SOME SEPARATION AXIOMS VIA MODIFIED $\theta ext{-}\text{OPEN SETS}$

M. CALDAS, S. JAFARI AND T. NOIRI

ABSTRACT. In this paper, we introduce some separation axioms by utilizing modified θ -open sets and obtain a characterization of Hausdorff spaces due to Dickman and Porter [?] as a corollary of the results.

1. Introduction

Veličko [?] introduced the notion of θ -open sets and the θ -closure operator to study H-closed spaces. Janković [?] investigated several separation axioms by using θ -open sets and the θ -closure operator. Dickman and Porter [?] investigated the relationships among θ -closed sets, Hausdorff spaces and H-closed spaces. Among others, they showed that a topological space X is Hausdorff if and only if for each $x \in X$ the singleton $\{x\}$ is θ -closed. Recently, the following modifications of θ -open sets are introduced and studied: semi- θ -open [?], pre- θ -open [?] and semipre- θ -open [?].

In this paper, by using the notion of m- θ -open sets [?], we introduce and investigate separation axioms $m\theta$ - D_0 , $m\theta$ - D_1 and $m\theta$ - D_2 analogous to D_0 , D_1 and D_2 due to Tong [?]. As a corollary of

MSC(2000): Primary 54B05, 54C08; Secondary 54D05

 $\text{Keywords: } \textit{m-}\theta\text{-open, } \textit{m-}\theta\text{-closure, } \textit{m}\theta\text{-}\textit{D-set, } \textit{m}\theta\text{-}\textit{D}_0, \; \textit{m}\theta\text{-}\textit{D}_1, \; \textit{m}\theta\text{-}\textit{D}_2, \; \textit{m}\theta\text{-}\textit{T}_0, \; \textit{m}\theta\text{-}\textit{T}_1, \; \textit{m}\theta\text{-}\textit{T}_0, \; \textit{m}\theta\text{-}\textit{T}_1, \; \textit{m}\theta\text{-}\textit{T}_0, \; \textit{m}\theta\text{-}\textrm{T}_0,$

 ${\bf Hausdorff}$

Received: 6 June 2002, Revised: 28 August 2003

© 2003 Iranian Mathematical Society.

our results, we obtain a characterization of Hausdorff spaces stated above.

2. Preliminaries

In what follows (X, τ) and (Y, σ) (or X and Y) denote topological spaces. Let A be a subset of X. We denote the interior, the closure and the complement of a set A by Int(A), Cl(A) and $X \setminus A$ or A^c respectively. A point $x \in X$ is called the θ -cluster point of A if $A \cap Cl(U) \neq \emptyset$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure of A, denoted by $Cl_{\theta}(A)$. A subset A is called θ -closed if $A = Cl_{\theta}(A)$. The complement of a θ -closed set is called θ -open. We denote the collection of all θ -open sets of (X, τ) by τ_{θ} .

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) semi-open [?] if $A \subset Cl(Int(A))$,
- (2) preopen [?] if $A \subset Int(Cl(A))$,
- (3) β -open [?] or semi-preopen [?] if $A \subset Cl(Int(Cl(A)))$.

The family of all semi-open (resp. preopen, β -open, semi-preopen) sets in X is denoted by SO(X) (resp. PO(X), $\beta(X)$, SPO(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, β -open, semi-preopen) set is said to be semi-closed [?] (resp. preclosed [?], β -closed [?], semi-preclosed [?]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed, β -closed, semi-preclosed) sets of X containing A is called the semi-closure [?] (resp. preclosure [?], β -closure [?] or semi-preclosure [?]) of A and is denoted by sCl(A) (resp. pCl(A), $\beta Cl(A)$, spCl(A)).

Definition 2.4. Let (X, τ) be a topological space. A subset A of X is said to be

(1) semi- θ -open [?] if for each $x \in A$ there exists a semi-open set U

such that $x \in U \subset sCl(U) \subset A$,

- (2) pre- θ -open [?] if for each $x \in A$ there exists a preopen set U such that $x \in U \subset pCl(U) \subset A$,
- (3) semipre- θ -open [?] for each $x \in A$ there exists a semipre-open set U such that $x \in U \subset spCl(U) \subset A$.

3. m-spaces

Definition 3.1. A subfamily m of the power set P(X) of a nonempty set X is called an m-structure on X if m satisfies the following:

- (1) $\emptyset \in m \text{ and } X \in m$,
- (2) $\bigcup_{\alpha \in \triangle} A_{\alpha} \in m$ whenever $A_{\alpha} \in m$ for each $\alpha \in \triangle$.

We call the pair (X, m) an m-space. Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.

Remark 3.2. It should be noted that condition (2) in Definition 3.1 is called property (B) by Maki et al. in [?]. In this paper, we always assume the property (B) on m-structures.

Remark 3.3. Let (X, τ) be a topological space. Then the families τ_{θ} , τ , SO(X), PO(X), $\beta(X)$ are all *m*-structures on X. It is well-known that τ_{θ} is a topology for X.

Definition 3.4. Let X be a nonempty set and m an m-structure on X. For a subset A of X, the m-closure of A and the m-interior of A are defined in [?] as follows:

- $(1) \ mCl(A) = \bigcap \{F \mid A \subset F, X \backslash F \in m\},\$
- (2) $mInt(A) = \bigcup \{U \mid U \subset A, U \in m\}.$

Remark 3.5. Let (X, τ) be a topological space and A a subset of X. If $m = \tau$ (resp. SO(X), PO(X), $\beta(X)$), then we have

- (1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), $\beta Cl(A)$),
- (2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), $\beta Int(A)$).

(cf. Remark 3.10 below for the θ -closure $Cl_{\theta}(A)$ of A)

Lemma 3.6. (eg. Maki et al. [?]) Let m be an m-structure on a nonempty set X. For subsets A and B of X, the following properties hold:

- (1) $mCl(X \setminus A) = X \setminus mInt(A)$ and $mInt(X \setminus A) = X \setminus mCl(A)$,
- (2) $mCl(\emptyset) = \emptyset$, mCl(X) = X, $mInt(\emptyset) = \emptyset$ and mInt(X) = X,
- (3) If $A \subset B$, then $mCl(A) \subset mCl(B)$ and $mInt(A) \subset mInt(B)$,
- (4) $A \subset mCl(A)$ and $mInt(A) \subset A$,
- (5) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.7. (Popa and Noiri [?]) Let m be an m-structure on a nonempty set X. Then $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Lemma 3.8. Let m be an m-structure on a nonempty set X. Then for a subset A of X the following properties hold:

- (1) $A \in m$ if and only if A = mInt(A),
- (2) A is m-closed if and only if A = mCl(A),
- (3) mCl(A) is m-closed and mInt(A) is m-open.

Proof. This is an immediate consequence of Lemmas 3.6 and 3.7. \square

Definition 3.9. Let A be a subset of an m-space (X, m). A point $x \in X$ is called

- (1) an m_{θ} -adherent point of A if $mcl(U) \cap A \neq \emptyset$ for every $U \in m$ containing x,
- (2) An m_{θ} -interior point of A if $x \in U \subset mCl(U) \subset A$ for every $U \in m$ containing x.

The set of all m_{θ} -adherent points of A is called the m_{θ} -closure [?] of A and is denoted by $mCl_{\theta}(A)$. If $A = mCl_{\theta}(A)$, then A is called m- θ -closed. The complement of an m- θ -closed set is said to be m- θ -open. The set of all m_{θ} -interior points of A is called the m_{θ} -interior of A and is denoted by $mInt_{\theta}(A)$.

This is clear that union of m- θ -open sets in X is m- θ -open.

Remark 3.10. (Noiri and Popa [?]). Let A and B be subsets of an m-space (X, m). Then the following properties hold:

- (1) $X \backslash mCl_{\theta}(A) = mInt_{\theta}(X \backslash A)$ and $X \backslash mInt_{\theta}(A) = mCl_{\theta}(X \backslash A)$,
- (2) A is open if and only if $A = mInt_{\theta}(A)$,
- (3) $A \subset mCl(A) \subset mCl_{\theta}(A)$ and $mInt_{\theta}(A) \subset mInt(A) \subset A$,
- (4) If $A \subset B$, then $mCl_{\theta}(A) \subset mCl_{\theta}(B)$ and $mInt_{\theta}(A) \subset mInt_{\theta}(B)$,
- (5) If A is m-open, then $mCl(A) = mCl_{\theta}(A)$,
- (6) $mCl_{\theta}(A)$ is m-closed and $mInt_{\theta}(A)$ is m-open.

4. Some New Separation Axioms

Tong [?] defined a subset A of a topological space (X, τ) to be a D-set if there are two open sets U, V in X such that $U \neq X$ and $A = U \setminus V$. Analogously, we define $m\theta$ -D-sets as follows:

Definition 4.1. Let (X, m) be an m-space. A subset $A \subset X$ is called an $m\theta$ -Difference set (in short $m\theta$ -D-set) if there are two $m\theta$ -open sets U, V in X such that $U \neq X$ and $A = U \setminus V$.

It is true that every $m\theta$ -open set $U \neq X$ is an $m\theta$ -D-set since $U = U \setminus \emptyset$.

Definition 4.2. An m-space (X, m) is said to be

- (1) $m\theta$ - D_0 (resp. $m\theta$ - D_1) if for $x, y \in X$ such that $x \neq y$ there exists an $m\theta$ -D-set of X containing x but not y or (resp. and) an $m\theta$ -D-set containing y but not x,
- (2) $m\theta$ - D_2 if for $x, y \in X$ such that $x \neq y$ there exist disjoint $m\theta$ -D-sets G and E such that $x \in G$ and $y \in E$,
- (3) $m\theta$ - T_0 (resp. $m\theta$ - T_1) if for $x, y \in X$ such that $x \neq y$ there exists an $m\theta$ -open set U of X containing x but not y or (resp. and) an $m\theta$ -open set V of X containing y but not x,
- (4) $m\theta$ - T_2 if for $x, y \in X$ such that $x \neq y$ there exist disjoint $m\theta$ -open sets U and V such that $x \in U$ and $y \in V$.

Remark 4.3. Let (X, τ) be a topological space. If $m = \tau$, then $m\theta - T_1 = \theta - T_1$ [?] and $m\theta - T_2 = \theta - T_2$ [?].

Theorem 4.4. For an m-space (X, m), the following properties hold:

- (1) If (X, m) is $m\theta T_i$, then it is $m\theta T_{i-1}$ for $i = 1, 2, \dots$
- (2) If (X, m) is $m\theta$ - T_i , then it is $m\theta$ - D_i for i = 0, 1, 2,
- (3) If (X, m) is $m\theta$ - D_i , then it is $m\theta$ - D_{i-1} for i = 1, 2.

Proof. This is obvious from Definition 4.2. \square

Theorem 4.5. For an m-space (X, m), the following statements are true:

- (1) (X, m) is $m\theta$ - D_0 if and only if (X, m) is $m\theta$ - T_0 ,
- (2) (X, m) is $m\theta$ - D_1 if and only if (X, m) is $m\theta$ - D_2 .

Proof. The sufficiency for (1) and (2) follows from Theorem 4.4. \square

Necessity for (1). Let (X, m) be $m\theta$ - D_0 so that for any pair of distinct points x and y of X at least one belongs to an $m\theta$ -D-set O. Therefore, we choose $x \in O$ and $y \notin O$. Suppose $O = U \setminus V$ for $U \neq X$ and m- θ -open sets U and V. This implies that $x \in U$. For the case that $y \notin O$ we have (i) $y \notin U$, (ii) $y \in U$ and $y \in V$. For (i), the m-space (X, m) is $m\theta$ - T_0 since $x \in U$ and $y \notin U$. For (ii), the m-space (X, m) is also $m\theta$ - T_0 since $y \in V$ but $x \notin V$.

Necessity for (2). Suppose that (X,m) is $m\theta$ - D_1 . It follows from the definition that for any distinct points x and y in X there exist $m\theta$ -D-sets G and E such that G containing x but not y and E containing y but not x. Let $G = U \setminus V$ and $E = W \setminus D$, where U, V, W and D are m- θ -open. By the fact that $x \notin E$, we have two cases, i.e. either $x \notin W$ or both W and D contain x. If $x \notin W$, then from $y \notin G$ either (i) $y \notin U$ or (ii) $y \in U$ and $y \in V$. If (i) is the case, then it follows from $x \in U \setminus V$ that $x \in U \setminus (V \cup W)$, and also it follows from $y \in W \setminus D$ that $y \in W \setminus (U \cup D)$. Thus we have $U \setminus (V \cup W)$ and $W \setminus (U \cup D)$ which are disjoint. If (ii) is the case, it follows that $x \in U \setminus V$ and $y \in V$ since $y \in U$ and $y \in V$. Therefore $(U \setminus V) \cap V = \emptyset$. If $x \in W$ and $x \in D$, we have $y \in W \setminus D$ and $x \in D$. Hence $(W \setminus D) \cap D = \emptyset$. This shows that

X is $m\theta$ - D_2 .

Definition 4.6. An m-space (X, m) is said to be m- T_2 [?] if for $x, y \in X$ such that $x \neq y$ there exist disjoint m-open sets U and V of X such that $x \in U$ and $y \in V$.

Remark 4.7. Let (X, τ) be a topological space. If $m = \tau$, then m- T_2 = Hausdorff.

Theorem 4.8. For an m-space (X, m), the following properties are equivalent:

- (1) (X, m) is m- T_2 ;
- (2) (X, m) is $m\theta T_1$;
- (3) (X, m) is $m\theta T_0$.

Proof. (1) \Rightarrow (2): Let x and y be any pair of disjoint points of X. For any $z \in X \setminus \{y\}$, by (1) there exist m-open sets U_y and U_z such that $y \in U_y$, $z \in U_z$ and $U_y \cap U_z = \emptyset$. We have $mCl(U_z) \cap U_y = \emptyset$ and $z \in U_z \subset mCl(U_z) \subset X \setminus U_y \subset X \setminus \{y\}$. Therefore, $X \setminus \{y\}$ is an m- θ -open set containing x. Quite similarly, we can show that $X \setminus \{x\}$ is an m- θ -open set containing y. Therefore, (X, m) is $m\theta$ - T_1 .

- $(2) \Rightarrow (3)$: This is obvious.
- (3) \Rightarrow (1): Suppose that (X, m) is $m\theta$ - T_0 . For any pair of distinct points x, y, there exists an m- θ -open set U such that (1) $x \in U$ and $y \notin U$ or (2) $x \notin U$ and $y \in U$. In case (1), there exists $U_x \in m$ such that $x \in U_x \subset mCl(U_x) \subset U$. Therefore, $y \in X \setminus U \subset X \setminus mCl(U_x)$, $X \setminus mCl(U_x)$ is m-open and $U_x \cap (X \setminus mCl(U_x)) = \emptyset$. In case (2), similarly, we obtain $U_y \in m$ such that $y \in U_y$, $x \in X \setminus mCl(U_y)$ and $U_y \cap (X \setminus mCl(U_y)) = \emptyset$. This shows that (X, m) is m- T_2 . \square

Corollary 4.9. For an m-space (X, m), the following properties are equivalent:

- (1) (X, m) is $m\theta D_2$;
- (2)(X,m) is $m\theta$ - D_1 ;
- (3) (X, m) is $m\theta D_0$;

- (4) (X, m) is $m\theta$ - T_0 ;
- (5) (X, m) is $m\theta$ - T_1 ;
- (6) (X, m) is $m-T_2$.

Proof. This is an immediate consequence of Theorems 4.4, 4.5 and 4.8. \square

Corollary 4.10. (Dickman and Porter [?]). For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is Hausdorff;
- (2) (X, τ) is θT_1 ;
- (3) For each $x \in X$, $Cl_{\theta}(\{x\}) = \{x\}$.

Proof. This is an immediate consequence of Corollary 4.9. \square

Remark 4.11. For a topological space (X, τ) , by Corollary 4.9 we have the following diagram:

$$\begin{array}{cccc} T_2 & \longleftrightarrow & \theta\text{-}D_2 \\ \updownarrow & & \updownarrow \\ \theta\text{-}T_1 & \longleftrightarrow & \theta\text{-}D_1 \\ \updownarrow & & \updownarrow \\ \theta\text{-}T_2 & \longleftrightarrow & \theta\text{-}D_0 \end{array}$$

5. Quasi- θ -continuous functions

Definition 5.1. A function $f:(X, m_X) \to (Y, m_Y)$, where X and Y are nonempty sets with m-structures m_X and m_Y , respectively, is said to be

- (1) θ -M-continuous [?] at $x \in X$ if for each $V \in m_Y$ containing f(x), there exists $U \in m_X$ containing x such that $f(m_X Cl(U)) \subset m_Y Cl(V)$. A function $f: (X, m_X) \to (Y, m_Y)$ is said to be θ -M-continuous if it has the property at each point $x \in X$.
- (2) quasi- θ -M-continuous if for each $x \in X$ and each $m\theta$ -open set V containing f(x), there is an $m\theta$ -open set U containing x such that $f(U) \subset V$, equivalently, if $f^{-1}(V)$ is $m\theta$ -open in (X, τ) for every $m\theta$ -open set V of (Y, σ) .

Remark 5.2. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. If $m_x=\tau$, $m_Y=\sigma$ and $f:(X,m_X)\to (Y,m_Y)$ is θ -M-continuous (resp. quasi- θ -M-continuous), then f is θ -continuous [?] (resp. quasi- θ -continuous [?]).

Remark 5.3. (1) A function $f:(X,\tau)\to (Y,\sigma)$ is quasi- θ -continuous if and only if $f:(X,\tau_{\theta})\to (Y,\sigma_{\theta})$ is continuous. (2) It is shown in [?] that every θ -continuous function is quasi- θ -continuous but the converse is not true.

Theorem 5.4. If $f:(X, m_X) \to (Y, m_Y)$ is a quasi- θ -M-continuous surjection and A is an $m\theta$ -D-set in Y, then $f^{-1}(A)$ is an $m\theta$ -D-set in X.

Proof. Let A be an $m\theta$ -D-set in Y. Then there are $m\theta$ -open sets U and V in Y such that $A = U \setminus V$ and $U \neq Y$. By the quasi- θ -M-continuity of f, $f^{-1}(U)$ and $f^{-1}(V)$ are $m\theta$ -open in X. Since $U \neq Y$ and f is surjective, we have $f^{-1}(U) \neq X$. Hence $f^{-1}(A) = f^{-1}(U) \setminus f^{-1}(V)$ is an $m\theta$ -D-set. \square

We prove now another characterization of $m\theta$ - D_1 spaces.

Theorem 5.5. An m-space (X, m_X) is $m\theta$ - D_1 if and only if, for each pair of distinct points x and y in X, there exists a quasi- θ -M-continuous surjection f of (X, m_X) onto an $m\theta$ - D_1 space (Y, m_Y) such that $f(x) \neq f(y)$.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists a quasi- θ -M-continuous surjection f of a space X onto an $m\theta$ - D_1 space Y such that $f(x) \neq f(y)$. Therefore, by Theorem 4.5 there exist disjoint $m\theta$ -D-sets A_x and B_y in Y such that $f(x) \in A_x$ and $f(y) \in B_y$. Since f is quasi- θ -M-continuous and surjective, by Theorem 5.4, $f^{-1}(A_x)$ and $f^{-1}(B_y)$

are disjoint $m\theta$ -D-sets in X containing x and y, respectively. Hence by Theorem 4.5, X is $m\theta$ - D_1 space. \square

Theorem 5.6. If (Y, m_Y) is $m\theta$ - D_1 and $f: (X, m_X) \to (Y, m_Y)$ is a quasi- θ -M continuous injection, then (X, m_X) is $m\theta$ - D_1 .

Proof. Let x be any point of X. Since (Y, m_Y) is $m\theta$ - D_1 , (Y, m_Y) is $m\theta$ - T_1 and hence $\{f(x)\}$ is $m\theta$ -closed in (Y, σ) by Corollary 4.9. Since f is a quasi- θ -M-continuous injection, $\{x\} = f^{-1}(\{f(x)\})$ is m- θ -closed in (X, m_X) . Therefore (X, m_X) is $m\theta$ - D_1 . \square

Corollary 5.7. If $f:(X, m_X) \to (Y, m_Y)$ is a quasi- θ -M-continuous injection and (Y, m_Y) is m- T_2 , then (X, m_X) is m- T_2 .

Proof. This is an immediate consequence of Corollary 4.9 and Theorem 5.6. \square

As corollaries of Theorem 5.5 and 5.6, we obtain the following:

Corollary 5.8. A topological space (X, τ) is θ - D_1 if and only if for each pair of distinct points x and y in X, there exists a quasi- θ -continuous surjection f of X onto a θ - D_1 space (Y, σ) such that $f(x) \neq f(y)$.

Corollary 5.9. If (Y, σ) is θ - D_1 (resp. Hausdorff) and $f: (X, \tau) \to (Y, \sigma)$ is a quasi- θ -continuous injection, then (X, τ) is θ - D_1 (resp. Hausdorff).

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmood, β -open sets and β -continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, **12** (1983), 77-90.
- [2] M. E. Abd El-Monsef, R. A. Mahmood and E. R. Lashin, β -closure and β -interior, J. Fac. Ed. Ain Shams Univ., **10**(1986), 235-245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [4] S. Bandyopadhyayi, Some Probelems Concerning Covering Properties and Function Spaces, Ph.D. Thesis, University of Calcutta, 1996.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.

- [6] R. F. Dickman Jr. and J. R. Porter, θ -perfect and θ -absolutely closed functions, *Illinois J. Math.*, **21**(1977), 42-60.
- [7] G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions, Suppl. Rend. Circ. Mat. Palermo, (2), 18(1988), 255-273.
- [8] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(1983), 311-315.
- [9] S. Fomin, Extensions of topological spaces, Ann. of Math., 44(1943), 471-480
- [10] S. Jafari, Some properties of quasi θ -continuous functions, Far East J. Math. Sci., **6**(5) (1998), 689-696.
- [11] D. Janković, On some separation axioms and θ -closure, Mat. Vesnik, 4 (17)32 (1980), 439-449.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**(1963), 36-41.
- [13] H. Maki, K.Chandrasekhara Rao and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, *Pure Appl. Math. Math. Sci.*, **49** (1999), 17-29
- [14] A. S. Mashhour, M. E. Abd El-monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [15] T. Noiri, Weak and strong forms of β -irresolute functions, Acta Math. Hungar., 99(2003), 305-318.
- [16] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 34 (82)(1990), 265-270.
- [17] T. Noiri and V. Popa, A unified theory of θ-continuity for functions, Rend. Circ. Mat. Palermo, (2) 52(2003), 163-188.
- [18] M. C. Pal and P. Bhattacharyya, Feeble and strong forms of preirresolute functions, *Bull. Malaysian Math. Soc.*, (2), **19**(1996), 63-75.
- [19] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea Jos"-Galati, Ser. Mat. Fiz. Mec. Teor. Fasc., 18(23)(2000), 31-41.
- [20] J. Tong, A separation axiom between T_0 and T_1 , Ann. Soc. Sci. Bruxelles, 96(1982), 85-90.
- [21] N. V. Veličko, H-closed topological spaces, Mat. Sb., 70(1966), 98-112;
 English transl. in Amer. Math. Soc. Transl., (2), 78(1968), 103-118.

M. Caldas

Departamento de Matematica Aplicada Universidade Federal Fluminense Rua Mario Santos Braga s/n 24020-140 Niteroi RJ Brasil

e-mail:gmamccs@vm.uff.br

S. Jafari

Department of Mathematics and Physics Roskilde University Postbox 260 4000 Roskilde Denmark e-mail:sjafari@ruc.dk

3

T. Noiri

Yatsushiro College of Technology 2627 Hirayama shinmachi Yatsushiro-shi Kumamoto-ken 866-8501 Japan e-mail:noiri@as.yatsushiro-nct.ac.jp