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1. Introduction

Let D a ring, A a nonempty set and H ⊆ A×A a quasi-ordering on A. Set

MH(D) = {A ∈ MA×A(D) | ∀(i, j) ̸∈ H, Aij = 0},
which is called a structural matrix ring. By the Wedderburn-Artin Theorem,
every primitive Artinian ring is isomorphic to MH(D) for a division ring D,
a finite set A and H = A × A. In this paper we generalize this theorem
to every quasi-ordering H and weaken the primitiveness condition. Also we
determine the relation between the structure of H and certain ideals of the ring.
Structural matrix rings have been investigated since they provide examples
and counterexamples in ring theory, and for their connection to PI algebra.
Structural matrix rings include the ring of triangular matrices and the ring of
blocked triangular matrices, as well as the complete matrix rings when H is
chosen appropriately. MH(D) has been studied in [2, 3, 5] and [6].

In this paper, for any additive groups U , V and W , any X ⊆ U , Z ⊆ W
and multiplication U × V −→ W , we set (Z : X) = {v ∈ V | Xv ⊆ Z}
and annV (X) = {v ∈ V | Xv = 0}. For the case V × V −→ W , we set
(Z :X)r = {v ∈ V | Xv ⊆ Z} and annr(X) = {v ∈ V | Xv = 0}. For any

family S of subsets of a set, we set Int(S) =
∩
I∈S

I and Un(S) =
∪
I∈S

I.

Also, for a class C of subgroups and a subgroup L of an additive group, the
sum of C-subgroups not containing L is denoted by NovC(L) and the sum of
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C-subgroups properly contained in L is denoted by TpC(L). If the group is
a module, and C is the class of submdules, then we simply use the notations
Nov(L) and Tp(L), respectively.

2. Preliminaries

Definition 2.1. Let A be a nonempty set and let H ⊆ A × A be a quasi-
ordering.

(1) For every b ∈ A we set l(b) = {c ∈ A | (c, b) ∈ H}.
(2) For every a ∈ A we set r(a) = {c ∈ A | (a, c) ∈ H}.
(3) We set □H = {B ⊆ A | ∀x ∈ A(x ∈ B ⇒ l(x) ⊆ B)}.
(4) We set H□ = {B ⊆ A | ∀x ∈ A(x ∈ B ⇒ r(x) ⊆ B)}.
(5) H is called indecomposable if □H ∩H□ = {∅,A}.
(6) H is called triangular if for every a, b ∈ A, either (a, b) ∈ H or (b, a) ∈

H.

It is clear that for every a ∈ A we have a ∈ l(a) ∩ r(a), l(a) ∈ □H and
r(a) ∈ H□.

Definition 2.2. Let D be a division ring, DU a vector space and A a basis
for DU .

(1) For every X ⊆ U , the subspace generated by X is denoted by ⟨X⟩.
(2) For every X ⊆ U we set X∗ = Int{B ⊆ A | X ⊆ ⟨B⟩}.
It is easy to see that for every B, C ⊆ A, ⟨B⟩ ⊆ ⟨C⟩ if and only if B ⊆ C.

Lemma 2.3. Let A be a nonempty set, H ⊆ A×A a quasi-ordering and a ∈ A.
Then,

(1) l(a)− r(a) ∈ □H.
(2) For every B ∈ □H, B ⊂ l(a) implies B ⊆ l(a)− r(a).
(3) l(a)− r(a) ⊂ l(a).

Proof. Straightforward. □

Lemma 2.4. Let A be a nonempty set and H ⊆ A×A a quasi-ordering.

(1) □H and H□ are closed under intersection and union.
(2) For each a ∈ A, l(a) = Int{B ∈ □H | a ∈ B}.

Proof. Straightforward. □

Lemma 2.5. Let A be a nonempty set, H ⊆ A × A a quasi-ordering and
B ∈ □H. The following conditions are equivalent

(1) There exists b ∈ A with B = l(b).
(2) Un{C ∈ □H | C ⊂ B} ⊂ B.
(3) B ̸⊆ Un{C ∈ □H | B ̸⊆ C}.
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Proof. (1) ⇒ (3) For every C ∈ □H with l(b) ̸⊆ C we have b ̸∈ C. So b ̸∈ Un{C ∈
□H | B ̸⊆ C}. Thus B ̸⊆ Un{C ∈ □H | B ̸⊆ C}.
(3) ⇒ (1) Consider b ∈ B such that b ̸∈ Un{C ∈ □H | B ̸⊆ C}. If B ̸⊆ l(b),

then l(b) ∈ {C ∈ □H | B ̸⊆ C}, so b ∈ l(b) ⊆ Un{C ∈ □H | B ̸⊆ C} which is a
contradiction. Thus B ⊆ l(b), consequently, B = l(b). □
Lemma 2.6. Let A be a nonempty set and let H and E be quasi-orderings on
A. If □H = □E, then H = E.

Proof. Follows from Lemma 2.5. □
Lemma 2.7. Let A be a nonempty set and Q ⊆ P(A). If A ∈ Q and Q is
closed under intersection and union, then there exists one and only one quasi-
ordering H ⊆ A×A such that □H = Q.

Proof. For every a ∈ A we set Ga = Int({N ∈ Q | a ∈ N}). Clearly for every
a ∈ A and N ∈ Q, a ∈ Ga ∈ Q. Also a ∈ N implies Ga ⊆ N . Now we set
H = {(c, a) | a ∈ A, c ∈ Ga}. It is easy to see that H is a quasi-ordering on A
and for every a ∈ A, l(a) = Ga implies Ga ∈ □H and l(a) ∈ Q. Let N ∈ Q.
We have N = Un{Ga | a ∈ A}, so N ∈ □H. Finally let B ∈ □H. We have
B = Un{l(a) | a ∈ B} by Lemma 2.5, implying B ∈ Q. Thus □H = Q. The
uniqueness follows from Lemma 2.6. □

Proposition 2.8. Let D be a division ring and DU a vector space. If Q is a
set of subspaces such that

(1) For every chain P ⊆ Q, Un(P ) ∈ Q.
(2) For every K,L ∈ Q, K ∩ L ∈ Q and K + L ∈ Q.
(3) For every K,L,N ∈ Q, K ⊆ L+N and K ∩ L ⊆ N implies K ⊆ N .
(4) Every nonempty subset of Q has a minimal element.
(5) 0, U ∈ Q.

Then there exists a basis A for DU such that Q ⊆ {⟨C⟩ | C ⊆ A}. Also for
every K,L,N ∈ Q we have K ∩ (L+N) = K ∩ L+K ∩N .

Proof. Let T be the set of linearly independent sets B ⊆ U such that ⟨B⟩ ∈ Q
and for every L ∈ Q, L ⊆ ⟨B⟩ implies ⟨L ∩ B⟩ = L. Clearly ∅ ∈ T , so T ̸= ∅.
Also for every B ∈ T and L ∈ Q we have L ∩ ⟨B⟩ ∈ Q and L ∩ ⟨B⟩ ⊆ ⟨B⟩, so
L ∩ ⟨B⟩ = ⟨L ∩ ⟨B⟩ ∩ B⟩ = ⟨L ∩ B⟩by the nature of T .

First we show that T has a maximal memberA by applying the Zorn Lemma.
Let P ⊆ T be a chain. Set C = Un(P ). We show that C ∈ T . Clearly C is
linearly idependent. Also ⟨C⟩ = Un{⟨B⟩ | B ∈ P}. Let L ∈ Q with L ⊆ ⟨C⟩. It
is enough to show that L ⊆ ⟨L ∩ C⟩. Suppose l ∈ L ∩ ⟨C⟩. There exists B ∈ P
such that l ∈ ⟨B⟩. Then l ∈ L ∩ ⟨B⟩ = ⟨L ∩ B⟩ ⊆ ⟨L ∩ C⟩.

Now we show that ⟨A⟩ = U . Assume that it is not so. The set {N ∈ Q | N ̸⊆
⟨A⟩} has a minimal member J . There exists C ⊆ J such that (J ∩ A) ∩ C = ∅
and (J ∩ A) ∪ C is a basis for J . It is clear that J = ⟨J ∩ A⟩ ⊕ ⟨C⟩, A ∩ C = ∅
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and ⟨A ∪ C⟩ = ⟨A⟩ + J ∈ Q. Showing A ∪ C ∈ T completes the proof. Let
L ∈ Q with L ⊆ ⟨A∪ C⟩. We may assume that L ̸⊆ ⟨A⟩. Then L∩ J ̸⊆ ⟨A⟩ by
the nature of Q, so L ∩ J = J , thus J ⊆ L, implying C ⊆ L. Consequently,

L = (L⟨L ∩ A⟩ ∩ ⟨A⟩) + J = ⟨L ∩ A⟩+ ⟨J ∩ A⟩⟨C⟩ =

⟨L ∩ A⟩+ ⟨C⟩ = ⟨(L ∩ A) ∪ C⟩ = ⟨L ∩ (A ∪ C)⟩.
□

3. Main Results

Definition 3.1. Let D and S be rings. A bimodule DUS is called left stable
if for every f ∈ End(US) there exists d ∈ D such that f(x) = dx for all x ∈ U .

Definition 3.2. Let D a division ring, DU a vector space, A a basis for DU
and H ⊆ A×A be a quasi-ordering. We set

EndH(DU) = {f ∈ End(DU) | ∀a ∈ A, f(a) ∈ ⟨l(a)⟩}.

Lemma 3.3. Let D be a division ring, DU a vector space, A a basis for DU
and let H ⊆ A × A be a quasi-ordering. If S is a subring of End(US)

op such
that {⟨B⟩ | B ∈ □H} is the set of submodules of US and for every v ∈ U we
have v ∈ vS, then

(1) For every a ∈ A we have aS ∈ ⟨l(a)⟩.
(2) For every v ∈ U , v∗ ⊆ vS.
(3) For every a ∈ A and every submodule N , a ∈ ⟨A − {a}⟩ + N implies

a ∈ N .
(4) For every submodule L, L ̸⊆ Nov(L) if and only if L = ⟨l(a)⟩ for some

a ∈ A.
(5) H is indecomposable if and only if US is an indecomposable module.
(6) H is triangular if and only if US is a uniserial module.
(7) H = A×A if and only if US is a simple module.

Proof. It is easy to see that N is a submodule if and only if N ∩ A ⊆ □H and
N = ⟨N ∩ A⟩.

(1) We have a ∈ ⟨l(a)⟩ and ⟨l(a)⟩ is a submodule, so aS ⊆ ⟨l(a)⟩. On the
other hand aS ∩ A ∈ □H and a ∈ aS ∩ A, so l(a) ⊆ aS ∩ A. Consequently,
⟨l(a)⟩ ⊆ ⟨aS ∩ A⟩ = aS.

(2) We have v ∈ vS = ⟨vS ∩ A⟩, so v∗ ⊆ vS ∩ A ⊆ vS.
(3) There exist ai ∈ A − {a}, 0 ̸= di ∈ D and u ∈ N such that a =∑n
i=1 diai + u, then a−

∑n
i=1 diai = u, implying a ∈ u∗ ⊆ uS ⊆ N by (2).

(4) Follows from Lemma 2.5.
(5⇒) Let N and K be submodules, N ̸= 0 and U = N ⊕K. Set B = N ∩A

and C = K ∩ A. We have B, C ∈ □H, B ̸= ∅, B ∪ C = A and B ∩ C = ∅, so
B = A− C ∈ H□, thus B = A, implying N = U .
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(5⇐) Let ∅ ̸= B ∈ □H ∩ H□. Set C = A − B. Then C ∈ □H, so ⟨B⟩ and
⟨C⟩ are submodules with U = ⟨B⟩ ⊕ ⟨C⟩, thus ⟨C⟩ = 0, implying C = ∅. Thus
B = A.

(6⇒) Let N and K be submodules and N ̸⊆ K. Set B = N ∩ A and
C = K ∩A. We have B, C ∈ □H and B ̸⊆ C . Consider b ∈ B with b ̸∈ C. Then
l(b) ̸⊆ C, so C ⊆ l(b) ⊆ B, implying K = ⟨C⟩ ⊆ ⟨B⟩ = N .

(6⇐) Let a, b ∈ A. We have either ⟨l(a)⟩ ⊆ ⟨l(b)⟩ or ⟨l(b)⟩ ⊆ ⟨l(a)⟩, then
l(a) ⊆ l(b) or l(b) ⊆ l(a), so a ∈ l(b) or b ∈ l(a).

(7⇒) For every a ∈ A we have l(a) = A, so □H = {A, ∅}. Thus the only
submodules of U are ⟨A⟩ = U and ⟨∅⟩ = 0.

(7⇐) Let a ∈ A. We have ⟨l(a)⟩ = U so, l(a) = A. Thus H = A×A. □

Proposition 3.4. Assume that the conditions of Lemma 3.3 are satisfied. If

DUS is left stable and for every S-submodule L with L ̸⊆ Nov(L), every S-
submodule N and every S-module homomorphism f : L −→ U/N , there exists
a S-module homomorphism f : U −→ U such that f(x) = f(x) +N , then for
every S-submodule N and every finite set P ⊆ A we have (N : annS(⟨P ⟩)) =
⟨P ⟩+N .

Proof. We use induction on n = |P |. It is obvious for the case n = 0. Now let
n ≥ 1. Consider a ∈ P , set W = ⟨P − {a}⟩ and I = annS(W ). We have

a ∈ (aI :I) = W + aI ⊆ ⟨A − {a}⟩+ aI

by the induction hypothesis, so a ∈ aI by Lemma 3.3. Thus, aI = aS = ⟨l(a)⟩
by Lemma 3.3. Let v ∈ (N : annS(⟨P ⟩)). The map θ : aI −→ U/N given by
θ(ax) = vx+N is a well defined S-module homomorphism, so there exists d ∈ D
such that dax + N = vx + N for all x ∈ I. Thus, (v − da)I ⊆ N , implying
(v − da) ∈ (N : I) = W + N by the induction hypothesis. Consequently,
v ∈ W +Da+N = ⟨P ⟩+N . Therefore, (N :annS(⟨P ⟩)) ⊆ ⟨P ⟩+N . □

Corollary 3.5. Assume that the conditions of Proposition 3.4 are satisfied.
For every finite set P ⊆ A and every a ∈ A− P we have a ∈ aannS(⟨P ⟩).

Proof. Set N = aannS(⟨P ⟩). By Proposition 3.4 we have

a ∈ (N :annS(⟨P ⟩)) = ⟨P ⟩+N ⊆ ⟨A − {a}⟩+N.

Thus, a ∈ N by Lemma 3.3. □

Proposition 3.6. Let D be a division ring, DU a vector space and S a right
Artinian subring of End(US)

op. If

(1) For every v ∈ U we have v ∈ vS.
(2) For every submodules K, L and N , K ⊆ L +N and K ∩ L ⊆ N imply

K ⊆ N .
(3) US is an Artinian Duo module.
(4) DUS is left stable .
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(5) For every S-submodule L with L ̸⊆ Nov(L), every S-submodule N and
every S-module homomorphism f : L −→ U/N , there exists a S-module
homomorphism f : U −→ U such that f(x) = f(x) +N .

Then there exists a finite basis A for DU and an indecomposable quasi-ordering
H on A such that S = EndH(DU)op and {⟨B⟩ | B ∈ □H} is the set of submod-
ules of US.

Proof. We denote the set of S-submodules by Q. Every S-submodule is a
subspace, so there exists a basis A for DU such that Q ⊆ {⟨C⟩ | C ⊆ A}
by Proposition 2.8. Then there exists a quasi-ordering H on A such that
Q = {⟨B⟩ | B ∈ □H} by Lemma 2.7. We claim that A is finite. Assume it is
not so. Then, A contains an infinite subset {an | n ≥ 1}. For every finite set
P ⊆ A, annU (annS(P )) = ⟨P ⟩ by Proposition 3.4, so

annS(a1) ⊃ annS(a1, a2) ⊃ annS(a1, a2) · · · ,
which is a contradiction. Let a ∈ A. Set I = annS(A − {a}). Then, a ∈ aI
by Corollary 3.5, so there exists ra ∈ I with a = ara and (A − {a})ra = 0.
Now let f ∈ EndH(DU)op. Then, f(a) ∈ ⟨l(a)⟩ = aS by Lemma 3.3, so there
exists sa ∈ S with f(a) = asa. Set r =

∑
a∈A rasa, then f = r ∈ S. Thus

EndH(DU)op ⊆ S, consequently, S = EndH(DU)op. Finally, it is easy to see
that D ∼= End(US), so US is indecomposable and thus, H is indecomposable
by Lemma 3.3. □
Lemma 3.7. Let D be a ring with unit and let DU be a free module with a
basis A. There exists an isomorphism ∆ : End(DU) −→ MA×A(D

op) such that

for every f ∈ End(DU) and a ∈ A, f(a) =
∑
b∈A

∆(f)bab. In this case, for every

quasi-ordering H on A we have ∆(EndH(DU)) = MH(Dop).

Proof. Straightforward. □
Theorem 3.8. Let R be a left Artinian ring. If there exists a nonzero faithful
Artinian Duo module U such that

(1) For every v ∈ U we have v ∈ Rv.
(2) For every submodules K, L and N , K ⊆ L+N and K ∩L ⊆ N implies

K ⊆ N .
(3) End(RU) is a division ring.
(4) For every submodule L with L ̸⊆ Nov(L), every submodule N and every

homomorphism f : L −→ U/N , there exists a homomorphism f : U −→
U such that f(x) = f(x) +N .

Then R is isomorphic to MH(D) for a division ring D, a nonempty finite set
A and an indecomposable quasi -ordering H on A.

Proof. Set D = End(URop) and consider the ring monomorphism β : R −→
End(DU) given by β(r)(u) = ur and set S = β(Rop). Then S is a right
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Artinian subring of End(DU)op, D is a division ring and DUS is a left stable
bimodule. Thus S = EndH(DU)op by Proposition 3.6. Applying Lemma 3.7
completes the proof. □

Notice that distributive modules in [1] satisfy (2). For more information on
(3), we refer to [4].

Theorem 3.9. Let R be a left Artinian ring. If there exists a nonzero faithful
Artinian uniserial Duo module U such that

(1) For every v ∈ U we have v ∈ Rv.
(2) End(RU) is a division ring.
(3) For every submodule L with L ̸⊆ Nov(L), every submodule N and every

homomorphism f : L −→ U/N , there exists a homomorphism f : U −→
U such that f(x) = f(x) +N .

Then R is isomorphic to a complete blocked triangular matrix over a division
ring.

Proof. Set D = End(URop) and consider the ring monomorphism β : R −→
End(DU) given by β(r)(u) = ur and set S = β(Rop). Then S is a right Artinian
subring of End(DU)op, D is a division ring and DUS is a left stable bimodule.
Thus S = EndH(DU)op and {⟨B⟩ | B ∈ □H} is the set of submodules of US

by Proposition 3.6. Consequently, H is triangular by Lemma 3.3. Applying
Lemma 3.7 completes the proof. □

The Wedderburn-Artin Theorem can be derived from Theorem 3.8 and
Lemma 3.3.
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