SOME SEPARATION AXIOMS VIA MODIFIED θ-OPEN SETS

M. CALDAS, S. JAFARI AND T. NOIRI

Abstract. In this paper, we introduce some separation axioms by utilizing modified θ-open sets and obtain a characterization of Hausdorff spaces due to Dickman and Porter [?] as a corollary of the results.

1. Introduction

Veličko [?] introduced the notion of θ-open sets and the θ-closure operator to study H-closed spaces. Janković [?] investigated several separation axioms by using θ-open sets and the θ-closure operator. Dickman and Porter [?] investigated the relationships among θ-closed sets, Hausdorff spaces and H-closed spaces. Among others, they showed that a topological space X is Hausdorff if and only if for each $x \in X$ the singleton $\{x\}$ is θ-closed. Recently, the following modifications of θ-open sets are introduced and studied: semi-θ-open [?], pre-θ-open [?] and semipre-θ-open [?].

In this paper, by using the notion of m-θ-open sets [?], we introduce and investigate separation axioms $m\theta-D_0$, $m\theta-D_1$ and $m\theta-D_2$ analogous to D_0, D_1 and D_2 due to Tong [?]. As a corollary of...
our results, we obtain a characterization of Hausdorff spaces stated above.

2. Preliminaries

In what follows \((X, \tau)\) and \((Y, \sigma)\) (or \(X\) and \(Y\)) denote topological spaces. Let \(A\) be a subset of \(X\). We denote the interior, the closure and the complement of a set \(A\) by \(\text{Int}(A)\), \(\text{Cl}(A)\) and \(X \setminus A\) or \(A^c\) respectively. A point \(x \in X\) is called the \(\theta\)-cluster point of \(A\) if \(A \cap \text{Cl}(U) \neq \emptyset\) for every open set \(U\) of \(X\) containing \(x\). The set of all \(\theta\)-cluster points of \(A\) is called the \(\theta\)-closure of \(A\), denoted by \(\text{Cl}_{\theta}(A)\).

A subset \(A\) is called \(\theta\)-closed if \(A = \text{Cl}_{\theta}(A)\). The complement of a \(\theta\)-closed set is called \(\theta\)-open. We denote the collection of all \(\theta\)-open sets of \((X, \tau)\) by \(\tau_{\theta}\).

Definition 2.1. Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be

1. semi-open [?] if \(A \subset \text{Cl}(\text{Int}(A))\),
2. preopen [?] if \(A \subset \text{Int}(\text{Cl}(A))\),
3. \(\beta\)-open [?] or semi-preopen [?] if \(A \subset \text{Cl}(\text{Int}(\text{Cl}(A)))\).

The family of all semi-open (resp. preopen, \(\beta\)-open, semi-preopen) sets in \(X\) is denoted by \(SO(X)\) (resp. \(PO(X), \beta(X), SPO(X)\)).

Definition 2.2. The complement of a semi-open (resp. preopen, \(\beta\)-open, semi-preopen) set is said to be semi-closed [?] (resp. preclosed [?], \(\beta\)-closed [?], semi-preclosed [?]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed, \(\beta\)-closed, semi-preclosed) sets of \(X\) containing \(A\) is called the semi-closure [?] (resp. preclosure [?], \(\beta\)-closure [?] or semi-preclosure [?]) of \(A\) and is denoted by \(s\text{Cl}(A)\) (resp. \(p\text{Cl}(A), \beta\text{Cl}(A), s\text{pCl}(A)\)).

Definition 2.4. Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be

1. semi-\(\theta\)-open [?] if for each \(x \in A\) there exists a semi-open set \(U\)
such that \(x \in U \subset s\text{Cl}(U) \subset A \),
(2) pre-\(\theta \)-open \([2] \) if for each \(x \in A \) there exists a preopen set \(U \)
such that \(x \in U \subset p\text{Cl}(U) \subset A \),
(3) semipre-\(\theta \)-open \([2] \) for each \(x \in A \) there exists a semipre-open
set \(U \) such that \(x \in U \subset sp\text{Cl}(U) \subset A \).

3. \(m \)-spaces

Definition 3.1. A subfamily \(m \) of the power set \(P(X) \) of a
nonempty set \(X \) is called an \(m \)-structure on \(X \) if \(m \) satisfies the
following:
(1) \(\emptyset \in m \) and \(X \in m \),
(2) \(\cup_{\alpha \in \Delta} A_\alpha \in m \) whenever \(A_\alpha \in m \) for each \(\alpha \in \Delta \).

We call the pair \((X, m) \) an \(m \)-space. Each member of \(m \) is said
to be \(m \)-open and the complement of an \(m \)-open set is said to be
\(m \)-closed.

Remark 3.2. It should be noted that condition (2) in Definition
3.1 is called property (B) by Maki et al. in \([2] \). In this paper, we
always assume the property (B) on \(m \)-structures.

Remark 3.3. Let \((X, \tau) \) be a topological space. Then the families
\(\tau_\theta, \tau, SO(X), PO(X), \beta(X) \) are all \(m \)-structures on \(X \). It is well-
known that \(\tau_\theta \) is a topology for \(X \).

Definition 3.4. Let \(X \) be a nonempty set and \(m \) an \(m \)-structure
on \(X \). For a subset \(A \) of \(X \), the \(m \)-closure of \(A \) and the \(m \)-interior
of \(A \) are defined in \([2] \) as follows:
(1) \(m\text{Cl}(A) = \cap \{ F \mid A \subset F, X \setminus F \in m \} \),
(2) \(m\text{Int}(A) = \cup \{ U \mid U \subset A, U \in m \} \).

Remark 3.5. Let \((X, \tau) \) be a topological space and \(A \) a subset of
\(X \). If \(m = \tau \) (resp. \(SO(X), PO(X), \beta(X) \)), then we have
(1) \(m\text{Cl}(A) = \text{Cl}(A) \) (resp. \(s\text{Cl}(A), p\text{Cl}(A), \beta\text{Cl}(A) \)),
(2) \(m\text{Int}(A) = \text{Int}(A) \) (resp. \(s\text{Int}(A), p\text{Int}(A), \beta\text{Int}(A) \)).
(cf. Remark 3.10 below for the θ-closure $Cl_\theta(A)$ of A)

Lemma 3.6. (eg. Maki et al. [?]) Let m be an m-structure on a nonempty set X. For subsets A and B of X, the following properties hold:

1. $mCl(X \setminus A) = X \setminus mInt(A)$ and $mInt(X \setminus A) = X \setminus mCl(A)$,
2. $mCl(\emptyset) = \emptyset$, $mCl(X) = X$, $mInt(\emptyset) = \emptyset$ and $mInt(X) = X$,
3. If $A \subset B$, then $mCl(A) \subset mCl(B)$ and $mInt(A) \subset mInt(B)$,
4. $A \subset mCl(A)$ and $mInt(A) \subset A$,
5. $mCl(mCl(A)) = mCl(A)$ and $mInt(mInt(A)) = mInt(A)$.

Lemma 3.7. (Popa and Noiri [?]) Let m be an m-structure on a nonempty set X. Then $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Lemma 3.8. Let m be an m-structure on a nonempty set X. Then for a subset A of X the following properties hold:

1. $A \in m$ if and only if $A = mInt(A)$,
2. A is m-closed if and only if $A = mCl(A)$,
3. $mCl(A)$ is m-closed and $mInt(A)$ is m-open.

Proof. This is an immediate consequence of Lemmas 3.6 and 3.7. □

Definition 3.9. Let A be a subset of an m-space (X, m). A point $x \in X$ is called

1. an m_θ-adherent point of A if $mcl(U) \cap A \neq \emptyset$ for every $U \in m$ containing x,
2. An m_θ-interior point of A if $x \in U \subset mCl(U) \subset A$ for every $U \in m$ containing x.

The set of all m_θ-adherent points of A is called the m_θ-closure [?] of A and is denoted by $mCl_\theta(A)$. If $A = mCl_\theta(A)$, then A is called m-θ-closed. The complement of an m-θ-closed set is said to be m-θ-open. The set of all m_θ-interior points of A is called the m_θ-interior of A and is denoted by $mInt_\theta(A)$.

This is clear that union of m-θ-open sets in X is m-θ-open.
Remark 3.10. (Noiri and Popa [?]). Let A and B be subsets of an m-space (X, m). Then the following properties hold:
(1) $X \setminus \text{Cl}_m(A) = \text{Int}_m(X \setminus A)$ and $X \setminus \text{Int}_m(A) = \text{Cl}_m(X \setminus A)$,
(2) A is open if and only if $A = \text{Int}_m(A)$,
(3) $A \subseteq \text{Cl}_m(A) \subseteq \text{Cl}_m(A)$ and $\text{Int}_m(A) \subseteq \text{Int}_m(A) \subseteq A$,
(4) If $A \subseteq B$, then $\text{Cl}_m(A) \subseteq \text{Cl}_m(B)$ and $\text{Int}_m(A) \subseteq \text{Int}_m(B)$,
(5) If A is m-open, then $\text{Cl}_m(A) = \text{Cl}_m(A)$,
(6) $\text{Cl}_m(A)$ is m-closed and $\text{Int}_m(A)$ is m-open.

4. Some New Separation Axioms

Tong [?] defined a subset A of a topological space (X, τ) to be a D-set if there are two open sets U, V in X such that $U \neq X$ and $A = U \setminus V$. Analogously, we define $m\theta$-D-sets as follows:

Definition 4.1. Let (X, m) be an m-space. A subset $A \subseteq X$ is called an $m\theta$-Difference set (in short $m\theta$-D-set) if there are two $m\theta$-open sets U, V in X such that $U \neq X$ and $A = U \setminus V$.

It is true that every $m\theta$-open set $U \neq X$ is an $m\theta$-D-set since $U = U \setminus \emptyset$.

Definition 4.2. An m-space (X, m) is said to be
(1) $m\theta$-D_0 (resp. $m\theta$-D_1) if for $x, y \in X$ such that $x \neq y$ there exists an $m\theta$-D-set of X containing x but not y or (resp. and) an $m\theta$-D-set containing y but not x,
(2) $m\theta$-D_2 if for $x, y \in X$ such that $x \neq y$ there exist disjoint $m\theta$-D-sets G and E such that $x \in G$ and $y \in E$,
(3) $m\theta$-T_0 (resp. $m\theta$-T_1) if for $x, y \in X$ such that $x \neq y$ there exists an $m\theta$-open set U of X containing x but not y or (resp. and) an $m\theta$-open set V of X containing y but not x,
(4) $m\theta$-T_2 if for $x, y \in X$ such that $x \neq y$ there exist disjoint $m\theta$-open sets U and V such that $x \in U$ and $y \in V$.

Remark 4.3. Let (X, τ) be a topological space. If $m = \tau$, then $m\theta$-$T_1 = \theta$-T_1 [?] and $m\theta$-$T_2 = \theta$-T_2 [?].
Theorem 4.4. For an m-space (X, m), the following properties hold:

1. If (X, m) is $m\theta$-T_i, then it is $m\theta$-T_{i-1} for $i = 1, 2$.
2. If (X, m) is $m\theta$-T_i, then it is $m\theta$-D_i for $i = 0, 1, 2$.
3. If (X, m) is $m\theta$-D_i, then it is $m\theta$-D_{i-1} for $i = 1, 2$.

Proof. This is obvious from Definition 4.2. □

Theorem 4.5. For an m-space (X, m), the following statements are true:

1. (X, m) is $m\theta$-D_0 if and only if (X, m) is $m\theta$-T_0.
2. (X, m) is $m\theta$-D_1 if and only if (X, m) is $m\theta$-D_2.

Proof. The sufficiency for (1) and (2) follows from Theorem 4.4. □

Necessity for (1). Let (X, m) be $m\theta$-D_0 so that for any pair of distinct points x and y of X at least one belongs to an $m\theta$-D-set O. Therefore, we choose $x \in O$ and $y \notin O$. Suppose $O = U \setminus V$ for $U \neq X$ and $m\theta$-open sets U and V. This implies that $x \in U$. For the case that $y \notin O$ we have (i) $y \notin U$, (ii) $y \in U$ and $y \in V$. For (i), the m-space (X, m) is $m\theta$-T_0 since $x \in U$ and $y \notin U$. For (ii), the m-space (X, m) is also $m\theta$-T_0 since $y \in V$ but $x \notin V$.

Necessity for (2). Suppose that (X, m) is $m\theta$-D_1. It follows from the definition that for any distinct points x and y in X there exist $m\theta$-D-sets G and E such that G containing x but not y and E containing y but not x. Let $G = U \setminus V$ and $E = W \setminus D$, where U, V, W and D are $m\theta$-open. By the fact that $x \notin E$, we have two cases, i.e. either $x \notin W$ or both W and D contain x. If $x \notin W$, then from $y \notin G$ either (i) $y \notin U$ or (ii) $y \in U$ and $y \in V$. If (i) is the case, then it follows from $x \in U \setminus V$ that $x \in U \setminus (V \cup W)$, and also it follows from $y \in W \setminus D$ that $y \in W \setminus (U \cup D)$. Thus we have $U \setminus (V \cup W)$ and $W \setminus (U \cup D)$ which are disjoint. If (ii) is the case, it follows that $x \in U \setminus V$ and $y \in V$ since $y \in U$ and $y \in V$. Therefore $(U \setminus V) \cap V = \emptyset$. If $x \in W$ and $x \in D$, we have $y \in W \setminus D$ and $x \in D$. Hence $(W \setminus D) \cap D = \emptyset$. This shows that
X is $m\theta-D_2$.

Definition 4.6. An m-space (X, m) is said to be m-T_2 [2] if for $x, y \in X$ such that $x \neq y$ there exist disjoint m-open sets U and V of X such that $x \in U$ and $y \in V$.

Remark 4.7. Let (X, τ) be a topological space. If $m = \tau$, then $m-T_2 =$ Hausdorff.

Theorem 4.8. For an m-space (X, m), the following properties are equivalent:

1. (X, m) is m-T_2;
2. (X, m) is $m\theta$-T_1;
3. (X, m) is $m\theta$-T_0.

Proof. (1) \Rightarrow (2): Let x and y be any pair of disjoint points of X. For any $z \in X \setminus \{y\}$, by (1) there exist m-open sets U_y and U_z such that $y \in U_y$, $z \in U_z$ and $U_y \cap U_z = \emptyset$. We have $m\text{Cl}(U_y) \cap U_z = \emptyset$ and $z \in U_z \subseteq m\text{Cl}(U_y) \subseteq X \setminus U_y \subseteq X \setminus \{y\}$. Therefore, $X \setminus \{y\}$ is an $m\theta$-θ-open set containing x. Quite similarly, we can show that $X \setminus \{x\}$ is an $m\theta$-θ-open set containing y. Therefore, (X, m) is $m\theta$-T_1.

(2)\Rightarrow (3): This is obvious.

(3)\Rightarrow (1): Suppose that (X, m) is $m\theta$-T_0. For any pair of distinct points x, y, there exists an $m\theta$-θ-open set U such that (1) $x \notin U$ and $y \notin U$ or (2) $x \notin U$ and $y \in U$. In case (1), there exists $U_x \in m$ such that $x \in U_x \subseteq m\text{Cl}(U_x) \subseteq U$. Therefore, $y \in X \setminus U \subset X \setminus m\text{Cl}(U_x)$, $X \setminus m\text{Cl}(U_x)$ is m-open and $U_x \cap (X \setminus m\text{Cl}(U_x)) = \emptyset$. In case (2), similarly, we obtain $U_y \in m$ such that $y \in U_y$, $x \in X \setminus m\text{Cl}(U_y)$ and $U_y \cap (X \setminus m\text{Cl}(U_y)) = \emptyset$. This shows that (X, m) is m-T_2. □

Corollary 4.9. For an m-space (X, m), the following properties are equivalent:

1. (X, m) is $m\theta$-D_2;
2. (X, m) is $m\theta$-D_1;
3. (X, m) is $m\theta$-D_0;
(4) (X, m) is $m\theta$-T_0;
(5) (X, m) is $m\theta$-T_1;
(6) (X, m) is m-T_2.

Proof. This is an immediate consequence of Theorems 4.4, 4.5 and 4.8. □

Corollary 4.10. (Dickman and Porter[?]). For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is Hausdorff;
(2) (X, τ) is θ-T_1;
(3) For each $x \in X$, $Cl_\theta(\{x\}) = \{x\}$.

Proof. This is an immediate consequence of Corollary 4.9. □

Remark 4.11. For a topological space (X, τ), by Corollary 4.9 we have the following diagram:

$$
\begin{array}{c}
T_2 \leftrightarrow \theta-D_2 \\
\uparrow \quad \uparrow \\
\theta-T_1 \leftrightarrow \theta-D_1 \\
\uparrow \quad \uparrow \\
\theta-T_2 \leftrightarrow \theta-D_0
\end{array}
$$

5. Quasi-θ-continuous functions

Definition 5.1. A function $f : (X, m_X) \to (Y, m_Y)$, where X and Y are nonempty sets with m-structures m_X and m_Y, respectively, is said to be
(1) θ-M-continuous [?] at $x \in X$ if for each $V \in m_Y$ containing $f(x)$, there exists $U \in m_X$ containing x such that $f(m_X Cl(U)) \subset m_Y Cl(V)$. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be θ-M-continuous if it has the property at each point $x \in X$.
(2) quasi-θ-M-continuous if for each $x \in X$ and each $m\theta$-open set V containing $f(x)$, there is an $m\theta$-open set U containing x such that $f(U) \subset V$, equivalently, if $f^{-1}(V)$ is $m\theta$-open in (X, τ) for every $m\theta$-open set V of (Y, σ).
Remark 5.2. Let \(f : (X, \tau) \to (Y, \sigma) \) be a function. If \(m_x = \tau \), \(m_Y = \sigma \) and \(f : (X, m_X) \to (Y, m_Y) \) is \(\theta \)-M-continuous (resp. quasi-\(\theta \)-M-continuous), then \(f \) is \(\theta \)-continuous [?] (resp. quasi-\(\theta \)-continuous [?]).

Remark 5.3. (1) A function \(f : (X, \tau) \to (Y, \sigma) \) is quasi-\(\theta \)-continuous if and only if \(f : (X, \tau_\theta) \to (Y, \sigma_\theta) \) is continuous.

(2) It is shown in [?] that every \(\theta \)-continuous function is quasi-\(\theta \)-continuous but the converse is not true.

Theorem 5.4. If \(f : (X, m_X) \to (Y, m_Y) \) is a quasi-\(\theta \)-M-continuous surjection and \(A \) is an \(m\theta-D \)-set in \(Y \), then \(f^{-1}(A) \) is an \(m\theta-D \)-set in \(X \).

Proof. Let \(A \) be an \(m\theta-D \)-set in \(Y \). Then there are \(m\theta \)-open sets \(U \) and \(V \) in \(Y \) such that \(A = U \setminus V \) and \(U \neq Y \). By the quasi-\(\theta \)-M-continuity of \(f \), \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(m\theta \)-open in \(X \). Since \(U \neq Y \) and \(f \) is surjective, we have \(f^{-1}(U) \neq X \). Hence \(f^{-1}(A) = f^{-1}(U) \setminus f^{-1}(V) \) is an \(m\theta-D \)-set. \(\Box \)

We prove now another characterization of \(m\theta-D_1 \) spaces.

Theorem 5.5. An \(m \)-space \((X, m_X)\) is \(m\theta-D_1 \) if and only if, for each pair of distinct points \(x \) and \(y \) in \(X \), there exists a quasi-\(\theta \)-M-continuous surjection \(f \) of \((X, m_X)\) onto an \(m\theta-D_1 \) space \((Y, m_Y)\) such that \(f(x) \neq f(y) \).

Proof. Necessity. For every pair of distinct points of \(X \), it suffices to take the identity function on \(X \).

Sufficiency. Let \(x \) and \(y \) be any pair of distinct points in \(X \). By hypothesis, there exists a quasi-\(\theta \)-M-continuous surjection \(f \) of a space \(X \) onto an \(m\theta-D_1 \) space \(Y \) such that \(f(x) \neq f(y) \). Therefore, by Theorem 4.5 there exist disjoint \(m\theta-D \)-sets \(A_x \) and \(B_y \) in \(Y \) such that \(f(x) \in A_x \) and \(f(y) \in B_y \). Since \(f \) is quasi-\(\theta \)-M-continuous and surjective, by Theorem 5.4, \(f^{-1}(A_x) \) and \(f^{-1}(B_y) \)
are disjoint $m\theta$-D-sets in X containing x and y, respectively. Hence by Theorem 4.5, X is $m\theta$-D_1 space. □

Theorem 5.6. If (Y, m_Y) is $m\theta$-D_1 and $f : (X, m_X) \to (Y, m_Y)$ is a quasi-θ-M-continuous injection, then (X, m_X) is $m\theta$-D_1.

Proof. Let x be any point of X. Since (Y, m_Y) is $m\theta$-D_1, (Y, m_Y) is $m\theta$-T_1 and hence $\{f(x)\}$ is $m\theta$-closed in (Y, σ) by Corollary 4.9. Since f is a quasi-θ-M-continuous injection, $\{x\} = f^{-1}(\{f(x)\})$ is m-θ-closed in (X, m_X). Therefore (X, m_X) is $m\theta$-D_1. □

Corollary 5.7. If $f : (X, m_X) \to (Y, m_Y)$ is a quasi-θ-M-continuous injection and (Y, m_Y) is m-T_2, then (X, m_X) is m-T_2.

Proof. This is an immediate consequence of Corollary 4.9 and Theorem 5.6. □

As corollaries of Theorem 5.5 and 5.6, we obtain the following:

Corollary 5.8. A topological space (X, τ) is θ-D_1 if and only if for each pair of distinct points x and y in X, there exists a quasi-θ-continuous surjection f of X onto a θ-D_1 space (Y, σ) such that $f(x) \neq f(y)$.

Corollary 5.9. If (Y, σ) is θ-D_1 (resp. Hausdorff) and $f : (X, \tau) \to (Y, \sigma)$ is a quasi-θ-continuous injection, then (X, τ) is θ-D_1 (resp. Hausdorff).

References

Some Separation Axiom Via Modified θ-Open Sets

M. Caldas
Departamento de Matematica Aplicada
Universidade Federal Fluminense
Rua Mario Santos Braga
s/n 24020-140
Niteroi
RJ Brasil
e-mail: gmamccs@vm.uff.br

S. Jafari
Department of Mathematics and Physics
Roskilde University
Postbox 260
4000 Roskilde
Denmark
e-mail: sjafari@ruc.dk

T. Noiri
Yatsushiro College of Technology
2627 Hiryama shinmachi
Yatsushiro-shi
Kumamoto-ken
866-8501 Japan
e-mail: noiri@as.yatsushiro-nct.ac.jp