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SOME SEPARATION AXIOMS VIA MODIFIED
6-OPEN SETS

M. CALDAS, S. JAFARI AND T. NOIRI

ABSTRACT. In this paper, we introduce some separation ax-
ioms by utilizing modified #-open sets and obtain a character-
ization of Hausdorff spaces due to Dickman and Porter [?] as
a corollary of the results.

1. Introduction

Velicko [?] introduced the notion of #-open sets and the #-closure
operator to study H-closed spaces. Jankovi¢ [?] investigated several
separation axioms by using #-open sets and the #-closure operator.
Dickman and Porter [?] investigated the relationships among 6-
closed sets, Hausdorff spaces and H-closed spaces. Among others,
they showed that a topological space X is Hausdorff if and only
if for each x € X the singleton {x} is #-closed. Recently, the
following modifications of #-open sets are introduced and studied:
semi-f-open [?], pre-f-open [?] and semipre-f-open [?].

In this paper, by using the notion of m-6-open sets [?], we intro-
duce and investigate separation axioms m#f-Dgy, m#-D; and m6-D,
analogous to Dy, D; and D, due to Tong [?]. As a corollary of
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our results, we obtain a characterization of Hausdorff spaces stated
above.

2. Preliminaries

In what follows (X, 7) and (Y, o) (or X and Y') denote topological
spaces. Let A be a subset of X. We denote the interior, the closure
and the complement of a set A by Int(A), Cl(A) and X \ A or
A€ respectively. A point x € X is called the #-cluster point of A if
ANCIUU) # B for every open set U of X containing x. The set of all
f-cluster points of A is called the #-closure of A , denoted by Cly(A).
A subset A is called #-closed if A = Cly(A). The complement of a
f-closed set is called #-open. We denote the collection of all -open
sets of (X, 7) by 7.

Definition 2.1. Let (X, 7) be a topological space. A subset A of
X is said to be

(1) semi-open [?] if A C Cl(Int(A)),

(2) preopen [?] if A C Int(CI(A)),

(3) B-open [?] or semi-preopen [?] if A C Cl(Int(CI(A))).

The family of all semi-open (resp. preopen, [3-open, semi-preopen)
sets in X is denoted by SO(X) (resp. PO(X), B(X), SPO(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, (3-
open, semi-preopen) set is said to be semi-closed [?] (resp. preclosed
(7], B-closed [?], semi-preclosed [?]).

Definition 2.3. The intersection of all semi-closed (resp. pre-
closed, f-closed, semi-preclosed) sets of X containing A is called
the semi-closure [?] (resp. preclosure [?], [S-closure [?] or semi-
preclosure [?]) of A and is denoted by sCI(A) (resp. pCIl(A),
BCI(A), spCI(A)).

Definition 2.4. Let (X, 7) be a topological space. A subset A of
X is said to be
(1) semi-f-open [?] if for each = € A there exists a semi-open set U
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such that z € U C sCI(U) C A,

(2) pre-@-open [?] if for each x € A there exists a preopen set U
such that z € U C pCIl(U) C A,

(3) semipre-f-open [?] for each = € A there exists a semipre-open
set U such that x € U C spCIl(U) C A.

3. m-spaces

Definition 3.1. A subfamily m of the power set P(X) of a
nonempty set X is called an m-structure on X if m satisfies the
following:

(1) € m and X € m,

(2) Ugen Ay € m whenever A, € m for each o € A.

We call the pair (X, m) an m-space. Each member of m is said
to be m-open and the complement of an m-open set is said to be
m-closed.

Remark 3.2. It should be noted that condition (2) in Definition
3.1 is called property (B) by Maki et al. in [?]. In this paper, we
always assume the property (B) on m-structures.

Remark 3.3. Let (X, 7) be a topological space. Then the families
19, T, SO(X), PO(X), B(X) are all m-structures on X. It is well-
known that 74 is a topology for X.

Definition 3.4. Let X be a nonempty set and m an m-structure
on X. For a subset A of X, the m-closure of A and the m-interior
of A are defined in [?] as follows:

(1) mCl(A)=n{F | AC F,X\F € m},

(2) mInt(A) =U{U |U C A,U € m}.

Remark 3.5. Let (X, 7) be a topological space and A a subset of
X. If m =7 (resp. SO(X), PO(X), (X)), then we have

(1) mCI(A) = CI(A) (resp. sCI(A), pCI(A), BCI(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), fInt(A)).
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(cf. Remark 3.10 below for the #-closure Cly(A) of A)

Lemma 3.6. (eg. Maki et al. [?]) Let m be an m-structure on a
nonempty set X. For subsets A and B of X, the following properties
hold:

(1) mCU(X\A) = X\mInt(A) and mInt(X\A) = X\mCI(A),

(2) mClL(D) =0, mCl(X) = X, mInt(0) =0 and mInt(X) = X,
(3) If A C B, then mCl(A) C mCIl(B) and mInt(A) C mInt(B),
(4) A C mCIl(A) and mInt(A) C A,

(5) mCl(mCI(A)) = mCIl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.7. (Popa and Noiri [?]) Let m be an m-structure on a
nonempty set X. Then x € mCI(A) if and only if UN A # 0 for
every U € m containing x.

Lemma 3.8. Let m be an m-structure on a nonempty set X. Then
for a subset A of X the following properties hold:

(1) A€ m if and only if A =mlInt(A),

(2) A is m-closed if and only if A =mCI(A),

(3) mCI(A) is m-closed and mInt(A) is m-open.

Proof. Thisis an immediate consequence of Lemmas 3.6 and 3.7. O

Definition 3.9. Let A be a subset of an m-space (X, m). A point
x € X is called

(1) an my-adherent point of A if mcl(U) N A # ) for every U € m
containing x,

(2) An my-interior point of A if z € U C mCl(U) C A for every
U € m containing .

The set of all my-adherent points of A is called the my-closure [?]
of A and is denoted by mCly(A). If A =mCly(A), then A is called
m-0-closed. The complement of an m-#-closed set is said to be m-0-
open. The set of all my-interior points of A is called the mg-interior
of A and is denoted by mInty(A).

This is clear that union of m-#-open sets in X is m-f-open.
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Remark 3.10. (Noiri and Popa [?]). Let A and B be subsets of

an m-space (X, m). Then the following properties hold:

(1) X\mClp(A) = mInte(X\A) and X \mInty(A) = mCly(X\A),

(2) A is open if and only if A = mlInty(A),

(3) A C mCI(A) C mCly(A) and mInty(A) C mInt(A) C A,

(4) If A C B, then mCly(A) C mCly(B) and mInty(A) C mInty(B),
(5) If A is m-open, then mCI(A) = mCly(A),

(6) mCly(A) is m-closed and mInty(A) is m-open.

4. Some New Separation Axioms

Tong [?] defined a subset A of a topological space (X, ) to be a
D-set if there are two open sets U, V' in X such that U # X and
A =U\V. Analogously, we define mf-D-sets as follows:

Definition 4.1. Let (X, m) be an m-space. A subset A C X
is called an m#@-Difference set (in short m@-D-set) if there are two
mb-open sets U, V in X such that U # X and A=U\V.

It is true that every mf-open set U # X is an m#-D-set since
U=U\0.

Definition 4.2. An m-space (X, m) is said to be

(1) mB-Dy (resp. mB-Dy) if for z,y € X such that = # y there
exists an mf-D-set of X containing x but not y or (resp. and) an
m#@-D-set containing y but not x,

(2) m#-Dy if for z,y € X such that x # y there exist disjoint m6-
D-sets G and FE such that r € G and y € F,

(3) mb-Ty (resp. mb-T}) if for x,y € X such that x # y there exists
an m@-open set U of X containing x but not y or (resp. and) an
m#@-open set V of X containing y but not =z,

(4) m@-Ty if for z,y € X such that x # y there exist disjoint m6-
open sets U and V such that x € U and y € V.

Remark 4.3. Let (X, 7) be a topological space. If m = 7, then
mQ—TI = Q—Tl [?] and mQ—Tg = 9—T2 [?]
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Theorem 4.4. For an m-space (X, m), the following properties
hold:

(1) If (X, m) is m@-T; , then it is mO-T;_y fori=1,2,

(2) If (X, m) is m@-T; , then it is m@-D; fori=0,1,2,

(3) If (X, m) is mB-D; , then it is m@-D;_y fori=1,2.

Proof. This is obvious from Definition 4.2. O

Theorem 4.5. For an m-space (X, m), the following statements
are true:

(1) (X, m) is mO-Dy if and only if (X, m) is mf-Ty,

(2) (X, m) is mO-Dy if and only if (X, m) is m-Ds.

Proof. The sufficiency for (1) and (2) follows from Theorem 4.4. O

Necessity for (1). Let (X, m) be mf-Dy so that for any pair of dis-
tinct points x and y of X at least one belongs to an m#-D-set O.
Therefore, we choose x € O and y ¢ O. Suppose O = U \ V for
U # X and m-0-open sets U and V. This implies that € U. For
the case that y ¢ O we have (i) y ¢ U, (ii) y € U and y € V. For
(i), the m-space (X, m) is mf-Ty since z € U and y ¢ U. For (ii),
the m-space (X, m) is also mf-T; since y € V but x ¢ V.

Necessity for (2). Suppose that (X, m) is mf-D;. It follows from
the definition that for any distinct points x and y in X there exist
m#-D-sets G and E such that G containing x but not y and E
containing y but not z. Let G =U \ V and E = W \ D, where U,
V, W and D are m-f-open. By the fact that © ¢ E, we have two
cases, i.e. either z ¢ W or both W and D contain z. If z ¢ W,
then from y ¢ G either (i) y ¢ U or (ii) y € U and y € V. If (i)
is the case, then it follows from z € U\ V that x € U \ (VU W),
and also it follows from y € W\ D that y € W \ (U U D). Thus
we have U \ (V UW) and W \ (U U D) which are disjoint. If (ii)
is the case, it follows that © € U\ V and y € V since y € U and
y € V. Therefore (U\ V)NV =0. If z € W and = € D, we have
y € W\ D and x € D. Hence (W \ D) N D = (. This shows that
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X is mb-D,.

Definition 4.6. An m-space (X, m) is said to be m-T; [?] if for
x,y € X such that z # y there exist disjoint m-open sets U and V'
of X such that x € U and y € V.

Remark 4.7. Let (X, 7) be a topological space. If m = 7, then
m-T5 = Hausdorff.

Theorem 4.8. For an m-space (X, m), the following properties
are equivalent:

(1) (X,m) is m-Ty;

(2) (X,m) is mO-T;;

(3) (X, m) is mO-Ty.

Proof. (1) = (2): Let x and y be any pair of disjoint points of X.
For any z € X'\ {y}, by (1) there exist m-open sets U, and U, such
that y € Uy, z € U, and U, N U, = 0. We have mCIl(U,) N U, = ()
and z € U, ¢ mCIl(U,) ¢ X\ U, C X\ {y}. Therefore, X \ {y}
is an m-f-open set containing x. Quite similarly, we can show that
X \ {z} is an m-f-open set containing y. Therefore, (X, m) is mb-
Tl-

(2)= (3): This is obvious.

(3)= (1): Suppose that (X, m) is mf-Ty. For any pair of distinct
points x, y, there exists an m-#-open set U such that (1) z € U and
y¢Uor(2)x ¢ Uandy € U. In case (1), there exists U, € m such
that € U, C mCI1(U,) C U. Therefore, y € X\U C X\mCI(U,),
X \ mCI(U,) is m-open and U, N (X \ mCI1(U,)) = 0. In case (2),
similarly, we obtain U, € m such that y € U,, z € X \ mCI(U,)
and U, N (X \ mCl(U,)) = 0. This shows that (X, m) is m-T5. O

Corollary 4.9. For an m-space (X, m), the following properties
are equivalent:

(1) (X, m) is m@-Ds;

(2)(X,m) is mf-Dy;

(3) (X,m) is m@-Dy;
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(4) (Xa m) is me'TU;
(5) (X,m) is mO-T;;
(6) (X, m) is m-Ts.

Proof. This is an immediate consequence of Theorems 4.4, 4.5 and
4.8. 0

Corollary 4.10. (Dickman and Porter[?]). For a topological space
(X, 7), the following properties are equivalent:

(1) (X, 1) is Hausdorff;

(2) (X,71) is 0-Ty;

(3) For each x € X, Cly({z}) = {z}.

Proof. This is an immediate consequence of Corollary 4.9. O

Remark 4.11. For a topological space (X, 1), by Corollary 4.9 we
have the following diagram:

T2 — 9—D2
0 0
9—T1 — 9—D1

! !

-1, <+— Q—DO

5. Quasi-f-continuous functions

Definition 5.1. A function f: (X, myx) — (Y, my), where X and
Y are nonempty sets with m-structures my and my, respectively,
is said to be

(1) 6-M-continuous [?] at = € X if for each V' € my containing
f(z), there exists U € my containing x such that f(mxCIl(U)) C
myCIl(V). A function f : (X,mx) — (Y, my) is said to be §-M-
continuous if it has the property at each point z € X.

(2) quasi-f-M-continuous if for each x € X and each mf-open set
V' containing f(x), there is an mf-open set U containing z such
that f(U) C V, equivalently , if f~*(V) is m#-open in (X, ) for
every mf-open set V of (Y, o).
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Remark 5.2. Let f: (X,7) — (Y,0) be a function. If m, = 7,
my = o and f : (X,myx) — (Y,my) is 6-M-continuous (resp.
quasi-f-M-continuous), then f is #-continuous [?] (resp. quasi-6-
continuous [?]).

Remark 5.3. (1) A function f : (X,7) — (Y,0) is quasi-6-
continuous if and only if f : (X, ) — (Y, 0p) is continuous.

(2) It is shown in [?] that every @-continuous function is quasi-6-
continuous but the converse is not true.

Theorem 5.4. If f : (X, mx) — (Y, my) is a quasi-0-M -continuous
surjection and A is an m@-D-set in'Y', then f~1(A) is an mf-D-set
in X.

Proof. Let A be an mf-D-set in Y. Then there are mf-open
sets U and V in Y such that A = U\V and U # Y. By the
quasi-0-M-continuity of f, f~'(U) and f~'(V) are mf-open in X.
Since U # Y and f is surjective, we have f~1(U) # X. Hence
YA = FHU)\f (V) is an mf-D-set. O

We prove now another characterization of m#-D; spaces.

Theorem 5.5. An m-space (X, myx) is mf-D; if and only if, for
each pair of distinct points x and y in X, there exists a quasi-0-M -
continuous surjection f of (X, myx) onto an mf-D; space (Y, my)

such that f(x) # f(y).

Proof. Necessity. For every pair of distinct points of X, it suffices
to take the identity function on X.

Sufficiency. Let z and y be any pair of distinct points in X. By
hypothesis, there exists a quasi-f#-M-continuous surjection f of a
space X onto an mf-D; space Y such that f(x) # f(y). There-
fore, by Theorem 4.5 there exist disjoint mf@-D-sets A, and B, in
Y such that f(z) € A, and f(y) € B, . Since f is quasi-0-M-
continuous and surjective, by Theorem 5.4, f~!(A,) and f!(B,)
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are disjoint m#-D-sets in X containing x and y, respectively. Hence
by Theorem 4.5, X is m#-D; space. O

Theorem 5.6. If (Y, my) is mf-D; and f : (X,mx) — (Y, my)
is a quasi-0-M continuous injection, then (X, mx) is mf-D;.

Proof. Let x be any point of X. Since (Y, my) is m#-Dy, (Y, my)
is m@-T; and hence {f(z)} is mf-closed in (Y, o) by Corollary 4.9.
Since f is a quasi-f-M-continuous injection, {z} = f~'({f(z)}) is
m-f-closed in (X, mx). Therefore (X, mx) is mf-D;. O

Corollary 5.7. If f : (X, mx) — (Y, my) is a quasi-0-M -continuous
injection and (Y, my) is m-Ty, then (X, myx) is m-Ts.

Proof. This is an immediate consequence of Corollary 4.9 and
Theorem 5.6. O

As corollaries of Theorem 5.5 and 5.6, we obtain the following:

Corollary 5.8. A topological space (X,T) is 0-Dy if and only if
for each pair of distinct points x and y in X, there exists a quasi-
6-continuous surjection f of X onto a 0-Dy space (Y, o) such that

f(x) # f(y).

Corollary 5.9. If (Y, 0) is0-D; (resp. Hausdorff) and f : (X,7) —
(Y,0) is a quasi-8-continuous injection, then (X, ) is 6-Dy (resp.

Hausdorff).
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