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Abstract. Let G be a finite p-group of order pn and |M(G)| =
p

1
2
n(n−1)−t(G), where M(G) is the Schur multiplier of G and t(G) is a

nonnegative integer. The classification of such groups G is already known
for t(G) ⩽ 6. This paper extends the classification to t(G) = 7.
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1. Introduction

The Schur multiplier of groups was introduced by Schur in 1904 [22] to study
projective representations of groups. Since then, several works have been done
to determine the structure of the Schur multiplier for some classes of groups.
Also, one of the main themes of the group theoretical part of research on the
Schur multipliers of groups has been to determine all p-groups according to
their multipliers.

By a well-known result of Green [9] we know for any group G of order pn for
n ⩾ 1, there exists an integer t(G) ⩾ 0 such that the Schur multiplier M(G)

has order p
1
2n(n−1)−t(G). Those finite p-groups with t(G) = 0 or 1 have been

classified by Berkovich [1]. The classification has been extended to t(G) = 2 by
Zhou [24], and to t(G) = 3 by Ellis [6]. Later the characterization continued for
t(G) = 4 or 5 by Khamseh et al. [17] (Also by Niroomand [19,20]), and finally
for t(G) = 6 by the author [12]. In this article the nonabelian tensor square of
groups and the Lazard correspondence is applied to extend the classification
to t(G) = 7.

Notation:
D8, Q8 = Dihedral or Quaternion group of order 8 respectively;
E1

p3 , E2
p3 = Extra special group of order p3 with exponent p or p2 respectively,

for p odd;
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Ed
22m+1 , E1

p2m+1 = Central product of m copies of D8’s or E
1
p3 ’s;

Eq
22m+1 = Central product of (m− 1) copies of D8’s and a single Q8;

E2
p2m+1 = Central product of (m− 1) copies of E1

p3 ’s and a single E2
p3 ;

GEr
p2+r = Generalized extra special group of order p2+r with exponent pr

and presentation

⟨x, y, z | xp = yp = zp
r

= 1, [x, y] = zp
r−1

, [y, z] = [x, z] = 1⟩;
GEr

p2m+r = Central product of m copies of GEr
p2+r ’s ;

Ti = 2-groups as described in Table 1;
Φi = Isoclinic families of groups of order pn, ( n ⩽ 6, p ̸= 2) given in [14].

Main Theorem. Let G be a group of order pn and |M(G)| = p
1
2n(n−1)−t(G).

Then t(G) = 7 if and only if G is isomorphic with one of the following groups:

n = 5 : Cp3 × (Cp)
2, D8 × C4, T6, T7, T21, T22, T23, T24, Φ2(22)× Cp,

Φ2(221)c, Φ2(221)d, Φ3(211)a× Cp, Φ3(211)br × Cp, Φ3(2111)c,
Φ4(2111)a, Φ4(2111)b, Φ4(2111)c, Φ6(1

5) for p > 3, Φ7(2111)a,
Φ7(2111)br, Φ7(2111)c, Φ9(1

5), Φ10(1
5) for p > 3;

n = 6 : E1
p3 × E1

p3 , Φ11(1
6), Φ13(1

6), Φ15(1
6);

n = 7 : Q8 × (C2)
4, T4 × (C2)

3, Ed
25 × (C2)

2, Eq
25 × (C2)

2, Ed
27 , Eq

27 ,

E1
p5 × (Cp)

2, E2
p5 × (Cp)

2, E2
p3 × (Cp)

4, Φ2(211)b× (Cp)
3, GE2

p6 ×Cp,

E1
p7 , E2

p7 ;

n = 8 : Cp2 × (Cp)
6, D8 × (C2)

5;
n = 9 : E1

p3 × (Cp)
6.

2. Preliminaries

Let G and H be groups acting upon each other in a compatible way, that is,
ghg′ = g(h(g

−1

g′)) and
hgh′ = h(g(h

−1

h′))

for g, g′ ∈ G and h, h′ ∈ H, and acting upon themselves by conjugation. The
nonabelian tensor product G ⊗ H of G and H is a group generated by the
symbols g ⊗ h, where g ∈ G and h ∈ H, with defining relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h) (hg ⊗ hh′)

where g, g′ ∈ G and h, h′ ∈ H. In the case G = H and the actions are
conjugation, G ⊗ G is called nonabelian tensor square of G, this concept of
the nonabelian tensor product of groups was introduced by Brown and Loday
in [3].

It is shown in [2] that for all g, g′, h, h′ ∈ G,

[g, h]⊗ h′ = (g ⊗ h) h′
(g ⊗ h)−1 and g′ ⊗ [g, h] = g′

(g ⊗ h)(g ⊗ h)−1.

Also by [2, Proposition 9], given a central subgroup Z of any group G, there is
an exact sequence

(2.1) (G⊗ Z)× (Z ⊗G)
ι−→ G⊗G −→ G/Z ⊗G/Z −→ 1,
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where ι(g⊗ z, z′ ⊗ g′) = (g⊗ z)(z′ ⊗ g′) for all z, z′ ∈ Z and g, g′ ∈ G. Besides,
if Z ⊆ G′, the above equations imply that the sequence

(2.2) Z ⊗G −→ G⊗G −→ G/Z ⊗G/Z −→ 1

is exact.
In the next theorem, the order of the nonabelian tensor square of a group

G is expressed in terms of the orders of G, M(G) and M(Gab), where Gab is
the derived factor of G.

Theorem 2.1 ([13, Lemma 2.3]). Let G be a d-generator finite p-group.

(i) If p > 2, then |G⊗G| = |G||M(G)||M(Gab)|.

(ii) If p = 2 and Gab ∼=
d∏

i=1

C2ei where 1 ⩽ ei ⩽ ej, for all i, j with 1 ⩽

i ⩽ j ⩽ d, then |G ⊗ G| = 2k|G||M(G)||M(Gab)|, for some nonnegative
integer k ⩽ d.

We recall a bound for the order of the Schur multiplier of finite p-groups.

Theorem 2.2 ([7]). Let G be a d-generator group of order pn. Suppose that
Gab has order pm and exponent pe, and that the central quotient G/Z(G) is a
δ-generator group. Then

|M(G)| ⩽ pd(m−e)/2+(δ−1)(n−m)−max{0,δ−2}.

Finally we recall the Lazard correspondence which is used in proof of
main theorem. It has been known since the 1950s that the Baker–Campbell–
Hausdorff formula gives an isomorphism between the category of nilpotent Lie
rings with order pn and nilpotency class c and the category of finite p-groups
with order pn and nilpotency class c, provided p > c. This is known as the
Lazard correspondence. We will apply an effective version of it [4] to transform
questions on order of the Schur multipliers of p-groups (of class < p) to the
same questions on Lie rings.

3. Proof of the main theorem

Throughout the rest of the paper we always assume that G is a d-generator
group of order pn for n ⩾ 1 with

(3.1) |M(G)| = p
1
2n(n−1)−t(G)

Note that as 1
2n(n− 1)− t(G) ⩾ 0, the equality t(G) = 7 holds only for n ⩾ 5.

We will also assume that G/Z(G) is a δ-generator group, |G′| = pc and the
Frattini subgroup Φ(G) is of order pa so that a = n − d. Ellis [6] established
the following inequalities:

(3.2) 2(t(G)− c(d+ 1− δ)) ⩾ a2 − a and a ⩾ c ⩾ 0, d ⩾ δ

(3.3) 2(t(G)− c) ⩾ a2 − a
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Lemma 3.1. If t(G) = 7, then the possible values of (c, a) are (0, 0), (0, 1),
(0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3) or (3, 3).

Proof. It is readily obtained by inequality (3.3). Also as

c ⩽ a ⩽
√
2t(G)− c

which is given in [7], so that the possibilities with a = 4 do not occur. □
We will prove the main theorem by a series of propositions, each with a

statement detailing the groups satisfying the possible values of (c, a).

Proposition 3.2. If c = 0, then G ∼= Cp3 × (Cp)
2 or Cp2 × (Cp)

6.

Proof. Suppose that (c, a) = (0, 0). Then |M(G)| = p
1
2n(n−1). Therefore

t(G) = 0. If (c, a) = (0, 1), then n ⩾ 2 and |M(G)| = p
1
2 (n−1)(n−2). So

equation (3.1) holds if and only if n = 8 and G ∼= Cp2 × (Cp)
6, similarly for the

case (0, 2) we observe that t(G) = 7 if and only if G ∼= Cp3 × (Cp)
2. Also (3.1)

does not hold when (c, a) = (0, 3). □
Proposition 3.3. If c = 1, then G is isomorphic with one of the following
groups:
D8 × C4, T6, T7, T24, Φ2(22) × Cp, Φ2(221)c, Φ2(221)d, Q8 × (C2)

4, T4 ×
(C2)

3, Ed
25 × (C2)

2, Eq
25 × (C2)

2, Ed
27 , Eq

27 , E1
p5 × (Cp)

2, E2
p5 × (Cp)

2, E2
p3 ×

(Cp)
4, Φ2(211)b× (Cp)

3, GE2
p6 × Cp, E1

p7 , E2
p7 , D8 × (C2)

5, E1
p3 × (Cp)

6.

Proof. Assume (c, a) = (1, 1). By a result of [18, Lemma 2.1] we have t(G) = 7
if and only if G is isomorphic with the groups E1

p7 , E2
p7 , Ed

27 , Eq
27 , Q8 ×

(C2)
4, T4× (C2)

3, Ed
25 × (C2)

2, Eq
25 × (C2)

2, E1
p5 × (Cp)

2, E2
p5 × (Cp)

2, E2
p3 ×

(Cp)
4, Φ2(211)b× (Cp)

3, GE2
p6 × Cp, D8 × (C2)

5 or E1
p3 × (Cp)

6.

Suppose (c, a) = (1, 2). ThenGab ∼= Cp2×(Cp)
n−3 and Theorem 2.2 together

with our hypothesis imply that n = 5. According to the main results of [13],
let |G ⊗ G| = pn(n−1)−l for some non-negative integer l. So it follows from
Theorem 2.1 and [13, Theorem 3.1] that l = 9 when p is odd, and 6 ⩽ l ⩽ 9
when p is even. Hence G ∼= T6, T7, D8 × C4, Φ2(22)× Cp or Φ2(221)c.

Suppose (c, a) = (1, 3). Then Gab ∼= (Cp2)2 × (Cp)
n−5 and by Theorem 2.2

we have n = 5. Therefore Theorem 2.1 and the Remark on [12, p. 541] imply
that G = Φ2(221)d for p > 2 and G = T24 for p = 2. □
Proposition 3.4. If (c, a) = (2, 2), then G is isomorphic with one of the
following groups:
T21, T22, Φ3(211)a×Cp, Φ3(211)br ×Cp, Φ3(2111)c, Φ4(2111)a, Φ4(2111)b,
Φ4(2111)c, Φ7(2111)a, Φ7(2111)br, Φ7(2111)c, E1

p3 ×E1
p3 , Φ13(1

6), Φ15(1
6).

Proof. Suppose (c, a) = (2, 2). Then inequality (3.2) forces d = δ, δ+1 or δ+2.
We will proceed by investigating each of these possibilities.

Case 1. Suppose d = δ. Then it follows from Theorem 2.2 that n ⩽ 8.
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Suppose n = 8. Then G must have exponent p. We claim that there is no
such group that satisfying t(G) = 7. By sequence (2.2), the upper bound of
|G⊗G| given in [11, Theorem 2.3], and by Theorem 2.1 it is sufficient to find
a central subgroup Z of order p such that |Im(Z ⊗G → G⊗G)| ⩽ p5.

We have by [23] that our group G must be a descendant of the following
algebras:

⟨a, b | class 2⟩ ⊕ ⟨c⟩ ⊕ ⟨d⟩ ⊕ ⟨e⟩ ⊕ ⟨f⟩, ⟨a, b, c, d, e, f | class 1⟩

Let G have class three, and let the 6 generators of G be a, b, c, d, e, f . Assume
that modulo the γ3(G), the derived subgroup is generated by [b, a] and that
c, d, e, f are central.

Then we can assume that γ3(G) is generated by [b, a, a] and that [b, a, b] = 1.
All commutators of c, d, e, f with any of a, b, c, d, e, f are powers of [b, a, a].
Replacing c, d, e, f by elements of the form c[b, a]k, d[b, a]l, e[b, a]m, f [b, a]n for
suitable k, l,m, n (as necessary), we can assume that [c, b] = [d, b] = [e, b] =
[f, b] = 1.

So c, d, e, f generate a group which is either abelian, or has class 2 with
derived subgroup ⟨b, a, b⟩. In other words ⟨c, d, e, f⟩ is either abelian or extra-
special. Thus c, d, e, f satisfy one of the following three sets of relations:

(i) c, d, e, f all commute,
(ii) [c, d] = [b, a, a], [c, e] = [c, f ] = [d, e] = [d, f ] = [e, f ] = 1,
(iii) [c, d] = [e, f ] = [b, a, a], [c, e] = [c, f ] = [d, e] = [d, f ] = 1.

In case (i), we can assume that c, d, e, f all commute with a, or that [c, a] =
[b, a, a] and [d, a] = [e, a] = [f, a] = 1.

In case (ii), replacing a by acrds for suitable r, s we can assume that [c, a] =
[d, a] = 1. We either have [e, a] = [f, a] = 1, or [b, e] = [b, a, a], [f, a] = 1.

In case (iii), replacing a by acrdsetfu for suitable r, s, t, u we can assume
that [c, a] = [d, a] = [e, a] = [f, a] = 1.

Therefore for p > 3, just the group

⟨a, b, c, d, e, f | [b, a, b] = [a, c] = [a, d] = [a, e] = [a, f ] = [b, c] = [b, d] = [b, e]

= [b, f ] = [c, e] = [c, f ] = [d, e] = [d, f ] = [e, f ] = 1, [c, d] = [e, f ] = [b, a, a]⟩

satisfies Z(G) ⩽ G′. It has a PC presentation of the form

⟨a1, a2, a3, a4, a5, a6, a7, a8 | [a2, a1] = a7, [a3, a4] = [a5, a6] = [a7, a1] = a8⟩

in which all other commutators are trivial. It is readily obtained that a8⊗a5 =
1. So one can choose Z = ⟨a8⟩. Note that as a8 is central it follows that
the relation [a7, a1] = a8 holds if one turns the Lie ring presentation into its
Lazard correspondence group presentation. Also if two elements of a Lie ring
commute, then so too do the Lazard corresponding elements in the Lazard
correspondence group. If p = 3 then there is no group of exponent 3 which
satisfies our condition by computing the order of Schur multiplier of groups of
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order 38 in GAP [8]. If p = 2, as a group of exponent 2 would be abelian, then
it is a contrary to c = 2.

As Z(G) ⩽ G′ if G has class two, then for an odd prime p it may be generated
by PC generators a1, a2, . . . , a8 such that G′ = ⟨a7, a8⟩ and some of the PC
relations must be [a2, a1] = a7, and [a5, a2] = [a5, a1] = 1. On the other hand
it is readily seen that a7 ⊗ a5 = 1, as desired. As well as the above case, for
p = 2 the same result follows.

Suppose n = 7. Then by the same argument as above we claim that there
is no group G that satisfies t(G) = 7. So it suffices to find a central subgroup
Z of order p such that |Im(Z ⊗G → G ⊗G)| ⩽ p3. As d = 5, it is clear that
G must be a descendant of the algebras 5.1, 6.2 or 6.3 given in [21].

Suppose G is a descendant of 5.1, then it has class two and hence the pre-
sentation of the given Lie ring is the same as its Lazard correspondence group.
It is readily seen that for all cases discussed in [21] except case 4, we have
[a, c] ⊗ e = [a, c] ⊗ d = 1. Therefore taking Z = ⟨[a, c]⟩ it follows that these
groups do not satisfy t(G) = 7. For case 4, if G has exponent p then G ∼= H×Cp

for some subgroup H. Hence by a simple calculation we must have t(H) = 5
contrary to the results of [17]. If the exponent of G is greater than p, then we
have [a, b]⊗e = [a, b]⊗a = 1, [a, b]⊗e = [a, b]⊗b = 1 or [a, b]⊗e = [a, b]⊗c = 1,
as required.

Suppose G is a descendant of the algebra 6.2. For p > 3, as γ3(G) = ⟨ap2⟩
by a similar method discussed above and since either ap

2 ⊗ a = ap
2 ⊗ e = 1 or

ap
2 ⊗ d = ap

2 ⊗ e = 1, the desired result holds.
Finally, suppose G is a descendant of the algebra 6.3. In any case given

in [21] one can show that either [b, a, a]⊗ c = [b, a, a]⊗ d = 1 or [b, a, a]⊗ e =
[b, a, a]⊗ d = 1. So choosing Z = ⟨[b, a, a]⟩ establishes our claim. Note that for
p ⩽ 3 we use GAP to deduce that there is no group G with t(G) = 7.

Suppose n = 6. Then G must belong to one of the isoclinic families of
Φ12,Φ13,Φ15 or Φ22 given in James’s classification of p-groups of order less
than or equal to p6, p ̸= 2 (see [14]). In the family Φ12, if G = Ei

p3 × Ei
p3

for i =1 or 2, then a simple computation implies the group G satisfies our
condition if and only if i = 1. In all other groups of the family Φ12 we have
γi ⊗ αj = γi ⊗ βj = 1 when i ̸= j. Also if αp

1 = γ1, then γ1 ⊗ α1 = 1 and
if αp

1 = γ2 or αp
1 = γ1γ2, then γ2 ⊗ β2 = 1. By putting Z = ⟨γ1⟩ or ⟨γ2⟩ in

sequence (2.2) and applying the bound given in [11, Theorem 2.3], we have
|G⊗G| ⩽ p19. Hence Theorem 2.1 yields t(G) ⩾ 8.

For any group G in the family Φ13 we have β2 ⊗α3 = β2 ⊗α4 = 1. Because
α3 commutes with α2 and α4, and α4 commutes with α1 and α3. Also for any
group G except the group Φ13(1

6) if either β2 = αp
2 or β2 = αp

3, then β2⊗α2 = 1
and if β2 = αp

1 then β2 ⊗ α1 = 1. In addition for the groups Φ13(2211)er and

Φ13(21
4)a we observe β2⊗α2 = β1⊗α3 = αp

1⊗α3 = (α1⊗α3)
p(α1⊗β2)

1
2p(p−1) =

α1 ⊗ αp
3 = 1, and for the group Φ13(21

4)d similarly β2 ⊗ α2 = 1. Thus the
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central subgroup Z = ⟨β2⟩ together with exact sequence (2.2) and Theorem 2.1
imply that t(G) ⩾ 8.

Now we show that the remaining group of this family satisfies our condition.
Let G = Φ13(1

6). We first use the method of [4] to determine a presentation of
its Lazard correspondence Lie ring Lp, which has the same order and nilpotency
class for p ⩾ 3. As the class of G is two, the correspondence Lie ring has the
same presentation. Also the Lie ring Lp may be regarded as a Lie algebra over
the field Zp. So computing the multiplier as in Hardy and Stitzinger [10] yields
that the dimension of the multiplier of Lp is 8. Also the Schur multipliers of
Lp and G are isomorphic by [5]. Therefore t(G) = 7 as claimed.

In the family Φ15 for the group Φ15(2211)a set Z = ⟨β1⟩. It is readily seen

that β1⊗α1 = β1⊗α4 = 1 and β1⊗α3 = αp
1⊗α3 = (α1⊗α3)

p(α1⊗β2)
1
2p(p−1) =

α1 ⊗ αp
3 = 1. Hence t(G) ⩾ 8 by the same argument as above. In group

Φ15(2211)br,s we have β2 ⊗ α2 = β2 ⊗ α3 = 1. Also β1 ⊗ α1 = (β2 ⊗ α1)
−r,

β1 ⊗ α3 = (β2 ⊗ α3)
−r, β1 ⊗ α4 = (β2 ⊗ α4)

−r and β1 ⊗ α2 ∈ ⟨β2 ⊗ α1⟩.
By taking Z = Z(G) we conclude that |Im(Z ⊗ G → G ⊗ G)| ⩽ p2 and
consequently t(G) ⩾ 9. In the groups Φ15(2211)c, Φ15(2211)dr and Φ15(21

4),
since β1 ⊗ α1 = β1 ⊗ α2 = β1 ⊗ α3 = 1, one can deduce that these groups do
not satisfy our condition.

We claim that for the remaining group G = Φ15(1
6) of this family the

condition t(G) = 7 holds. As for the group Φ13(1
6) above, the presentation of

G and its Lazard correspondence Lie ring are the same. So again computing
the multiplier as in [10] yields that the dimension of the multiplier of Lp is 8,
as desired.

Finally in the family Φ22 by the same manner we observe that for all groups
of this family α3 ⊗ α1 = α3 ⊗ α = α3 ⊗ β1 = 1. GAP shows that for groups of
order 26 there is no group G with t(G) = 7. This result is independent of the
values of c, a, d and δ, so we will not repeat it here.

Suppose n = 5. Then our group G must belong to one of the isoclinic
families of Φ4 or Φ7.

In the family Φ4 for the group Φ4(2111)a take Z = ⟨β2⟩, and for the groups
Φ4(2111)b and Φ4(2111)c take Z = ⟨β1⟩. Then obviously G/Z ∼= E1

p3 ×Cp and

|Im(Z⊗G → G⊗G)| = 1. Therefore G⊗G ∼= G/Z⊗G/Z and we conclude that
t(G) = 7 for all of these groups. However, for other groups of this family taking
either Z = ⟨β1⟩ or Z = ⟨β2⟩ it follows that |G⊗G| ⩽ |G/Z⊗G/Z||Im(Z⊗G →
G⊗G)| ⩽ p9+1. Hence none of the remaining groups satisfy our condition.

Suppose G belongs to Φ7. Then for the group G = Φ7(2111)a it is clear that
α3⊗α = α3⊗α1 = α3⊗β = 1 and soG⊗G ∼= G/Z⊗G/Z, where Z = ⟨α3⟩ is the
center ofG. Thus Theorem 2.1 yields |M(G)| = p3 and we obtain t(G) = 7. For
the group G = Φ7(2111)br we have αr

3⊗α = αp
1⊗α = (α1⊗α)p = α1⊗αp = 1,

when p > 3. Also α3⊗α1 = α3⊗β = 1. So again the nonabelian tensor squares
of G and central factor group of G are isomorphic and the required result holds.
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Note that for p = 3, GAP shows t(G) = 7. Similarly for the group Φ7(2111)c
we conclude that t(G) = 7 and finally if G = Φ7(1

5), then t(G) = 6 by results
of [12]. When p = 2 the groups T21 and T22, which are described in Table 1,
satisfy our condition by GAP.

Case 2. Suppose d = δ + 1. Then Theorem 2.2 yields n ⩽ 7.
Suppose n = 7. The calculations in Case 1 show that there is no group with

t(G) = 7.
Suppose n = 6. Then G must belong to one of the families of Φ4 or Φ7. In

the first family as d = 4 put Z = ⟨β2⟩ in the groups G = Φ4(2211)g, Φ4(2211)h
and Φ4(2211)i. Also, we observe that β2⊗α2 = β2⊗α1 = β2⊗α = β2⊗γ = 1.
Therefore |Im(Z ⊗ G → G ⊗ G)| = 1, and |G ⊗ G| ⩽ p18 by [11, Theorem
2.3], whence t(G) ⩾ 9. For the group G = Φ4(21

4)d, using its central subgroup
Z = ⟨β1⟩ we conclude that |Im(Z⊗G → G⊗G)| = 0. So by the same argument
as above one can obtain t(G) ⩾ 9. Also if G ∼= H × Cp for some subgroup H,
we must have t(H) = 5, contrary to the results of [17]. In the family Φ7

only the group G = Φ7(21
4)d has four generators. Obviously if Z = ⟨α3⟩ then

|Im(Z⊗G → G⊗G)| ⩽ p and |G⊗G| ⩽ p19, from which follows that t(G) ⩾ 8.
Suppose n = 5. Then Gmust be in the family Φ3. As d = 3, taking Z = ⟨α3⟩

in group G = Φ3(2111)c we have |Im((Z⊗G)× (G⊗Z) → G⊗G)| = 1. Hence
|G⊗G| = p11 by sequence (2.1) and consequently t(G) = 7 by using Theorem
2.1. Assume G ∼= H×Cp where H is a subgroup of G, then it follows by a direct
computation that t(H) = 5 which implies that H = Φ3(211)a or Φ3(211)br by
the results of [17]. Therefore for these groups we have t(G) = 7. When p = 2,
t(T23) = 7 from GAP.

Case 3. Suppose d = δ + 2. Then n = 6 by Theorem 2.2 and our group G
must belong to the family Φ3. Since d = 4, the group G can be expressed as
the direct product of its subgroups and one can easily check that none of these
groups satisfy our condition. □

Proposition 3.5. There exists no group with (c, a) = (2, 3).

Proof. Suppose (c, a) = (2, 3). Then d = n−3 and it follows from the equation
(3.2) and Theorem 2.2 that n = 5 and d = δ = 2. So our group G must belong
to one of the families Φ3 or Φ8. For groups of the first family, substituting α3

by [α2, α] (or α
r
3 by [α2, α]

r) and using the fact that α2 ⊗ α2 = 1, we observe
that α3 ⊗ α1 = 1. Also by putting Z = ⟨α3⟩, from [13, Theorem 3.1], we know
that the group G/Z ⊗ G/Z has order at most p7. Hence |G ⊗ G| ⩽ p8 and
t(G) ⩾ 8. For the only group in family Φ8, set Z = ⟨βp⟩. As βp ⊗ α1 = 1 we
have again that |G ⊗ G| ⩽ p8, and so t(G) ̸= 7. As well as p > 2, there is no
group for p = 2 by GAP. □

Proposition 3.6. If (c, a) = (3, 3), then G is isomorphic with one of the groups
Φ6(1

5) for p > 3, Φ9(1
5), Φ10(1

5) for p > 3 or Φ11(1
6).
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Proof. Suppose (c, a) = (3, 3). Clearly d = δ = n − 3 from the equation (3.2)
and Theorem 2.2 yields n ⩽ 6.

Suppose n = 6. The condition t(G) = 7 forces |G ⊗ G| = p17 by 2.1.
Therefore G = Φ11(1

6) by [11, Theorem 3.1].
Suppose n = 5. Then we must have |G ⊗ G| = p9 by 2.1. So again [11,

Theorem 3.1] implies that G = Φ6(1
5) for p > 3, Φ9(1

5) or Φ10(1
5) for p > 3.

It follows from GAP that the condition t(G) = 7 does not hold when p is
even. □

Table 1.

Name Relations SmallGroup (c, a)

T4 a4 = b2 = c2 = 1, [b, c] = a2, [a, b] = [a, c] = 1 (16, 13) (1, 1)

T6 a4 = b4 = c2 = 1, [a, b] = a2, [a, c] = [b, c] = 1 (32, 23) (1, 2)

T7 b2 = c4 = 1, [b, c] = a2, [a, b] = [a, c] = 1 (32, 24) (1, 2)

T21 a4 = b2 = c2 = 1, [a, c] = a2, [a, b] = [b, c, c] = 1 (32, 28) (2, 2)

T22 b4 = c2 = 1, [c, a] = a−2, [b, c]b2 = a2, [a, b] = 1 (32, 31) (2, 2)

T23 a8 = b2 = c2 = 1, [a, b] = a−2, [a, c] = [b, c] = 1 (32, 39) (2, 2)

T24 a4 = b4 = 1, [a, b]2 = 1, [a, b, a] = [a, b, b] = 1 (32, 2) (1, 3)

Acknowledgments

I am grateful to the referee for the helpful suggestions. I also thank Prof.
Michael Vaughan-Lee for giving valuable comments and references.

References

[1] Ya.G. Berkovich, On the order of the commutator subgroups and the Schur multiplier
of a finite p-group, J. Algebra 144 (1991) 269–272.

[2] R. Brown, D.L. Johnson and E.F. Robertson, Some computations of nonabelian tensor
products of groups, J. Algebra 111 (1987) 177–202.

[3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26
(1987) 311-335.
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