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70 Nekooei and BahrampourD1oD2 � D2oD1 where D1 and D2 are oderivations of C. Fur-thermore we speify the form of oderivations of polynomials onR.In the seond setion we prove that C(R)
C(R) an be identi-�ed with a dense subset of C(R�R). Furthermore we de�ne theontinuous extended oderivations of C(R) and propose a onje-ture about ontinuous extended oderivations of C(R).In the third setion we prove ifD : C1(R)! C1(R) is a ontin-uous extended oderivation of C1(R) then D(f) = 1Xk=0 bk dkdXk (f),for any f 2 C1(R).Finally, in the fourth setion we prove that the spae of oderiva-tions of the group algebra K[G℄ is zero, where G is a group.2. Coderivations of CoalgebrasDe�nition 2.1. Suppose (C;�; ") is a oalgebra over a �eld K. Aoderivation is an endomorphismD : C ! C of a oalgebraC whihsatis�es�oD = (1C 
D +D 
 1C)o�.[5℄We prove Propositions (2.2 and 2.3) below whih are stated in[5℄.Proposition 2.2. Suppose (C;�; ") is a oalgebra and D 2 EndK(C)is a oderivation of C. Then D� 2 EndK(C�) is a derivation of C�.Proof. Sine (C;�; ") is a oalgebra, (C�;M; U) is an algebrasuh thatM = ��o�, where � is the linear injetion � : C� 
C� ! (C 
C)�given by h�(a� 
 b�);  
 di = ha�; ihb�; di for all a�; b� 2 C� and; d 2 C.Hene M = ��j�
� is a produt in the dual algebra C�. SineD is a oderivation of C, hene �oD = (1C 
 D + D 
 1C)o�.Taking transposes we haveD�oM = M � (1C� 
 D� + D� 
 1C�). Thus D� is a derivation ofC�. 2



On the oderivations of some Hopf algebras 71Let A be any algebra. A o�nite ideal of A is an ideal J ofA suh that the quotient spae AJ is �nite- dimensional. De�neAÆ = fg 2 A�jker(g) ontains a o�nite ideal of Ag. Then AÆ isa subspae of A�; it is obvious that if A is �nite dimensional thenAÆ = A�.If (A;M;U) is any algebra then (AÆ;�Æ; "Æ) is a oalgebra suhthat �Æ = M�jAÆ; moreover, for any f 2 AÆ, "Æ(f) = f(1) [7,Proposition 6.0.2℄.Proposition 2.3. Suppose that (A;M;U) is any algebra and D :A! A is a derivation of A. Then DÆ = D�jAÆ de�nes a oderiva-tion DÆ : AÆ ! AÆ of the dual oalgebra of A. In partiular if A is�nite dimensional algebra then D� 2 End(A�) is a oderivation ofA�.Proof. We �rst show that D�(AÆ) � AÆ. Let f 2 AÆ. There existsa o�nite ideal I of A suh that I � ker(f). Put J = D�1(I)\I. Itis lear that J is an ideal of A. The pullbak of a o�nite subspae isa o�nite subspae and that the intersetion of two o�nite subspaeis o�nite. Hene J is a o�nite ideal of A.Sine D�(AÆ) � AÆ, hene DÆ = D�jAÆ de�nes a linear mapDÆ : AÆ ! AÆ of the dual oalgebra of A. Sine D is a derivation,so DoM =Mo(1A
D+D
 1A). Therefore �ÆoD = (1AÆ 
DÆ +DÆ 
 1AÆ)o�Æ and DÆ is a oderivation. 2Proposition 2.4. Let COD(C) be the spae of all oderivations ofoalgebra C. Then COD(C) is a Lie algebra under the assoiativebraket for endomorphisms of C.Proof. [5, Lemma 3(b)℄. 2We denote the spae of ontinuous funtions on R by C(R) andthe spae of polynomial funtions onR byR[X℄ = fF (X) 2 C(R) jF (X) = mXi=0 aiX ig:



72 Nekooei and BahrampourBy [3, Proposition III.1.4℄, there exists an isomorphism ofoalgebras R[X℄
R[X℄ �= R[X; Y ℄ : (�)Now we de�ne the linear maps �; " and S as follows. For allf 2 R[X℄ (note that f is ontinuous) and a; b 2 R, by (*) we have� : R[X℄! R[X℄
R[X℄ by �(f)(a; b) = f(a+ b)" : R[X℄! R by "(f) = f(0) andS : R[X℄! R[X℄ by S(f)(a) = f(�a)It is easy to show that R[X℄ has a oommutative Hopf algebrastruture, [1, page 83℄ and [4, page 25℄.Lemma 2.5. If F (X) = mXi=0 aiX i 2 Poly(R) then�(F (X)) = mXi=0 iXk=0 ai(ik)Xk 
X i�k:Proof. Sine �(X) = X 
 1 + 1 
 X and � is an algebramap, hene�(Xn) = nXk=0(nk)Xk 
 Xn�k, (n = 0; 1; 2; : : : ) . Sine � is also alinear map, �(F (X)) = mXi=0 iXk=0 ai(ik)Xk 
X i�k: 2LetH be a oommutative Hopf algebra and L = fh 2 Hj�(h) =h
 1 + 1
 hg be the spae of primitives of H. Let CL(H) = f� 2End(H)j(�:g)(1) 2 L for all g 2 Hg where (�:g)(h) is de�ned asX(g) S(g(1))�(g(2)h) for all h 2 H. [5℄Proposition 2.6. In a oommutative Hopf algebraH, COD(H) =CL(H).



On the oderivations of some Hopf algebras 73Proof. [5, Theorem 1℄. 2Lemma 2.7. Let f 2 R[X℄. f 2 L if and only if f = X where = f(1).Proof. Let f 2 L, so �(f) = f 
 1+1
 f . Thus by the de�nitionof �, f(a+b) = f(a)+f(b) for all a; b 2 R. Sine f is a ontinuousfuntion, hene f = X. It is lear that  = f(1). The onverse istrivial. 2Proposition 2.8. D 2 COD(Poly(R)) if and only ifD(Xn) = nXk=0(nk)[D(X � 1)k℄(1)Xn�k+1 for n = 0; 1; 2; : : :Proof. Put f = D(1). Sine �(1) = 1 
 1 it follows that f =S(1)f = f(1). By Proposition 2.6, this element is primitive and byLemma 2.7 it follows that f = f(1)X.We now ompute (Dg)(1) = X(g) S(g(1))D(g(2)) for g = X usingthe fat that �(X) = X 
 1 + 1
X.S(X)f + S(1)D(X) = �X2f(1) +D(X)Let h(X) = �X2f(1)+D(X). By Propositon 1.6, h(X) is primitiveand by Lemma 1.7, h(X) = h(1)X. Thus�X2f(1) +D(X) = h(X)= h(1)X= �Xf(1) +X[D(X)℄(1)and hene D(X) = X2f(1)�Xf(1) +X[D(X)℄(1) :By indution it is easy to show that D(Xn) = nXk=0(nk)[D(X �1)k℄(1)Xn�k+1, for n = 0; 1; : : : . 2



74 Nekooei and BahrampourTheorem 2.9. D 2 COD(R[X℄), if and only ifD(F ) = 1Xk=0 bkX dkdXk (F );where bk = [D(X�1)k ℄(1)k! , for all F 2 R[X℄.Proof. Let F = mXn=0 anXn 2 R[X℄, then:D(F ) = 1Xk=0 bkX dkdXk ( mXn=0 anXn)= 1Xk=0 mXn=k bkXan(nk)k!Xn�k= 1Xk=0 mXn=k an(nk)Xn�k+1[D(X � 1)k℄(1): (�)On the other hand by Proposition 2.8 we have:D(F ) = mXn=0 anD(Xn) = mXn=0 nXk=0 an(nk)Xn�k+1[D(X�1)k℄(1): (��)Sine the oeÆients of Xn in (�) and (��) are equal for all n � 1,hene (�) = (��). The onverse is true by Proposition 2.6. 23. On the Continuous Extended Coderivations of C(R)The seminorms Pk(f) = supfjf(x; y)j : (x; y) 2 [�k; k℄� [�k; k℄gindue the metri d(f; g) = 1Xk=1 2�kPk(f � g)1 + Pk(f � g) in the spae C(R�R), [6, Chapter 1, Ex. 18℄.Lemma 3.1. C(R) 
 C(R) an be identi�ed with a dense subsetof C(R�R).



On the oderivations of some Hopf algebras 75Proof. Let Z = nXi=1 fi 
 gi belong to C(R)
 C(R). De�ne' : C(R)� C(R)! C(R�R)by '(f; g)(x; y) = f(x)g(y), where f and g are in C(R) and x; yare in R. It is lear that ' is a bilinear map. Now by the universalmapping property, there exists a unique linear map F : C(R) 
C(R) ! C(R�R) suh that F (Z)(x; y) = nXi=1 fi(x)gi(y). We willshow that the image of C(R)
C(R) is dense in C(R�R). Let f 2C(R�R) and " > 0 be given. We hoose N > 0 suÆiently large.By the Stone-Weierstrass theorem there exist ontinuous funtionsfi and gi, i = 1; 2; : : : ; n, suh that jf(x; y)� nXi=1 fi(x)gi(y)j < "2N ,for any (x; y) 2 [�N;N ℄ � [�N;N ℄. Setting Z = nXi=1 fi 
 gi, wehave:d(f � F (Z)) = 1Xk=1 2�kPk(f � F (Z))1 + Pk(f � F (Z))< NXk=1 2�kPk(f � F (Z))1 + Pk(f � F (Z)) + "2� NPN(f � F (Z)) + "2= N supfjf(x; y)� F (Z)(x; y)j : (x; y) 2 [�N;N ℄�[�N;N ℄g + "2< "2 + "2 = "�It remains to show that the map F is one-to-one. The prooffollows by indution. Suppose that f 
 g 6= 0. Then f 6= 0and g 6= 0. Thus there exist a and b suh that f(a) 6= 0 andg(b) 6= 0. We onlude that F (f 
 g)(a; b) = f(a)g(b) 6= 0 andhene F (f 
 g) 6= 0. Now we assume that the assertion is true



76 Nekooei and Bahrampourfor k. Let k+1Xi=1 fi(x)gi(y) = 0. If fk+1 � 0 then the proof is om-plete. If fk+1 6� 0 then there exists x0 2 R suh that fk+1(x0) 6= 0.For every y 2 R, we have gk+1(y) = � kXi=1 fi(x0)fk+1(x0)gi(y). HenekXi=1 "fi(x)� fk+1(x)fi(x0)fk+1(x0) # gi(y) = 0. By indution, k+1Xi=1 fi 
 gi =kXi=1 "fi � fk+1fi(x0)fk+1(x0) #
 gi = 0, and the proof is omplete. 2We denote the losure of C(R)
C(R) inC(R�R) by C(R)
 C(R)and by Lemma 3.1, C(R)
 C(R) an be identi�ed with C(R�R).Now we de�ne the linear maps �; " and S as follows. For allf 2 C(R) and a; b 2 R� : C(R)! C(R)
 C(R) by �(f) = limn!1 mnXi=0 fni 
 f̂ni where�(f)(a; b) = limn!1 mnXi=0 fni(a)f̂ni(b) = f(a+ b)" : C(R)! R by "(f) = f(0) andS : C(R)! C(R) by S(f)(a) = f(�a)Proposition 3.2. The linear map � : C(R) ! C(R)
 C(R) isontinuous with respet to the topology indued by the identi�ationin Lemma 3.1.Proof. The seminorms Pk(f) = Supfj f(x) j: x 2 [�k; k℄g induethe metri d(f; g) = 1Xk=1 2�kPk(f � g)1 + Pk(f � g) in the spae C(R). Letffng be a sequene in C(R) suh that fn onverges to zero w.r.t.themetri d. We �rst show that limn!1Pk(fn) = 0 for all k. Sine1Xk=1 2�kPk(fn)1 + Pk(fn) is uniformly onvergent, we have 0 = limn!1d(fn; 0) =1Xk=1 2�k limn!1( Pk(fn)1 + Pk(fn)). Hene limn!1Pk(fn) = 0, for all k.



On the oderivations of some Hopf algebras 77On the other hand,0 � Pk(�(fn)) = supfj�(fn)(a; b)j : (a; b) 2 [�k; k℄� [�k; k℄g= supfjfn(a+ b)j : (a; b) 2 [�k; k℄� [�k; k℄g� supfjfn(t)j : t 2 [�2k; 2k℄g = P2k(fn) :Hene limn!1Pk(�(fn)) = 0, for all k. Now sine � is a linear map,if fn onverges to zero w.r.t. the metri d, then to prove the the-orem it suÆes to show that �(fn) onverges to zero w.r.t. themetri d. Let " > 0 be given. Sine 1Xk=1 2�kPk(�(fn))1 + Pk(�(fn)) is uniformlyonvergent, there exists N(�) > 0 suh that1Xk=1 2�kPk(�(fn))1 + Pk(�(fn)) < [N(�)Xk=1 2�kPk(�(fn))℄ + �=2� [N(�)Xk=1 2�kP2k(fn)℄ + �=2 :Hene limn!1d(�(fn); 0) = 0. 2Lemma 3.3. The linear map S : C(R)! C(R) is ontinuous.Proof. Let ffng be a sequene of C(R) suh that fn onvergesto zero w.r.t. the metri d (in Proposition 3.2). We show thatlimn!1Pk(S(fn)) = 0, for all k.Pk(S(fn)) = supfjS(fn)(x)j : x 2 [�k; k℄g= supfjfn(�x)jx 2 [�k; k℄g = Pk(fn):In the proof of Proposition 3.2, we showed that limn!1Pk(fn) = 0 forall k; thus limn!1Pk(S(fn)) = 0, for all k. By a proof similar to thatof Proposition 3.2 we an show that S(fn) onverges to zero w.r.t.the metri d. 2Lemma 3.4. The linear maps �; " and S satisfy the followingproperties.



78 Nekooei and BahrampourFor �(f) = mnXi=0 fni 
 f̂ni, f; g 2 C(R) and a 2 R.I) limn!1 mnXi=0�(fni)
 f̂ni = limn!1 mnXi=0 fni 
�(f̂ni)II) �(f)�(g) = �(fg)III) limn!1 mnXi=0 "(fni)f̂ni = limn!1 mnXi=0 fni"(f̂ni) = fIV) "(fg) = "(f)"(g)V)  limn!1 mnXi=0 S(fni)f̂ni! (a) =  limn!1 mnXi=0 fniS(f̂ni)! (a) = f(0) ="(f)VI) limn!1 mnXi=0 S(fni)
 S(f̂ni) = (�oS)(f).Proof. (I) Note that limn!1 mnXi=0�(fni)
 f̂ni 2 C(R)
 C(R)
 C(R)and by Lemma 3.1, C(R)
 C(R)
 C(R) an be identi�ed byC(R�R�R).Similarly limn!1 mnXi=0 fni 
 �(f̂ni) 2 C(R)
 C(R)
 C(R) and byLemma 3.1, C(R)
 C(R)
 C(R) an be identi�ed by C(R�R�R). Now we have: limn!1 mnXi=0�(fni)
 f̂ni! (a; b; ) = limn!1 mnXi=0�(fni)(a; b)f̂ni()= limn!1 mnXi=0 fni(a + b)f̂ni()= �(f)(a+ b; )= f(a+ b + )=  limn!1 mnXi=0 fni 
�(f̂ni)! (a; b; )where a; b;  2 R.II) The proof is obvious.



On the oderivations of some Hopf algebras 79III) Note that limn!1 mnXi=0 "(fni)f̂ni 2 C(R) = C(R), beause C(R)is omplete w.r.t. the metri d in Proposition 3.2, [6, page 27℄. Nowwe have: limn!1 mnXi=0 "(fni)f̂ni! (a) = limn!1 mnXi=0 fni(0)f̂ni(a)= �(f)(0; a)= f(a)= �(f)(a; 0)= limn!1 mnXi=0 fni"(f̂ni)! (a)where a 2 R.IV) The proof is obvious.V)  limn!1 mnXi=0 S(fni)f̂ni! (a) = limn!1 mnXi=0 fni(�a)f̂ni(a)= �(f)(�a; a)= f(0)= �(f)(a;�a)=  limn!1 mnXi=0 fniS(f̂ni)! (a)where a 2 R.VI) limn!1 mnXi=0 S(fni)
 S(f̂ni)! (a; b) = limn!1 mnXi=0 fni(�a)f̂ni(�b)= �(f)(�a;�b)= f(�a� b)= S(f)(a+ b)= �(S(f))(a; b)where a; b 2 R. 2



80 Nekooei and BahrampourDe�nition 3.5. The linear map D : C(R) ! C(R) is alled anextended oderivation of C(R) if�oD(f) = limn!1 mnXi=0D(fni)
 f̂ni + fni 
D(f̂ni)where �(f) = limn!1 mnXi=0 fni 
 f̂ni and f 2 C(R).We denote the set of all ontinuous extended oderivations ofC(R) by COD(C(R)).Lemma 3.6. If D : C(R) ! C(R) is de�ned by D(f) = Xf , forall f 2 C(R). Then D is a ontinuous extended oderivation.Proof. Let ffng be a sequene in C(R) suh that fn onvergesto zero w.r.t. the metri d(in Proposition 3.2). We show thatlimn!1Pk(D(fn)) = 0, for all k.Pk(D(fn)) = supfjD(fn)(x)j : x 2 [�k; k℄g= supfjxfn(x)j : x 2 [�k; k℄g � kPk(fn) :In the proof of Proposition 3.2, we showed that limn!1Pk(fn) = 0 forall k; thus limn!1Pk(D(fn)) = 0, for all k. By a proof similar to thatof Proposition 3.2 we an show that D(fn) onverges to zero w.r.t.the metri d. Now we have:�(D(f))(a; b) = (Xf)(a+ b)= af(a+ b) + bf(a + b)= a�(f)(a; b) + b�(f)(a; b)= limn!1 mnXi=0(afni(a))f̂ni(b) + limn!1 mnXi=0 fni(a)(bf̂ni(b))= limn!1 mnXi=0D(fni)(a)f̂ni(b) + fni(a)D(f̂ni)(b)where �(f) = limn!1 mnXi=0 fni 
 f̂ni and a; b 2 R.Thus D is a ontinuous extended oderivation of C(R). 2



On the oderivations of some Hopf algebras 81Let CL(C(R)) = f' 2 End(C(R))j limn!1 mnXi=0 S(fni)'(f̂ni)= " limn!1 mnXi=0 fni(�1)'(f̂ni)(1)#X ;where�(f) = limn!1 mnXi=0 fni 
 f̂ni; for all f 2 C(R)g:Conjeture. COD(C(R)) = CL(C(R)).4. On the Coderivations of C1(R;R)For Cr manifolds M and N , we denote the set of Cr maps fromM to N by Cr(M;N). At �rst we assume r is �nite.The weak or \ompat-open Cr" topology on Cr(M;N) is gen-erated by the sets de�ned as follows. Let f 2 Cr(M;N). Let(�; U); ( ; V ) be harts on M;N ; let K � U be a ompat set suhthat f(K) � V ; let 0 < � � 1.De�ne a weak subbasi neighborhoodN r(f ; (�; U); ( ; V ); K; �) (1)to be the set of Cr maps g :M ! N suh that g(K) � V andkDk( f��1)(x)�Dk( g��1)(x)k < �;for all x 2 �(K); k = 0; � � � ; r. This means that the loal represen-tations of f and g, together with their �rst k derivatives, are within" at eah point of K.The weak topology on Cr(M;N) is generated by sets (1); it de-�nes the topologial spae Crw(M;N). A neighborhood of f is thusany set ontaining the intersetion of a �nite number of sets of type(1). We now de�ne the spaes C1w (M;N). The weak topology onC1(M;N) is simply the union of the topologies indued by the in-lusion maps C1(M;N) ! Crw(M;N) for r �nite. (See[2, hapter2℄).We denote the C1(R;R) by C1(R). We identify C1(R) 
C1(R) with a dense subset of C1(R�R) (as in Lemma 3.1)



82 Nekooei and Bahrampourand we denote the losure ofC1(R)
 C1(R) in C1(R�R) by C1(R)
 C1(R).Proposition 4.1. Let �1 : C1(R) ! C1(R)
 C1(R) bede�ned by�1(f)(a; b) = f(a+ b), where f 2 C1(R) and a; b 2 R; then �1,is a ontinuous linear map w.r.t. the weak topology on C1(R).Proof. Let f 2 C1(R). We must show that for N1(�1(f); K �K; �) there existsW1(f;K 0; Æ) suh that �1(g) 2 N1(�1(f); K�K; �), for all g 2 W1(f;K 0; Æ). Put K 0 = K + K and Æ = �. Letg 2 W1(f;K + K; Æ). Hene kDk(f)(x) � Dk(g)(x)k < �, for allx 2 K+K; k = 0; 1; � � � : Let i+j = k = 0; 1; � � � and (x; y) 2 K�Kthen jj �i+j�xi�yj (�1f)(x; y)� �i+j�xi�yj (�1g)(x; y)jj= jj �i+j�xi�yj (f(x+ y))� �i+j�xi�yj (g(x+ y))jj= jj �i+j�(x + y)i+j (f(x + y))� �i+j�(x + y)i+j (g(x+ y))jj= jj(Dkf)(t)� (Dkg)(t)jj < �; beause t 2 K +K:Thus �1(g) 2 N1(�1(f); K �K; �). 2Lemma 4.2. Let S1 : C1(R)! C1(R) be de�ned by S1(f)(a) =f(�a), f 2 C1(R) and a 2 R; then S1 is a ontinuous map w.r.t.the weak topology on C1(R):Proof. Let f 2 C1(R). We must show that for N1(S1(f); K; �),there exists W1(f;K 0; Æ) suh that S1(g) 2 N1(S1(f); K; �), forall g 2 W1(f;K 0; Æ). Put K 0 = �K and Æ = �. 2Theorem 4.3. Let D : C1(R)! C1(R) be an extended oderiva-tion (Def. 3.5) of C1(R). If D is ontinuous w.r.t. the weak topol-ogy on C1(R), then D(f) = 1Xk=0 bkX dkdXk (f), for all f 2 C1(R).



On the oderivations of some Hopf algebras 83Proof. By [2, page 40, Ex.4℄ polynomials are dense in C1w (R;R).Letf 2 C1(R). Then there exists a sequene fPng of polyno-mials suh thatf = limn!1Pn. By Theorem 2.9, we onlude thatD(f) = limn!1D(Pn) = limn!1 1Xk=0 bkX dkdXk (Pn):On the other hand sine the operator f ! dkdXk (f) is ontinuousw.r.t. to the weak topology on C1(R) [6, page 39, Ex.17℄, hene:1Xk=0 bkX dkdXk (f) = 1Xk=0 bkX dkdXk ( limn!1Pn)= limn!1 1Xk=0 bkX dkdXk (Pn)= D(f) : 2Now let a0y + a1y0 + � � �+ an�1y(n�1) + any(n) = g(x) be a lineardi�erential equation with g(x) 2 C1(R). Let D be a ontinuousextended oderivation on C1(R), then by Theorems 2.9 and 4.3,D(y) = x 1Xk=0 bky(k) where y 2 C1(R). then1xD(y) = b0y + b1y0 + � � �+ bny(n) + � � � :In this method we put bi = ai, for all i � 0, thus 1xD(y) = g(x).For example if y is analyti i.e., y = 1Xn=0 nxn, thenD(y) = D( 1Xn=0 nxn) = 1Xn=0 nD(xn)�Therefore 1Xn=0 nD(xn) = xg(x) and we an �nd the n's by thesolving this system of equations.



84 Nekooei and Bahrampour5. An Example of a Coommutative Bialgebra H suh thatthe Set of Coderivations on H is ZeroLet R� = R�f0g andR�[X℄ be the spae of polynomial funtionson R�.R�[X℄ is a monoid algebra. Let f 2 R�[X℄ and a 2 R�. De�ne�(f)(a; b) = f(a:b); "(f) = f(1) and S(f)(a) = f( 1a).Lemma 5.1. The oprodut � : R�[X℄! R�[X℄
R�[X℄ has theproperty: �(Xn) = Xn 
Xn; n = 0; 1; 2; : : : .Proof. Let a; b 2 R�. Then [�(Xn)℄(a; b) = Xn(ab) = (ab)n =anbn. On the other hand [�(Xn)℄(a 
 b) = X(Xn)Xn(1)(a)Xn(2)(b) be-ause �(Xn) 2 R�[X℄
R�[X℄ :We onlude that �(Xn) = Xn 
Xn. 2Lemma 5.2. Let L be the set of primitive elements on R�[X℄.Then L = f0g.Proof. Let F (X) = mXi=0 aiX i 2 R�[X℄. We have�(F (X)) = �( mXi=0 aiX i) = mXi=0 ai(X i 
X i):If F (X) 2 L then �(F (X)) = F (X)
 1 + 1
 F (X) = mXi=0 ai(X i
1 + 1
X i). Sine f1; X;X2; � � � ; Xmg is a basis, hene ai = 0 forall i = 0; 1; � � � ; m. Thus F (X) = 0. We onlude that L = f0g. 2For any group G, let H = K[G℄ be the group algebra of G. Ifwe de�ne�(g) = g 
 g and "(g) = 1, then H is a oommutative bialgebra.Proposition 5.3. The bialgebra H = K[G℄ has no oderivationsexept 0.



On the oderivations of some Hopf algebras 85Proof. Let D : H ! H be a oderivation and g be any elementof the basis H. We have �(D(g)) = g 
 D(g) + D(g) 
 g. IfD(g) = nXi=1 kigi, for some ki 2 K and gi belonging to the basis ofH, then nXi=1 ki(gi
gi) = nXi=1 ki(g
gi+gi
g). If n > 1, then ki = 0,for any 1 � i � n. However if n = 1 and g 6= g1 then k1 = 0.Beause "(D(g)) = k1 and sine (" 
 I)o� = I, we onlude thatk1 = 0. 2Remark 5.4. Zero is the only element of the set of oderivationson R�[X℄. AknowledgementThe authors would like to thank the referee for his/her useful sug-gestions that improved the presentation of this paper.Referenes[1℄ M. L. Ge and B. H. Zhao, Introdution to quantum group and integrablemassive models of quantum �eld theory, Nankai Institute of Mathematis,China 4-18 May 1989, World Sienti� Publishing Co.Pte.Ltd.[2℄ Morrise W. Hirsh, Di�erential Topology", Springer-Verlag, New York,Heidelberg, Berlin, 1976.[3℄ C. Kassel, Quantum Group, Springer-Verlage, New York, Heidelberg,Berlin, 1995.[4℄ R. Nekooei, On the oderivations on C(R) and preholomorphi setions,Ph.D thesis, Shahid Bahonar University of Kerman-Iran, 1995.[5℄ D. E. Radford, Divided power strutures on Hopf algebras and em-bedding lie algebras into speial-derivation algebras, Journal of algebra98(1986),143-170.[6℄ W. Rudin, Funtional Analysis, MGraw-Hill, In. New York, 1974.[7℄ M. E. Sweedler, Hopf Algebras, Benjamin, New York,1969.
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