥ = ∥x+ λy∥, for every λ ∈ R;
• Birkhoff orthogonality (1935): ∥x∥ ≤ ∥x+ λy∥, for every λ ∈ R;
• Isosceles orthogonality (1945): ∥x− y∥ = ∥x+ y∥;
• Pythagorean orthogonality (1945): ∥x− y∥2 = ∥x∥2 + ∥y∥2.

Sikorska [15], Alonso and Benitez [1, 2] studied and compared these concepts
of orthogonality and the relations between them.

The usual definition of orthogonality in a complex normed linear space
(X, ∥.∥) is the Birkhoff-James orthogonality which says that x is orthogonal
to y in X (and in this case we write x ⊥ y), if for each λ ∈ C, ∥x∥ ≤ ∥x+ λy∥.
Note that this definition is not symmetric in general, unless the norm comes
from an inner product.

Let H be an infinite-dimensional Hilbert space and B(H) be the C∗-algebra
of all bounded linear operators acting on H. The spectrum of an element T
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of B(H) is defined by sp(T ) = {λ ∈ C : λI − T is not invertible }. Also, the
spectral radius of T is defined by r(T ) = sup{|λ| : λ ∈ sp(T )}.

An operator T : H → H is said to be orthogonality preserving (OP in short),
if Tx ⊥ Ty whenever x ⊥ y, and T is called strongly orthogonality preserving
(SOP in short), when Tx ⊥ Ty ⇔ x ⊥ y. In the last two decades, there has
been considerable interest in the concepts of OP and SOP operators in normed
spaces (for instance, see [7, 12] and [13]). Note that an OP operator need not
to be linear or continuous. For example, define T : R2 → R2 by

T (x, y) =


(x, y), x ̸= 0, y ̸= 0;
(1, 1), x ̸= 0, y = 0;
(−1, 1), y ̸= 0, x = 0;
(0, 0), x = y = 0.

Then T is neither linear nor continuous, but it is certainly OP. For more details
and examples see [7, Examples 1.1 and 1.2]. Under the assumption of linearity,
it is known that every linear OP operator between inner product spaces is
a scalar multiple of an isometry (cf. [7]). In fact, if V,W are inner product
spaces and T : V → W is an OP map, then there is a positive scalar γ such
that ∥Tx∥ = γ∥x∥ for all x ∈ V . It should be noticed that, when V = W = H is
a Hilbert space, the equality ∥Tx∥ = γ∥x∥ holds for all x ∈ H, if and only if the
equality ⟨Tx, Ty⟩ = γ2⟨x, y⟩ holds for all x, y ∈ H. This shows that the set of all
bounded linear OP operators coincides with the set of SOP operators in B(H).
In the setting of real normed spaces, Koldobski [13], and then for the general
case with the Birkhoff-James orthogonality, Blanco and Turnšek [5], generalized
Chmieliński’s theorem ( [7, Theorem 2.1]). Later, Ilǐsević and Turnšek [10]
proved the same result for a Hilbert C∗-module E over a C∗-algebra A with
the orthogonality defined by its A-valued inner product ⟨·, ·⟩A. Actually, using
the fact that a C∗-algebra A is a closed ∗-subalgebra of B(H) for some Hilbert
space H, they proved that every A-linear orthogonality preserving operator on
a Hilbert A-module is a scalar multiple of an isometry when A contains the
C∗-algebra K(H) of all compact operators on H. Note that one can take into
account three notions of orthogonality in E:

(1) Usual orthogonality: x ⊥ y ⇔ ⟨x, y⟩A = 0, for each x, y ∈ E;
(2) Birkhoff-James orthogonality in E as a normed space;
(3) Strongly Birkhoff-James orthogonality: x ⊥ y ⇔ ∥x∥ ≤ ∥x + ay∥, for

each x, y ∈ E and a ∈ A.

Arambašić and Rajić [3] compared these notions of orthogonality and obtained
some relations between them. It is known that a C∗-algebra A is a Hilbert C∗-
module over itself via the A-valued inner product ⟨a, b⟩A = ab∗, where a, b ∈ A.
Burgos, Fernández-Polo, Garcés and Peralta [6] studied orthogonality additive
maps on this special class of Hilbert modules as elements of a more general
class of Banach spaces known under the name of JB∗-triples. For more details
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about the orthogonality of additive maps and JB∗-triples the reader is referred
to [6, 11].

Moreover, many kinds of approximately orthogonality preserving mappings
and their stability have been studied, among others, by Chmieliński [7], Wójcik
[16, 17], Moslehian and Zamani [18, 19]. Also recently, Chmieliński [8] intro-
duced the reverse orthogonality preserving operators on normed spaces in the
sense that the relation x ⊥ y implies that Ty ⊥ Tx, where T is a nonzero linear
operator on a normed space X and x, y ∈ X. Considering the standard defi-
nition of angle between two elements of a real inner product space, Moslehian,
Zamani and Frank obtained some interesting results about angle preserving
mappings (see [19]).

Also, Frank, Mishchenko and Pavlov [9], showed that for an orthogonality
preserving operator T ∈ B(H), T ∗T = λ.IH where λ is a positive scalar and
IH is the identity operator on H. Using the polar decomposition of T as an
element of B(H), they proved that there is an isometry V ∈ B(H) such that

T =
√
λV , and so V ∗V = IH .

In this paper, we consider an OP operator T ∈ B(H) onto M := ran(T )
(the range of T ) and prove that T is OP if and only if it is a positive scalar
multiple of a unitary from H onto the closed subspace M of H. Moreover,
we characterize the class of normal OP operators as the class of surjective OP
operators in B(H) and, as we will see in Section 2, an OP operator T ∈ B(H) is
normal if and only if T ∗ is OP. Indeed, the following statements are equivalent
in OP (H), the set of all bounded linear OP operators on H:

(i) T ∗ ∈ OP (H).
(ii) T is normal.
(iii) T is surjective.

Finally, we shall show that for any circle Γr := {λ ∈ C : |λ| = r} there exists
an OP operator T such that sp(T ) = Γr.

2. Orthogonality preserving normal operators in B(H)

The main theorem of this section is Theorem 2.2. To prove it, we need the
following Lemma.

Lemma 2.1. Let H be a Hilbert space and T ∈ B(H). If T is an orthogonality
preserving operator, then so are T ∗T and |T |.

Proof. Let x, y be two orthogonal elements of H. Since ⟨x, y⟩ = 0 and T is OP,
we have ⟨Tx, Ty⟩ = 0. Hence ⟨x, T ∗Ty⟩ = 0. Therefore ⟨Tx, TT ∗Ty⟩ = 0,
whence ⟨T ∗Tx, T ∗Ty⟩ = 0, which means that T ∗T is OP.

Similarly, since ⟨x, T ∗Ty⟩ = 0 and |T | = (T ∗T )
1
2 , we have ⟨x, |T |2y⟩ = 0, so

⟨|T |x, |T |y⟩ = 0, which ensures that |T | is also OP. □
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It is well known that every unitary operator on a Hilbert space is an isometry
and so it is an OP operator. Now, we characterize the OP operators, whose
adjoin is also OP.

Theorem 2.2. Let T ∈ OP (H). Then T ∗ ∈ OP (H) if and only if T is normal.

Proof. Let T be a normal OP operator. Then T ∗T = TT ∗. Now if ⟨x, y⟩ = 0,
then ⟨T ∗x, T ∗y⟩ = ⟨x, TT ∗y⟩ = ⟨x, T ∗Ty⟩ = ⟨Tx, Ty⟩ = 0, which ensures that
T ∗ is OP.
Conversely, let T and T ∗ be OP. Since H is an inner product space, T
and T ∗ are scalar multiples of isometries. Thus, there exist γ, γ′ > 0 such
that ∥Tx∥ = γ∥x∥ and ∥T ∗x∥ = γ′∥x∥ for all x ∈ H. Therefore,
γ′ = ∥T ∗∥ = ∥T∥ = γ.
The operators TT ∗, T ∗T, |T | and |T ∗| are OP by Lemma 2.1. Therefore,
they are all scalar multiples of isometries. These scalars are evidently γ2 for
TT ∗, T ∗T and γ for |T | and |T ∗|. Now we have

⟨T ∗Tx− TT ∗x, T ∗Tx− TT ∗x⟩= ⟨T ∗Tx, T ∗Tx⟩+ ⟨TT ∗x, TT ∗x⟩
−⟨T ∗Tx, TT ∗x⟩ − ⟨TT ∗x, T ∗Tx⟩

= ∥T ∗Tx∥2 + ∥TT ∗x∥2

−⟨T ∗Tx, TT ∗x⟩ − ⟨TT ∗x, T ∗Tx⟩
= 2γ4∥x∥2 − ⟨T ∗Tx, TT ∗x⟩ − ⟨TT ∗x, T ∗Tx⟩.

It follows from ⟨T ∗Tx, TT ∗x⟩ = ⟨|T |x, |T |TT ∗x⟩ that

⟨|T |x, |T |TT ∗x⟩ =
1

4

3∑
k=0

ik⟨|T |x+ ik|T |TT ∗x, |T |x+ ik|T |TT ∗x⟩

=
1

4

3∑
k=0

ik⟨|T |(x+ ikTT ∗x), |T |(x+ ikTT ∗x)⟩

=
1

4

3∑
k=0

ik∥|T |(x+ ikTT ∗x)∥2

=
1

4

3∑
k=0

ikγ2∥(x+ ikTT ∗x)∥2

=
1

4
γ2

3∑
k=0

ik⟨x+ ikTT ∗x, x+ ikTT ∗x⟩

= γ2⟨x, TT ∗x⟩
= γ2⟨T ∗x, T ∗x⟩
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= γ2∥T ∗x∥2

= γ4∥x∥2.

Hence, ⟨T ∗Tx, TT ∗x⟩ = γ4∥x∥2. Also, ⟨TT ∗x, T ∗Tx⟩ = γ4∥x∥2 by changing
the role of T by T ∗. Thus, we have

⟨T ∗Tx− TT ∗x, T ∗Tx− TT ∗x⟩ = 2γ4∥x∥2 − γ4∥x∥2 − γ4∥x∥2 = 0 (x ∈ H).

Hence ∥T ∗T − TT ∗∥ = 0 and so TT ∗ = T ∗T , i.e., T is normal. □

Corollary 2.3. If T, T ∗ ∈ OP (H), then

∥Tx∥ = r(T )∥x∥ = ∥T ∗x∥,

for all x ∈ H.

Proof. Let T and T ∗ be OP. Then, there is γ > 0 such that ∥Tx∥ = γ∥x∥ =
∥T ∗x∥, for all x ∈ H. By Theorem 2.2, T is normal. Since T is an element of
the C∗-algebra B(H), γ = ∥T∥ = r(T ) = ∥T ∗∥. □

Corollary 2.4. If T ∈ OP (H), then ∥Tx∥ = r(|T |)∥x∥, for all x ∈ H.

Proof. Let T be an OP operator. Then, by Lemma 2.1, |T | is also OP. There-
fore, there exists γ > 0 such that

∥Tx∥ = γ∥x∥ = ∥|Tx|∥ (x ∈ H).

But |T | is self-adjoint and so is normal. Therefore, by Corollary 2.3,

γ = ∥|T |∥ = r(|T |).

□

3. Characterization of OP operators as multiples of unitaries

The main results of this section are Theorem 3.2, Theorem 3.3 and Corollary
3.5. Before proving these, we need a lemma.

Lemma 3.1. Let A be a unital C∗-algebra and U be a unitary element in A
such that sp(U) ̸= Γ1. Then, there exists a self adjoint element a ∈ A such
that U = exp(ia).

Proof. [14, Theorem 1.2.12]. □

Theorem 3.2. If T ∈ OP (H), then T is a scalar multiple of a unitary between
Hilbert spaces H and ran(T ).

Proof. Let T be OP. Using Corollary 2.4, we have ∥Tx∥ = r(|T |)∥x∥, for all
x ∈ H. Set M = ran(T ). Since T is a multiple of an isometry, T is injective
and M is a closed subspace of H. Hence, T : H → M is a bijective linear
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continuous OP map and so it is invertible. Let S : M → H be the inverse of T
and y ∈ M . Then, there is x0 ∈ H such that Tx0 = y. Therefore,

∥Sy∥ = ∥STx0∥ = ∥x0∥ =
1

r(|T |)
∥Tx0∥ =

1

r(|T |)
∥y∥.

This shows that S is a scalar multiple of an isometry and so it is an OP map.
Now let x ∈ H and y ∈ M . Then,

⟨Tx, y⟩ = ⟨x, T ∗y⟩
= ⟨T ∗S∗x, T ∗y⟩
= ⟨S∗x, TT ∗y⟩
= r(|T |)2⟨SS∗x, STT ∗y⟩
= r(|T |)2⟨SS∗x, T ∗y⟩
= r(|T |)2⟨S∗x, S∗T ∗y⟩
= ⟨r(|T |)2S∗x, y⟩.

Hence,
⟨Tx− r(|T |)2S∗x, y⟩ = 0 (y ∈ M).

Therefore, Tx = r(|T |)2S∗x. Since x is arbitrary,

T = r(|T |)2S∗ or equivalently S =
1

r(|T |)2
T ∗.

Now we have,(
1

r(|T |)
T

)(
1

r(|T |)
T

)∗

= T

(
1

r(|T |)2
T ∗
)

= TS = IM .

Also, (
1

r(|T |)
T

)∗(
1

r(|T |)
T

)
=

(
1

r(|T |)2
T ∗
)
T = ST = IH .

Thus, 1
r(|T |)T is a unitary map between Hilbert spaces H and M , which means

that T is a scalar multiple of a unitary.
□

Theorem 3.3. Let T ∈ OP (H). Then T is normal if and only if T is surjec-
tive.

Proof. Let T be a surjective OP operator. Theorem 3.2 shows that T is normal
because ran(T ) = H.

For the converse, let T be normal and M = ran(T ). By Theorem 3.2, there
is a unitary operator U : H → M such that T = γU for some γ > 0 and
UU∗ = IM , U∗U = IH . Let U⋆ be the adjoint of the operator U as an element
of B(H). Clearly, U⋆|M = U∗. Since H = M ⊕ M⊥, we can write for every
x ∈ H : x = Ty + z for some y ∈ H, z ∈ M⊥. Now we have

(3.1) UU⋆x = U (U⋆(Ty + z)) = U(U⋆Ty + U⋆z).
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We have U⋆z = 0, because z ∈ M⊥ = ran(T )⊥ and T = γU , so z ∈ ran(U)⊥ =
ker(U⋆). Now, equation 3.1 implies that

UU⋆x = UU⋆(Ty) = UU∗(Ty) = Ty.

Hence, for every x ∈ H, we have

UU⋆x =

{
x, x ∈ M ;
0, x ∈ M⊥.

On the other hand, U⋆Ux = U∗Ux = x. Since T = γU is normal, U is
normal. Therefore, UU⋆x = U⋆Ux. But it is impossible unless, M⊥ = {0}.
Therefore, ran(T ) = H, i.e., T is surjective. □
Theorem 3.4. Let T ∈ OP (H). Then, the following statements are equivalent:

(i) T ∗ ∈ OP (H).
(ii) T is normal.
(iii) T is surjective.

Proof. This immediately follows from Theorem 2.2 and Theorem 3.3. □
Corollary 3.5. Let T ∈ OP (H) and one of the following conditions holds:

(i) T ∗ ∈ OP (H);
(ii) T is normal;
(iii) T is surjective.

Then,

(1) sp(T ) ⊆ Γr(T ) = {λ ∈ C : |λ| = r(T )}.
(2) If sp(T ) ̸= Γr(T ), then there exists a self adjoint operator S such that

T = exp(α+ iS) where α = log (r(T )).

Proof. Applying Theorem 3.4, together with one of the conditions (i)-(iii),
we may assume that T is a normal and invertible operator in B(H). Since
T is normal and OP, by Corollary 2.4, ∥Tx∥ = r(T )∥x∥ for each x ∈ H.
Also, T−1 is OP and normal. Thus ∥T−1x∥ = r(T−1)∥x∥. It is straight-
forward for OP operators to check that r(T−1) = 1

r(T ) . We know that

sp(T−1) = {λ−1 : λ ∈ sp(T )}. Therefore, we have

r(T−1) = sup{|λ−1| : λ ∈ sp(T )} =
1

inf{|λ| : λ ∈ sp(T )}
(note that inf{|λ| : λ ∈ sp(T )} ̸= 0, because T is invertible and so the compact
set sp(T ) does not contain 0).
On the other hand,

r(T−1) =
1

r(T )
=

1

sup{|λ| : λ ∈ sp(T )}
whence, inf{|λ| : λ ∈ sp(T )} = sup{|λ| : λ ∈ sp(T )}, which yields that sp(T ) ⊆
Γr(T ).
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Now, if sp(T ) ̸= Γr(T ), then r(T )−1sp(T ) ̸= Γ1. Since T is normal, by the

spectral theorem, r(T )−1sp(T ) = sp(r(T )−1T ) ̸= Γ1. As we observed in the
proof of Theorem 3.2, r(T )−1T is a unitary operator. Hence, applying Lemma
3.1, there is a self adjoint operator S such that r(T )−1T = exp(iS) which
implies that T = r(T ) exp(iS). Thus, we have T = exp(α + iS), where α =
log (r(T )). □

In what follows, N(H) and F (H) are the set of all normal operators and
finite-rank operators in B(H), respectively.

Corollary 3.6. Let H be an infinite dimensional Hilbert space. For any T ∈
B(H):

(i) If T ∈ OP (H)∩F (H), then T ∈ B(H)\N(H) and T ∗ ∈ B(H)\OP (H).
(ii) If T ∈ OP (H) ∩N(H), then T ∈ B(H) \ F (H).

Proof. (i) Since H is an infinite-dimensional space, if T ∈ OP (H) ∩ F (H),
then T can not be a surjective operator and so, by Theorem 3.4, it can not be
normal and T ∗ is not OP. A similar argument proves (ii). □

As we see in Corollary 3.5, the spectrum of every normal OP operator is
contained in Γr, for some r > 0. It is natural to ask if there is a normal OP
operator T such that sp(T ) = Γr. The following proposition gives an affirmative
answer to this question. In fact, we show that the cardinal number of the set
of such operators is greater than that of the real numbers.

Recall that a diagonalisable operator T on a separable infinite dimensional
Hilbert space H is of the form T (en) = λnen in which (λn) is a bounded
sequence of complex numbers and (en) is an orthonormal basis forH. Moreover,
∥T∥ = supn{|λn|} and the spectrum of T is the closure of the set {λn : n =
1, 2, . . .} (cf. [14, Example 1.4.3]).

Proposition 3.7. Let r ∈ R+ and H be a separable Hilbert space. Then, there
exists an operator T ∈ OP (H) such that sp(T ) = Γr.

Proof. Let (en) is an orthonormal basis for H. Since Γr is a compact subset
of C, we can choose a dense sequence (λn) in Γr. Define the diagonalisable
operator T : H → H with T (en) = λnen. Since the spectrum of T is the
closure of the set {λn : n = 1, 2, . . .}, sp(T ) = Γr. Now, we claim that T is
SOP.
Let x, y ∈ H. Then

x =

∞∑
n=1

⟨x, en⟩en , y =

∞∑
m=1

⟨y, em⟩em;

⟨x, y⟩ =
∞∑

n=1

⟨x, en⟩⟨en, y⟩ .
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Since T is continuous, we have

Tx = T

( ∞∑
n=1

⟨x, en⟩en

)
=

∞∑
n=1

⟨x, en⟩T (en) =
∞∑

n=1

⟨x, en⟩λnen

and in the same way

Ty =

∞∑
n=1

⟨y, en⟩λnen.

Therefore,

⟨Tx, Ty⟩ = ⟨
∞∑

n=1

⟨x, en⟩λnen,

∞∑
m=1

⟨y, em⟩λmem⟩

=
∞∑

n=1

|λn|2⟨x, en⟩⟨en, y⟩

= r2
∞∑

n=1

⟨x, en⟩⟨en, y⟩

= r2⟨x, y⟩,

which implies that T is SOP. □

Remark 3.8. Let T be a diagonalisable operator in B(H) with respect to a
bounded sequence (λn) dominated by a positive numberM and an orthonormal
basis (en) for H. As we observed in the proof of Proposition 3.7, we have

⟨Tx, Ty⟩ = ⟨
∞∑

n=1

⟨x, en⟩λnen,

∞∑
m=1

⟨y, em⟩λmem⟩

=
∞∑

n=1

|λn|2⟨x, en⟩⟨en, y⟩

≤ M
∞∑

n=1

⟨x, en⟩⟨en, y⟩

= M⟨x, y⟩.

This shows that T is OP and so it is SOP.

Corollary 3.9. Every compact normal operator T ∈ B(H) is SOP.

Proof. From [14, Theorem 2.4.4], every compact normal operator T ∈ B(H) is
diagonalisable. Now, Remark 3.8 implies that T is SOP. □

Note. By Corollary 3.9, every compact normal operator T ∈ B(H) is SOP
and so it is surjective by Theorem 3.4. If H is an infinite dimensional space, T
can not be a finite-rank operator. This shows that for an infinite dimensional
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Hilbert spaceH, one can bring forward a more exact expression of [14, Theorem
2.4.4] as follows:

Theorem 3.10. If T ∈ (K(H) \ F (H)) ∩N(H), then T is diagonalisable.
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