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ON THE CODERIVATIONS OF SOME HOPF
ALGEBRAS

R. NEKOOEI AND Y. BAHRAMPOUR

ABSTRACT. In this paper we specify the form of coderivations
of polynomials on R and we define the continuous extended
coderivations of C(R). We also introduce a cocommutative
bialgebra H such that the set of coderivations of H is zero.

1. Introduction and Preliminaries

Let K be a field. For a given vector space V over K , we denote
the linear dual space of V over a field K by V* = Homg(V, K).
We refer to [7] for definition of a coalgebra. If (C, A, ¢) is a coal-
gebra over K and (A, M,U) is a finite- dimensional algebra over
K, then C* and A* have respectively algebra and coalgebra struc-
tures (See[7,Propositions 1.1.1 and 1.1.2 ]). We will use Sweedler’s
Z—notation and conventions extensively; for example, we will write

A(d) = Zd(l) X d(2), for d € C, etc.
(d)

In the first section of this paper we first prove that if D is a
coderivation of C' then D* is a derivation of C* and if D is a deriva-
tion of a finite dimensional algebra A then D* is a coderivation
of A*. We then prove that the space of coderivations of a coal-
gebra C' has a lie algebra structure with lie bracket, [Dy, Dy] =
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DioDy — DyoD; where D; and D, are coderivations of C'. Fur-
thermore we specify the form of coderivations of polynomials on
R.

In the second section we prove that C(R) ® C(R) can be identi-
fied with a dense subset of C(R x R). Furthermore we define the
continuous extended coderivations of C(R) and propose a conjec-
ture about continuous extended coderivations of C(IR).

In the third section we prove if D : C*°(R) — C*°(R)) is a contin-

_ 00 dk
uous extended coderivation of C*(R) then D(f) = Y _ by, 1),
k=0

dX 3
for any f € C*(R).
Finally, in the fourth section we prove that the space of coderiva-
tions of the group algebra K[G] is zero, where G is a group.

2. Coderivations of Coalgebras

Definition 2.1. Suppose (C, A, ¢) is a coalgebra over a field K. A
coderivation is an endomorphism D : C' — C of a coalgebra C' which
satisfies
AoD = (1c RD+DR® 10)0A.[5]

We prove Propositions (2.2 and 2.3) below which are stated in
[5].

Proposition 2.2. Suppose (C, A, €) is a coalgebra and D € Endg(C)
is a coderivation of C. Then D* € Endg(C*) is a derivation of C*.

Proof. Since (C,A,e) isa coalgebra, (C*, M,U) is an algebra
such that
M = A*op, where p is the linear injection p: C* @ C* — (C ® C)*
given by (p(a* ® b*),c ® d) = (a*,c)(b*,d) for all a*, b* € C* and
c,deC.

Hence M = A*| g is a product in the dual algebra C*. Since
D is a coderivation of C, hence AoD = (160 ® D+ D ® 1¢)oA.
Taking transposes we have
D*oM = M * (1¢+ ® D* + D* ® 1¢+). Thus D* is a derivation of
C*. O
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Let A be any algebra. A cofinite ideal of A is an ideal J of

A
A such that the quotient space — is finite- dimensional. Define

A° = {g € A*|ker(g) contains a cofinite ideal of A}. Then A° is
a subspace of A*; it is obvious that if A is finite dimensional then
A° = A%,

If (A, M,U) is any algebra then (A°, A° £°) is a coalgebra such
that A° = M?*|40; moreover, for any f € A°, £°(f) = f(1) [7,
Proposition 6.0.2].

Proposition 2.3. Suppose that (A, M,U) is any algebra and D :
A — A is a derivation of A. Then D° = D*| 4 defines a coderiva-
tion D° : A° — A° of the dual coalgebra of A. In particular if A is

finite dimensional algebra then D* € End(A*) is a coderivation of
A*.

Proof. We first show that D*(A°) C A°. Let f € A°. There exists
a cofinite ideal I of A such that I C ker(f). Put J = D7'(I)NI. It
is clear that .J is an ideal of A. The pullback of a cofinite subspace is
a cofinite subspace and that the intersection of two cofinite subspace
is cofinite. Hence J is a cofinite ideal of A.

Since D*(A°) C A° hence D° = D*| o defines a linear map
De : A° — A° of the dual coalgebra of A. Since D is a derivation,
so DoM = Mo(14,® D+ D ®1,4). Therefore A°0D = (140 ® D° +
D° ® 140)0A° and D° is a coderivation. O

Proposition 2.4. Let COD(C) be the space of all coderivations of
coalgebra C. Then COD(C) is a Lie algebra under the associative
braket for endomorphisms of C.

Proof. [5, Lemma 3(b)]. O
We denote the space of continuous functions on R by C(R) and
the space of polynomial functions on R by R[X] = {F(X) € C(R) |

F(X)= galxi}.
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By [3, Proposition III.1.4], there exists an isomorphism of
coalgebras

R[X|R[X|=R[X,Y]. (%)
Now we define the linear maps A,s and S as follows. For all
f € R[X] (note that f is continuous) and a,b € R, by (*) we have

A RIX]—>R[X]®@R[X] by A(f)(a,b) = f(a+Db)
e : R[X] =R by e(f)=f(0) and
S+ R[X] = R[X] by S(f)(a) = f(-a)

It is easy to show that R[X] has a cocommutative Hopf algebra
structure, [1, page 83] and [4, page 25].

Lemma 2.5. If F(X) = a;X" € Poly(R) then
=0

m 2

AFX) =YY a(()X @ X'

1=0 k=0

Proof. Since A(X)=X®1+1®X and A is an algebra
map, hence

AX™) =Y (X e X"* (n=0,1,2,...) . Since A is also a
k=0
linear map,

AFX) =YY a()X e X% O
=0 k=0
Let H be a cocommutative Hopf algebra and £ = {h € H|A(h) =
h®1+1® h} be the space of primitives of H. Let C(H) = {¢ €
End(H)|(¢.9)(1) € L for all ¢ € H} where (¢.g)(h) is defined as

> S(9ay)d(gh) for all h € H. [3]
(9)

Proposition 2.6. In a cocommutative Hopf algebra H, COD(H) =
Cr(H).
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Proof. [5, Theorem 1]. O
Lemma 2.7. Let f € R[X]. f € L if and only if f = ¢X where
c= f(1).

Proof. Let f € L, 50 A(f) = f®1+1® f. Thus by the definition
of A, f(a+b) = f(a)+ f(b) for all a,b € R. Since f is a continuous
function, hence f = ¢X. It is clear that ¢ = f(1). The converse is
trivial. O

Proposition 2.8. D € COD(Poly(R)) if and only if

D(X™) = Zi:(Z)[D(X — DF()X™ M for n=0,1,2,...

Proof. Put f = D(1). Since A(1) = 1® 1 it follows that f =
S(1)f = f(1). By Proposition 2.6, this element is primitive and by
Lemma 2.7 it follows that f f(HX

We now compute (Dg)( ZS g2)) for g = X using

the fact that A(X) =X ®1+1 ®X
S(X)f+S(1)D(X) = -X?f(1) + D(X)

Let h(X) = —X?2f(1)+D(X). By Propositon 1.6, h(X) is primitive
and by Lemma 1.7, h(X) = h(1)X. Thus

~X’f()+D(X) = h(X)
= W)X
= —Xf(1)+ X[D(X)](1)

and hence
D(X) = X*f(1) = X f(1) + X[D(X)](1) .
By induction it is easy to show that D(X") = > (})[D(X —

DR X"+ forn =0,1,... . O
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Theorem 2.9. D € COD(R[X]), if and only if

k
Z b X ka

where by = [D(Xil , for all F € R[X].

Proof. Let F = > a,X" € R[X], then:

n=0

WK

D(F) = b X ka ZanX"

=
Il
o

> e Xan(p)k! X" F

n=k

55 e (BT MDD, (o

I
WK

=
Il
o

I
I Mg

On the other hand by Proposition 2.8 we have:

- z:anD(X") = i i MXEID(X —1D)R(1). (%)

Since the coefficients of X™ in (%) and (xx) are equal for all n > 1,
hence (%) = (**). The converse is true by Proposition 2.6. O

3. On the Continuous Extended Coderivations of C(R)

The seminorms Py (f) = sup{|f(z,y)| : (x,y) € [—k, k] x [k, k]|}
0 ok
induce the metric d(f,g) = > Pr(f — g)

——— 2 in the space C(R X
=1+ P(f—9)

R), [6, Chapter 1, Ex. 18|.

Lemma 3.1. C(R) ® C(R) can be identified with a dense subset
of C(R xR).
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Proof. Let Z =) f; ® g; belong to C(R) ® C(R). Define

i=1

v:OR) x CR) — C([R x R)

by ¢(f,9)(z.y) = f(z)g(y), where f and g are in C(R) and =,y
are in R.. It is clear that ¢ is a bilinear map. Now by the universal

mapping property, there exists a unique linear map F' : C’([R) ®
C(R) — C(R x R) such that F'(Z Z fi(x)gi(y). We will

show that the image of C'(IR) ®C([R) is dense in C([R X [R). Let f €
C(R xR) and € > 0 be given. We choose N > 0 sufficiently large.
By the Stone-Weierstrass theorem there exist continuous functions
fi and g;, i =1,2,...,n, such that |f(z,y) Zfz 2?\[,
for any (x,y) € [-N,N| x [-N, N]. Setting 7 = Zfi ® g;, we

=1

have:
= 27*P(f - F(2))
W=F2) = 2 p (7= F2)
N 2k p(f — F(2))
< kz::liJrPk(f—F(Z))Jr
< NPy(f - F(Z)+ 5

= Nsup{|f(z,y) = F(Z)(z,y)| : (x,y) € [-N, N]

x[—N,N]}—i—%
< fifo.
2 2

It remains to show that the map F' is one-to-one. The proof
follows by induction. Suppose that f ® g # 0. Then f # 0
and g # 0. Thus there exist a and b such that f(a) # 0 and
g(b) # 0. We conclude that F(f ® g)(a,b) = f(a)g(b) # 0 and
hence F(f ® g) # 0. Now we assume that the assertion is true
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k+1

for k. Let Z filz = 0. If fry1 = 0 then the proof is com-

plete. If fkﬂ ;é 0 then there exists o € R such that fi1(zo) # 0.
k

For every y € R, we have g 11(y) = _Z fi(@o) 9i(y). Hence

i—1 fk+1(3170)
. k+1
Z [fz(a:) — M] gi(y) = 0. By induction, Z fi®¢g =

frs1(20) i—1
k .
Z [fi — M] ® g; = 0, and the proof is complete. O
; fri1(z0)

We denote the closure of C(R)®C(R) in C(RxR) by C(R) ® C(R)
and by Lemma 3.1, C(R) ® C(R) can be identified with C(R xR).

Now we define the linear maps A,z and S as follows. For all
feC(R)and a,b € R

A:C®R) —» CR)® CR) by A(f) = lim S fui ® fo where
i=0

Z(f)(ab)_nlg&me a) fni(b) = f(a + )

£:C(R) =R by z(f) = f(0) and
5:CR) — C(R) by 5(f)(a) = f(-a)

Proposition 3.2. The linear map A : C(R) — C(R) ® C(R) is
continuous with respect to the topology induced by the identification
in Lemma 3.1.

Proof. The seminorms Py(f) = Sup{| f(z) |: x € [—k, k]} induce

: =2 "P(f—9) .
the metric d(f,g) = ————~== in the space C'(R). Let
(f,9) ,;11+Pk(f—g) p (R)
{fn} be a sequence in C(IR) such that f, converges to zero w.r.t.
themetric d. We first show that lim Py(fn) = 0 for all k. Since

= 27 P(fn)
21T

OO . Pk(fn) :
Hence lim Pg(f,) =0, for all k.
kzl n—)oc(l +Pk(fn)) n—00 k(f )

is uniformly convergent, we have 0 = T}Lrglo d(fn,0) =
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On the other hand,

0 < P(A(fa) = sup{|A(fa)(a,b)] : (a,b) € [k, k] x [k, K]}
= sup{|fala+0)|: (a,b) € [k, k] x [k, k]}
< sup{|fu(t)| : T € [-2k, 2k]} = Po(fn) -

Hence lim Py(A(f,)) =0, for all k. Now since A is a linear map,

if f, converges to zero w.r.t. the metric d, then to prove the the-
orem it suffices to show that A(f,) converges to zero w.r.t. the

, . & 27P(A(f))
metric d. Let € > 0 be given. Since E —
g o1 1+ Pe(A(f)

convergent, there exists N(e) > 0 such that

is uniformly

= 27 Py(A(fa))
kgl 1+ Pk(z(fn))

N(e)
< [E 27 P (A(fn))] + €/2

N(e)
< [2_: 2 Py (fa)] +€/2 .

Hence lim d(A(fy),0)=0. O
Lemma 3.3. The linear map S : C(R) — C(R) is continuous.

Proof. Let {f,} be a sequence of C(R) such that f, converges
to zero w.r.t. the metric d (in Proposition 3.2). We show that
lim P.(S(fn)) =0, for all k.

Py(S(fa)) = sup{|S(fu)(x)|: 2 € [k, K]}
= sup{|fu(—2)|z € [k, K]} = Pu(fn).
In the proof of Proposition 3.2, we showed that lim Pi(fn) =0 for
all k; thus lim Py(S(fn)) =0, for all k. By a proof similar to that

of Proposition 3.2 we can show that S(f,,) converges to zero w.r.t.
the metric d. O

Lemma 3.4. The linear maps A,z and S satisfy the following
properties.
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For A(f) :%fm@)fm, f,g€ C(R) and a € R.

1) lim ZA fai) ® foi = lim me ® A fi)
1) A(f >A< ) =1A(fg)

I17) lim Z E(fui) fri = Jim mes fui) = f
1v) =(f9) = 2()(9)

V) (i 35 o) @) = (Jimn 32 () ) (@) = £10) =
«(H :
VD) lim 35 (fus) ©5(f) = (BoB)(S).

Proof. (I) Note that lim 3" 5(fu1) ® fs € C(R) © OR) & C(R)
1=0

and by Lemma 3.1, C(R)® C(R) ® C(R) can be identified by
C(R xR xR).

Similarly lim i fni ® A(fni) € C(R) @ C(R) ® C(R) and by
i=0

Lemma 3.1, C(R) ® C(R) ® C(R) can be identified by C(R xR x
R). Now we have:

<nlggo%z(fm) ® fm) (aa b) C) = lim ZA fm a, b)fnz( )
=0

n— 00

=0

= Z(f)(a"i_bac)
= fla+b+c)

i=0

where a, b, c € R.
IT) The proof is obvious.
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I1I) Note that lim Z (fni)fni € C(R) = C(IR), because C(R)

is complete w.r.t. the metrlc d in Proposition 3.2, [6, page 27]. Now
we have:

1=0

= Z(f)(U, a)
= [f(a)
= A(f)(a,0)
= lim (Z FuiZ(foi ) (a)
where a € R.
IV) The proof is obvious.
V)

(JH&ZS o fm)<> = J;%me @) ri(a)

= A(f)(~a,a)
= f(0)
— A(f)(a,—a)
= (llmem fnz) )
where a € R.
VI)
(,}Lrgoig(fm)éﬁ(fm)) (a,0) = gggtom @) fni (=)
= Z(f)( a, —b)
= f(-a—1b)
= S(f)(a+)

= A(S(f)(a,b)
where a,b € R. O
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Definition 3.5. The linear map D : C(R) — C(R) is called an
extended coderivation of C(R) if

BoD(f) = Jim 5 D(fu) @ foi-+ foi © Do)

where A(f) = lim me ® fni and f € C(R).

We denote the set of all continuous extended coderivations of

C(R) by COD(C(R)).

Lemma 3.6. If D : C(R) — C(R) is defined by D(f) = X f, for

all f € C(R). Then D is a continuous extended coderivation.

Proof. Let {f,} be a sequence in C'(R) such that f, converges
to zero w.r.t. the metric d(in Proposition 3.2). We show that
Jim Py(D(fn)) =0, for all k.

Py(D(fn)) = sup{|D(fa)(z)|: z € [k, k]}
= sup{|zfn(z)|: x € [k, k]} < kP:(fn) .
In the proof of Proposition 3.2, we showed that Jim Py(fn) = 0 for
all k; thus lim Py(D(fn)) =0, for all k. By a proof similar to that

of Proposition 3.2 we can show that D(f,) converges to zero w.r.t.
the metric d. Now we have:

AMD(f)ab) = (Xf)(a+b)
af(a+b)+bf(a+0)
= aK(f)(a b) + bA(f)(a, b)

= JHEOZafm ) Fui (b) + hmem (bfi (1))

= lim ZD fni)(a fm( )+ fm(a)E(fm)(b)

n—oo

where A(f) = Ji_)rgogfm ® fni and a,b € R.

Thus D is a continuous extended coderivation of C(R). O
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Let CL(C(R)) = {p € End(C(R))| lim imzz?(fm)so(fm)
- JgrgoiZme(—l)sﬁ(fm)(l) X
whereA(f) = lim Y 1 ® fu, for all § € C@)}.
Conjecture. COD(C(R)) = CL(C([RZ);]

4. On the Coderivations of C*(R,R)

For C" manifolds M and N, we denote the set of C" maps from
M to N by C"(M, N). At first we assume r is finite.

The weak or “compact-open C"” topology on C"(M, N) is gen-
erated by the sets defined as follows. Let f € C"(M,N). Let
(¢,U), (v, V) be charts on M, N; let K C U be a compact set such
that f(K) C V;let 0 < e < oo.

Define a weak subbasic neighborhood

N'(f: (o, U), (4, V), K, ¢€) (1)
to be the set of C" maps g : M — N such that g(K) C V and

ID* (W fé~") (@) — D(ge™ ) (@) <,

for all x € ¢(K),k =0,---,r. This means that the local represen-
tations of f and g, together with their first £ derivatives, are within
¢ at each point of K.

The weak topology on C"(M, N) is generated by sets (1); it de-
fines the topological space C (M, N). A neighborhood of f is thus
any set containing the intersection of a finite number of sets of type
(1). We now define the spaces C2°(M, N). The weak topology on
C*(M, N) is simply the union of the topologies induced by the in-
clusion maps C*°(M, N) — C’ (M, N) for r finite. (See[2, chapter
2]).

We denote the C*°(R,[R) by C>*(R). We identify C*(R) ®
C*°(R) with a dense subset of C*(R xR) (as in Lemma 3.1)
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and we denote the closure of
C*(R)® C*(R) in C*(R xR) by C*(R) ® C=(R).

Proposition 4.1. Let A, : C*(R) — C>*(R)® C®(R) be
defined by

Aw(f)(a,b) = f(a+0b), where f € C*°(R) and a,b € R; then A,
is a continuous linear map w.r.t. the weak topology on C*°(R).

Proof. Let f € C*(R). We must show that for N>*(A(f), K x
K, €) there exists W (f, K',0) such that A (g) € N*°(Ax(f), K X
K, e), for all g € W*(f, K',0). Put K' = K + K and § = €. Let
g € We(f,K + K,d). Hence ||D¥(f)(x) — D*(g)(z)|| < ¢, for all
r€ K+K, k=0,1,--- . Leti+j =k =0,1,--- and (z,y) € KxXK
then
9iti X oiti x
g Bl 0:9) = 5o (Bocg) )]

az’+ j 8i+j

= IIaxayj (f(@+y)) - 900y (9(z + )l

oiti oiti
= || 2(z + )it -(f (1‘+?J))—W(g($+y))||
) -

= ||(D*f)(t) — (D*g)(t)|| <€, because t € K + K.
Thus Ay (g9) € N®(Ax(f), K x K,¢). O

Lemma 4.2. Let Sy, : C*°(R) — C®(R) be defined by Soo(f)(a) =
f(=a), f € C*(R) and a € R; then Sy, is a continuous map w.r.t.
the weak topology on C*°(R).

Proof. Let f € C*(R). We must show that for N>*°(S(f ) K,e),
there exists W (f, K',0) such that Sy (g9) € N*(Sx(f), K, ¢€), for
all g e W(f,K',0). Put K' = —K and § = €. O

Theorem 4.3. Let D : C*(R) — C™(R) be an extended coderiva-
tion (Def. 3.5) of C>(R). If D is continuous w.r.t. the weak topol-
o oo dk
ogy on C*(R), then D(f) =>_ kaW(f)’ for all f € C*(R).
k=0
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Proof. By [2, page 40, Ex.4] polynomials are dense in C(R,R).
Let

f € C®(R). Then there exists a sequence {P,} of polyno-
mials such that

f= JLIEO P,. By Theorem 2.9, we conclude that

_ . e . > dk
D(f) = lim D(P,) = JH&];”’“XW(P“)'

n—o0

On the other hand since the operator f — [&—kk(f) is continuous
w.r.t. to the weak topology on C*°(IR) [6, page 39, Ex.17], hence:

00 dk k
b X ——+ = b X 1 P,
2;% k d)(k(f) E: k d)(k Hn )
. d*
= Jggogéibk)(aigg(FZ)
= D(f). 0

Now let agy + ayy’ + -+ -+ a1y + any(")_: g(x) be a linear
differential equation with g(z) € C*(R). Let D be a continuous
extended coderivation on C*°(R), then by Theorems 2.9 and 4.3,

y) =z by® where y € C°(R). then

1—
;D(y) = boy + by + -+ by™ +

In this method we put b; = a;, for all i > 0, thus D(y) = g(z).

o
For example if y is analytic i.e., y = Z cpx”, then
n=0

=D(> cpa") = e, D(x
n=0 n=0

Therefore »_ ¢,D(z") = zg(z) and we can find the ¢,’s by the
n=0
solving this system of equations.
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5. An Example of a Cocommutative Bialgebra H such that
the Set of Coderivations on H is Zero

Let R* = R—{0} and R*[X] be the space of polynomial functions
on R".
R*[X] is a monoid algebra. Let f € R*[X] and a € R*. Define
A(f)(a,b) = f(a.b),e(f) = f(1) and S(f)(a) = f(3).

Lemma 5.1. The coproduct A : R*[X] — R*[X] @ R*[X] has the
property: A(X") =X"®@ X", n=0,1,2,...
Proof. Let a,b € R*. Then [A(X™)](a,b) =
a"b". On the other hand [A(X")](a®b) = > X1y (a) X5 (b) be-
cause

AX") e R'X]|Q@R'[X] .
We conclude that A(X") = X" ® X". O

Lemma 5.2. Let L be the set of primitive elements on R*[X].
Then L = {0}.

Proof. Let F(X) =) ;X' € R*[X]. We have

A(F(X)) = A fj iaz X'® XY
If F(X) € L then A(F(X)) = F(X)®1+1® F(X) = iai(Xi ®

1+1®X"). Since {1,X,X? ..., X™} is a basis, hence a; = 0 for
alli =0,1,--+,m. Thus F(X) = 0. We conclude that £ = {0}. O

For any group G, let H = K[G| be the group algebra of G. If
we define
A(g) =g® g and e(g) =1, then H is a cocommutative bialgebra.

Proposition 5.3. The bialgebra H = K[G| has no coderivations
except 0.
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Proof. Let D : H — H be a coderivation and ¢ be any element
of the basis H. We have A(D(g)) = ¢ ® D(g9) + D(g9) ® g. If

D(g) = Zkigi, for some k; € K and g; belonging to the basis of

i=1
H, then Zki(gi@)gi) = Zki(g®gi+gi®g). If n > 1, then k; = 0,
i=1 i=1

for any 1 < ¢ < n. However if n = 1 and g # ¢; then k; = 0.
Because £(D(g)) = k; and since (¢ ® I)oA = I, we conclude that
kl = 0 O

Remark 5.4. Zero is the only element of the set of coderivations
on R*[X].
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