ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 7, pp. 2577-2583

Title:

An extension of the Wedderburn-Artin Theorem

Author(s):

H. Khabazian

Published by the Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 7, pp. 2577–2583 Online ISSN: 1735-8515

AN EXTENSION OF THE WEDDERBURN-ARTIN THEOREM

H. KHABAZIAN

(Communicated by Rahim Zaare-Nahandi)

ABSTRACT. In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring. Keywords: Duo, artinian, distributive, uniserial, structural matrix. MSC(2010): Primary: 16D60; Secondary: 16G10, 16P20, 16S50.

1. Introduction

Let D a ring, A a nonempty set and $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ a quasi-ordering on A. Set

$$\mathcal{M}_{\mathcal{H}}(D) = \{ A \in \mathcal{M}_{\mathcal{A} \times \mathcal{A}}(D) \mid \forall (i, j) \notin \mathcal{H}, A_{ij} = 0 \},\$$

which is called a structural matrix ring. By the Wedderburn-Artin Theorem, every primitive Artinian ring is isomorphic to $M_{\mathcal{H}}(D)$ for a division ring D, a finite set \mathcal{A} and $\mathcal{H} = \mathcal{A} \times \mathcal{A}$. In this paper we generalize this theorem to every quasi-ordering \mathcal{H} and weaken the primitiveness condition. Also we determine the relation between the structure of \mathcal{H} and certain ideals of the ring. Structural matrix rings have been investigated since they provide examples and counterexamples in ring theory, and for their connection to **PI** algebra. Structural matrix rings include the ring of triangular matrices and the ring of blocked triangular matrices, as well as the complete matrix rings when \mathcal{H} is chosen appropriately. $M_{\mathcal{H}}(D)$ has been studied in [2, 3, 5] and [6].

In this paper, for any additive groups U, V and W, any $X \subseteq U, Z \subseteq W$ and multiplication $U \times V \longrightarrow W$, we set $(Z : X) = \{v \in V \mid Xv \subseteq Z\}$ and $\operatorname{ann}_V(X) = \{v \in V \mid Xv = 0\}$. For the case $V \times V \longrightarrow W$, we set $(Z : X)_r = \{v \in V \mid Xv \subseteq Z\}$ and $\operatorname{ann}_r(X) = \{v \in V \mid Xv = 0\}$. For any family S of subsets of a set, we set $\operatorname{Int}(S) = \bigcap_{I \in S} I$ and $\operatorname{Un}(S) = \bigcup_{I \in S} I$.

Also, for a class C of subgroups and a subgroup L of an additive group, the sum of C-subgroups not containing L is denoted by Nov_C(L) and the sum of

©2017 Iranian Mathematical Society

Article electronically published on December 30, 2017.

Received: 6 February 2017, Accepted: 5 January 2018.

²⁵⁷⁷

C-subgroups properly contained in L is denoted by $\operatorname{Tp}_{\mathcal{C}}(L)$. If the group is a module, and \mathcal{C} is the class of submdules, then we simply use the notations $\operatorname{Nov}(L)$ and $\operatorname{Tp}(L)$, respectively.

2. Preliminaries

Definition 2.1. Let \mathcal{A} be a nonempty set and let $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ be a quasiordering.

- (1) For every $b \in \mathcal{A}$ we set $l(b) = \{c \in \mathcal{A} \mid (c, b) \in \mathcal{H}\}.$
- (2) For every $a \in \mathcal{A}$ we set $r(a) = \{c \in \mathcal{A} \mid (a, c) \in \mathcal{H}\}.$
- (3) We set $\Box \mathcal{H} = \{ \mathcal{B} \subseteq \mathcal{A} \mid \forall x \in \mathcal{A} (x \in \mathcal{B} \Rightarrow l(x) \subseteq \mathcal{B}) \}.$
- (4) We set $\mathcal{H}_{\Box} = \{ \mathcal{B} \subseteq \mathcal{A} \mid \forall x \in \mathcal{A} (x \in \mathcal{B} \Rightarrow \mathbf{r}(x) \subseteq \mathcal{B}) \}.$
- (5) \mathcal{H} is called **indecomposable** if $\Box \mathcal{H} \cap \mathcal{H}_{\Box} = \{\emptyset, \mathcal{A}\}.$
- (6) \mathcal{H} is called **triangular** if for every $a, b \in \mathcal{A}$, either $(a, b) \in \mathcal{H}$ or $(b, a) \in \mathcal{H}$.

It is clear that for every $a \in \mathcal{A}$ we have $a \in l(a) \cap r(a)$, $l(a) \in \Box \mathcal{H}$ and $r(a) \in \mathcal{H}_{\Box}$.

Definition 2.2. Let *D* be a division ring, ${}_{D}U$ a vector space and \mathcal{A} a basis for ${}_{D}U$.

- (1) For every $X \subseteq U$, the subspace generated by X is denoted by $\langle X \rangle$.
- (2) For every $X \subseteq U$ we set $X^* = \text{Int}\{\mathcal{B} \subseteq \mathcal{A} \mid X \subseteq \langle \mathcal{B} \rangle\}.$

It is easy to see that for every $\mathcal{B}, \mathcal{C} \subseteq \mathcal{A}, \langle \mathcal{B} \rangle \subseteq \langle \mathcal{C} \rangle$ if and only if $\mathcal{B} \subseteq \mathcal{C}$.

Lemma 2.3. Let \mathcal{A} be a nonempty set, $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ a quasi-ordering and $a \in \mathcal{A}$. Then,

(1) $l(a) - r(a) \in \Box \mathcal{H}$. (2) For every $\mathcal{B} \in \Box \mathcal{H}$, $\mathcal{B} \subset l(a)$ implies $\mathcal{B} \subseteq l(a) - r(a)$. (3) $l(a) - r(a) \subset l(a)$.

Proof. Straightforward.

Lemma 2.4. Let \mathcal{A} be a nonempty set and $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ a quasi-ordering.

(1) $\square \mathcal{H}$ and \mathcal{H}_{\square} are closed under intersection and union.

(2) For each $a \in \mathcal{A}$, $l(a) = Int\{\mathcal{B} \in \Box \mathcal{H} \mid a \in \mathcal{B}\}.$

Proof. Straightforward.

Lemma 2.5. Let \mathcal{A} be a nonempty set, $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ a quasi-ordering and $\mathcal{B} \in \Box \mathcal{H}$. The following conditions are equivalent

- (1) There exists $b \in \mathcal{A}$ with $\mathcal{B} = l(b)$.
- (2) $\operatorname{Un}\{\mathcal{C}\in \Box\mathcal{H}\mid \mathcal{C}\subset \mathcal{B}\}\subset \mathcal{B}.$
- (3) $\mathcal{B} \not\subseteq \operatorname{Un} \{ \mathcal{C} \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq \mathcal{C} \}.$

Khabazian

Proof. (1) \Rightarrow (3) For every $C \in \Box \mathcal{H}$ with $l(b) \not\subseteq C$ we have $b \notin C$. So $b \notin \mathrm{Un}\{C \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq C\}$. Thus $\mathcal{B} \not\subseteq \mathrm{Un}\{C \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq C\}$.

 $(3) \Rightarrow (1) \text{ Consider } b \in \mathcal{B} \text{ such that } b \notin \text{Un}\{C \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq \mathcal{C}\}. \text{ If } \mathcal{B} \not\subseteq l(b),$ then $l(b) \in \{\mathcal{C} \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq \mathcal{C}\}, \text{ so } b \in l(b) \subseteq \text{Un}\{\mathcal{C} \in \Box \mathcal{H} \mid \mathcal{B} \not\subseteq \mathcal{C}\} \text{ which is a contradiction. Thus } \mathcal{B} \subseteq l(b), \text{ consequently, } \mathcal{B} = l(b).$

Lemma 2.6. Let \mathcal{A} be a nonempty set and let \mathcal{H} and \mathcal{E} be quasi-orderings on \mathcal{A} . If $_{\Box}\mathcal{H} = _{\Box}\mathcal{E}$, then $\mathcal{H} = \mathcal{E}$.

Proof. Follows from Lemma 2.5.

Lemma 2.7. Let \mathcal{A} be a nonempty set and $Q \subseteq \mathbb{P}(\mathcal{A})$. If $\mathcal{A} \in Q$ and Q is closed under intersection and union, then there exists one and only one quasi-ordering $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ such that $\Box \mathcal{H} = Q$.

Proof. For every $a \in \mathcal{A}$ we set $G_a = \operatorname{Int}(\{N \in Q \mid a \in N\})$. Clearly for every $a \in \mathcal{A}$ and $N \in Q$, $a \in G_a \in Q$. Also $a \in N$ implies $G_a \subseteq N$. Now we set $\mathcal{H} = \{(c, a) \mid a \in \mathcal{A}, c \in G_a\}$. It is easy to see that \mathcal{H} is a quasi-ordering on \mathcal{A} and for every $a \in \mathcal{A}$, $l(a) = G_a$ implies $G_a \in \Box \mathcal{H}$ and $l(a) \in Q$. Let $N \in Q$. We have $N = \operatorname{Un}\{G_a \mid a \in \mathcal{A}\}$, so $N \in \Box \mathcal{H}$. Finally let $\mathcal{B} \in \Box \mathcal{H}$. We have $\mathcal{B} = \operatorname{Un}\{l(a) \mid a \in \mathcal{B}\}$ by Lemma 2.5, implying $\mathcal{B} \in Q$. Thus $\Box \mathcal{H} = Q$. The uniqueness follows from Lemma 2.6.

Proposition 2.8. Let D be a division ring and $_DU$ a vector space. If Q is a set of subspaces such that

- (1) For every chain $P \subseteq Q$, $Un(P) \in Q$.
- (2) For every $K, L \in Q, K \cap L \in Q$ and $K + L \in Q$.
- (3) For every $K, L, N \in Q$, $K \subseteq L + N$ and $K \cap L \subseteq N$ implies $K \subseteq N$.
- (4) Every nonempty subset of Q has a minimal element.
- (5) $0, U \in Q$.

Then there exists a basis \mathcal{A} for $_DU$ such that $Q \subseteq \{\langle \mathcal{C} \rangle \mid \mathcal{C} \subseteq A\}$. Also for every $K, L, N \in Q$ we have $K \cap (L+N) = K \cap L + K \cap N$.

Proof. Let T be the set of linearly independent sets $\mathcal{B} \subseteq U$ such that $\langle \mathcal{B} \rangle \in Q$ and for every $L \in Q$, $L \subseteq \langle \mathcal{B} \rangle$ implies $\langle L \cap \mathcal{B} \rangle = L$. Clearly $\emptyset \in T$, so $T \neq \emptyset$. Also for every $\mathcal{B} \in T$ and $L \in Q$ we have $L \cap \langle \mathcal{B} \rangle \in Q$ and $L \cap \langle \mathcal{B} \rangle \subseteq \langle \mathcal{B} \rangle$, so $L \cap \langle \mathcal{B} \rangle = \langle L \cap \langle \mathcal{B} \rangle \cap \mathcal{B} \rangle = \langle L \cap \mathcal{B} \rangle$ by the nature of T.

First we show that T has a maximal member \mathcal{A} by applying the Zorn Lemma. Let $P \subseteq T$ be a chain. Set $\mathcal{C} = \text{Un}(P)$. We show that $\mathcal{C} \in T$. Clearly \mathcal{C} is linearly idependent. Also $\langle \mathcal{C} \rangle = \text{Un}\{\langle \mathcal{B} \rangle \mid \mathcal{B} \in P\}$. Let $L \in Q$ with $L \subseteq \langle \mathcal{C} \rangle$. It is enough to show that $L \subseteq \langle L \cap \mathcal{C} \rangle$. Suppose $l \in L \cap \langle \mathcal{C} \rangle$. There exists $\mathcal{B} \in P$ such that $l \in \langle \mathcal{B} \rangle$. Then $l \in L \cap \langle \mathcal{B} \rangle = \langle L \cap \mathcal{B} \rangle \subseteq \langle L \cap \mathcal{C} \rangle$.

Now we show that $\langle \mathcal{A} \rangle = U$. Assume that it is not so. The set $\{N \in Q \mid N \not\subseteq \langle \mathcal{A} \rangle\}$ has a minimal member J. There exists $\mathcal{C} \subseteq J$ such that $(J \cap \mathcal{A}) \cap \mathcal{C} = \emptyset$ and $(J \cap \mathcal{A}) \cup \mathcal{C}$ is a basis for J. It is clear that $J = \langle J \cap \mathcal{A} \rangle \oplus \langle \mathcal{C} \rangle, \mathcal{A} \cap \mathcal{C} = \emptyset$

and $\langle \mathcal{A} \cup \mathcal{C} \rangle = \langle \mathcal{A} \rangle + J \in Q$. Showing $\mathcal{A} \cup \mathcal{C} \in T$ completes the proof. Let $L \in Q$ with $L \subseteq \langle \mathcal{A} \cup \mathcal{C} \rangle$. We may assume that $L \not\subseteq \langle \mathcal{A} \rangle$. Then $L \cap J \not\subseteq \langle \mathcal{A} \rangle$ by the nature of Q, so $L \cap J = J$, thus $J \subseteq L$, implying $\mathcal{C} \subseteq L$. Consequently,

$$L = (L\langle L \cap \mathcal{A} \rangle \cap \langle \mathcal{A} \rangle) + J = \langle L \cap \mathcal{A} \rangle + \langle J \cap \mathcal{A} \rangle \langle \mathcal{C} \rangle =$$
$$\langle L \cap \mathcal{A} \rangle + \langle \mathcal{C} \rangle = \langle (L \cap \mathcal{A}) \cup \mathcal{C} \rangle = \langle L \cap (\mathcal{A} \cup \mathcal{C}) \rangle.$$

3. Main Results

Definition 3.1. Let D and S be rings. A bimodule ${}_DU_S$ is called *left stable* if for every $f \in \text{End}(U_S)$ there exists $d \in D$ such that f(x) = dx for all $x \in U$.

Definition 3.2. Let D a division ring, ${}_{D}U$ a vector space, \mathcal{A} a basis for ${}_{D}U$ and $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ be a quasi-ordering. We set

$$\operatorname{End}_{\mathcal{H}}(DU) = \{ f \in \operatorname{End}(DU) \mid \forall a \in \mathcal{A}, f(a) \in \langle l(a) \rangle \}.$$

Lemma 3.3. Let D be a division ring, $_DU$ a vector space, \mathcal{A} a basis for $_DU$ and let $\mathcal{H} \subseteq \mathcal{A} \times \mathcal{A}$ be a quasi-ordering. If S is a subring of $\operatorname{End}(U_S)^{\operatorname{op}}$ such that $\{\langle \mathcal{B} \rangle \mid \mathcal{B} \in _{\Box}\mathcal{H}\}$ is the set of submodules of U_S and for every $v \in U$ we have $v \in vS$, then

- (1) For every $a \in \mathcal{A}$ we have $aS \in \langle l(a) \rangle$.
- (2) For every $v \in U$, $v^* \subseteq vS$.
- (3) For every $a \in A$ and every submodule $N, a \in \langle A \{a\} \rangle + N$ implies $a \in N$.
- (4) For every submodule L, $L \not\subseteq \text{Nov}(L)$ if and only if $L = \langle l(a) \rangle$ for some $a \in \mathcal{A}$.
- (5) \mathcal{H} is indecomposable if and only if U_S is an indecomposable module.
- (6) \mathcal{H} is triangular if and only if U_S is a uniserial module.
- (7) $\mathcal{H} = \mathcal{A} \times \mathcal{A}$ if and only if U_S is a simple module.

Proof. It is easy to see that N is a submodule if and only if $N \cap \mathcal{A} \subseteq \Box \mathcal{H}$ and $N = \langle N \cap \mathcal{A} \rangle$.

(1) We have $a \in \langle l(a) \rangle$ and $\langle l(a) \rangle$ is a submodule, so $aS \subseteq \langle l(a) \rangle$. On the other hand $aS \cap \mathcal{A} \in \Box \mathcal{H}$ and $a \in aS \cap \mathcal{A}$, so $l(a) \subseteq aS \cap \mathcal{A}$. Consequently, $\langle l(a) \rangle \subseteq \langle aS \cap \mathcal{A} \rangle = aS$.

(2) We have $v \in vS = \langle vS \cap \mathcal{A} \rangle$, so $v^* \subseteq vS \cap \mathcal{A} \subseteq vS$.

(3) There exist $a_i \in \mathcal{A} - \{a\}, 0 \neq d_i \in D$ and $u \in N$ such that $a = \sum_{i=1}^n d_i a_i + u$, then $a - \sum_{i=1}^n d_i a_i = u$, implying $a \in u^* \subseteq uS \subseteq N$ by (2). (4) Follows from Lemma 2.5.

(5 \Rightarrow) Let N and K be submodules, $N \neq 0$ and $U = N \oplus K$. Set $\mathcal{B} = N \cap \mathcal{A}$ and $\mathcal{C} = K \cap \mathcal{A}$. We have $\mathcal{B}, \mathcal{C} \in \Box \mathcal{H}, \ \mathcal{B} \neq \emptyset, \ \mathcal{B} \cup \mathcal{C} = \mathcal{A}$ and $\mathcal{B} \cap \mathcal{C} = \emptyset$, so $\mathcal{B} = \mathcal{A} - \mathcal{C} \in \mathcal{H}_{\Box}$, thus $\mathcal{B} = \mathcal{A}$, implying N = U.

Khabazian

(5 \Leftarrow) Let $\emptyset \neq \mathcal{B} \in \Box \mathcal{H} \cap \mathcal{H}_{\Box}$. Set $\mathcal{C} = \mathcal{A} - \mathcal{B}$. Then $\mathcal{C} \in \Box \mathcal{H}$, so $\langle \mathcal{B} \rangle$ and $\langle \mathcal{C} \rangle$ are submodules with $U = \langle \mathcal{B} \rangle \oplus \langle \mathcal{C} \rangle$, thus $\langle \mathcal{C} \rangle = 0$, implying $\mathcal{C} = \emptyset$. Thus $\mathcal{B} = \mathcal{A}$.

(6⇒) Let N and K be submodules and $N \not\subseteq K$. Set $\mathcal{B} = N \cap \mathcal{A}$ and $\mathcal{C} = K \cap \mathcal{A}$. We have $\mathcal{B}, \mathcal{C} \in \square \mathcal{H}$ and $\mathcal{B} \not\subseteq \mathcal{C}$. Consider $b \in \mathcal{B}$ with $b \notin \mathcal{C}$. Then $l(b) \not\subseteq \mathcal{C}$, so $\mathcal{C} \subseteq l(b) \subseteq \mathcal{B}$, implying $K = \langle \mathcal{C} \rangle \subseteq \langle \mathcal{B} \rangle = N$.

 $(6 \Leftarrow)$ Let $a, b \in \mathcal{A}$. We have either $\langle l(a) \rangle \subseteq \langle l(b) \rangle$ or $\langle l(b) \rangle \subseteq \langle l(a) \rangle$, then $l(a) \subseteq l(b)$ or $l(b) \subseteq l(a)$, so $a \in l(b)$ or $b \in l(a)$.

(7 \Rightarrow) For every $a \in \mathcal{A}$ we have $l(a) = \mathcal{A}$, so $\Box \mathcal{H} = \{\mathcal{A}, \emptyset\}$. Thus the only submodules of U are $\langle \mathcal{A} \rangle = U$ and $\langle \emptyset \rangle = 0$.

 $(7 \Leftarrow)$ Let $a \in \mathcal{A}$. We have $\langle l(a) \rangle = U$ so, $l(a) = \mathcal{A}$. Thus $\mathcal{H} = \mathcal{A} \times \mathcal{A}$. \Box

Proposition 3.4. Assume that the conditions of Lemma 3.3 are satisfied. If $_DU_S$ is left stable and for every S-submodule L with $L \not\subseteq \operatorname{Nov}(L)$, every S-submodule N and every S-module homomorphism $f: L \longrightarrow U/N$, there exists a S-module homomorphism $\overline{f}: U \longrightarrow U$ such that $f(x) = \overline{f}(x) + N$, then for every S-submodule N and every finite set $P \subseteq \mathcal{A}$ we have $(N: \operatorname{ann}_S(\langle P \rangle)) = \langle P \rangle + N$.

Proof. We use induction on n = |P|. It is obvious for the case n = 0. Now let $n \ge 1$. Consider $a \in P$, set $W = \langle P - \{a\} \rangle$ and $I = \operatorname{ann}_{S}(W)$. We have

$$a \in (aI:I) = W + aI \subseteq \langle \mathcal{A} - \{a\} \rangle + aI$$

by the induction hypothesis, so $a \in aI$ by Lemma 3.3. Thus, $aI = aS = \langle l(a) \rangle$ by Lemma 3.3. Let $v \in (N : \operatorname{ann}_S(\langle P \rangle))$. The map $\theta : aI \longrightarrow U/N$ given by $\theta(ax) = vx + N$ is a well defined S-module homomorphism, so there exists $d \in D$ such that dax + N = vx + N for all $x \in I$. Thus, $(v - da)I \subseteq N$, implying $(v - da) \in (N : I) = W + N$ by the induction hypothesis. Consequently, $v \in W + Da + N = \langle P \rangle + N$. Therefore, $(N : \operatorname{ann}_S(\langle P \rangle)) \subseteq \langle P \rangle + N$. \Box

Corollary 3.5. Assume that the conditions of Proposition 3.4 are satisfied. For every finite set $P \subseteq A$ and every $a \in A - P$ we have $a \in \operatorname{aann}_S(\langle P \rangle)$.

Proof. Set $N = aann_S(\langle P \rangle)$. By Proposition 3.4 we have

$$a \in (N : \operatorname{ann}_S(\langle P \rangle)) = \langle P \rangle + N \subseteq \langle \mathcal{A} - \{a\} \rangle + N.$$

Thus, $a \in N$ by Lemma 3.3.

Proposition 3.6. Let D be a division ring, _DU a vector space and S a right Artinian subring of $End(U_S)^{op}$. If

- (1) For every $v \in U$ we have $v \in vS$.
- (2) For every submodules K, L and N, $K \subseteq L + N$ and $K \cap L \subseteq N$ imply $K \subseteq N$.
- (3) U_S is an Artinian Duo module.
- (4) $_DU_S$ is left stable.

(5) For every S-submodule L with $L \not\subseteq \text{Nov}(L)$, every S-submodule N and every S-module homomorphism $f: L \longrightarrow U/N$, there exists a S-module homomorphism $\overline{f}: U \longrightarrow U$ such that $f(x) = \overline{f}(x) + N$.

Then there exists a finite basis \mathcal{A} for $_{D}U$ and an indecomposable quasi-ordering \mathcal{H} on \mathcal{A} such that $S = \operatorname{End}_{\mathcal{H}}(_{D}U)^{\operatorname{op}}$ and $\{\langle \mathcal{B} \rangle \mid \mathcal{B} \in \square \mathcal{H}\}$ is the set of submodules of U_{S} .

Proof. We denote the set of S-submodules by Q. Every S-submodule is a subspace, so there exists a basis \mathcal{A} for $_DU$ such that $Q \subseteq \{\langle \mathcal{C} \rangle \mid \mathcal{C} \subseteq A\}$ by Proposition 2.8. Then there exists a quasi-ordering \mathcal{H} on \mathcal{A} such that $Q = \{\langle \mathcal{B} \rangle \mid \mathcal{B} \in \square \mathcal{H}\}$ by Lemma 2.7. We claim that \mathcal{A} is finite. Assume it is not so. Then, \mathcal{A} contains an infinite subset $\{a_n \mid n \geq 1\}$. For every finite set $P \subseteq \mathcal{A}$, $\operatorname{ann}_U(\operatorname{ann}_S(P)) = \langle P \rangle$ by Proposition 3.4, so

$$\operatorname{ann}_{S}(a_{1}) \supset \operatorname{ann}_{S}(a_{1}, a_{2}) \supset \operatorname{ann}_{S}(a_{1}, a_{2}) \cdots$$

which is a contradiction. Let $a \in \mathcal{A}$. Set $I = \operatorname{ann}_S(\mathcal{A} - \{a\})$. Then, $a \in aI$ by Corollary 3.5, so there exists $r_a \in I$ with $a = ar_a$ and $(\mathcal{A} - \{a\})r_a = 0$. Now let $f \in \operatorname{End}_{\mathcal{H}}(_DU)^{\operatorname{op}}$. Then, $f(a) \in \langle l(a) \rangle = aS$ by Lemma 3.3, so there exists $s_a \in S$ with $f(a) = as_a$. Set $r = \sum_{a \in \mathcal{A}} r_a s_a$, then $f = r \in S$. Thus $\operatorname{End}_{\mathcal{H}}(_DU)^{\operatorname{op}} \subseteq S$, consequently, $S = \operatorname{End}_{\mathcal{H}}(_DU)^{\operatorname{op}}$. Finally, it is easy to see that $D \cong \operatorname{End}(U_S)$, so U_S is indecomposable and thus, \mathcal{H} is indecomposable by Lemma 3.3.

Lemma 3.7. Let D be a ring with unit and let ${}_{D}U$ be a free module with a basis \mathcal{A} . There exists an isomorphism $\Delta : \operatorname{End}({}_{D}U) \longrightarrow \operatorname{M}_{\mathcal{A} \times \mathcal{A}}(D^{\operatorname{op}})$ such that for every $f \in \operatorname{End}({}_{D}U)$ and $a \in \mathcal{A}$, $f(a) = \sum_{b \in \mathcal{A}} \Delta(f)_{ba}b$. In this case, for every quasi-ordering \mathcal{H} on \mathcal{A} we have $\Delta(\operatorname{End}_{\mathcal{H}}({}_{D}U)) = \operatorname{M}_{\mathcal{H}}(D^{\operatorname{op}})$.

Proof. Straightforward.

Theorem 3.8. Let R be a left Artinian ring. If there exists a nonzero faithful Artinian Duo module U such that

- (1) For every $v \in U$ we have $v \in Rv$.
- (2) For every submodules K, L and N, $K \subseteq L + N$ and $K \cap L \subseteq N$ implies $K \subseteq N$.
- (3) $\operatorname{End}(_{R}U)$ is a division ring.
- (4) For every submodule L with $L \not\subseteq \text{Nov}(L)$, every submodule N and every homomorphism $f: L \longrightarrow U/N$, there exists a homomorphism $\overline{f}: U \longrightarrow U$ such that $f(x) = \overline{f}(x) + N$.

Then R is isomorphic to $M_{\mathcal{H}}(D)$ for a division ring D, a nonempty finite set \mathcal{A} and an indecomposable quasi -ordering \mathcal{H} on \mathcal{A} .

Proof. Set $D = \text{End}(U_{R^{\text{op}}})$ and consider the ring monomorphism $\beta : R \longrightarrow$ End $(_DU)$ given by $\beta(r)(u) = ur$ and set $S = \beta(R^{\text{op}})$. Then S is a right Artinian subring of $\operatorname{End}_{(D}U)^{\operatorname{op}}$, D is a division ring and $_{D}U_{S}$ is a left stable bimodule. Thus $S = \operatorname{End}_{\mathcal{H}}(_{D}U)^{\operatorname{op}}$ by Proposition 3.6. Applying Lemma 3.7 completes the proof.

Notice that distributive modules in [1] satisfy (2). For more information on (3), we refer to [4].

Theorem 3.9. Let R be a left Artinian ring. If there exists a nonzero faithful Artinian uniserial Duo module U such that

- (1) For every $v \in U$ we have $v \in Rv$.
- (2) $\operatorname{End}(_{R}U)$ is a division ring.
- (3) For every submodule L with $L \not\subseteq \text{Nov}(L)$, every submodule N and every homomorphism $f: L \longrightarrow U/N$, there exists a homomorphism $\overline{f}: U \longrightarrow U$ such that $f(x) = \overline{f}(x) + N$.

Then R is isomorphic to a complete blocked triangular matrix over a division ring.

Proof. Set $D = \operatorname{End}(U_{R^{\operatorname{op}}})$ and consider the ring monomorphism $\beta : R \longrightarrow$ $\operatorname{End}(_DU)$ given by $\beta(r)(u) = ur$ and set $S = \beta(R^{\operatorname{op}})$. Then S is a right Artinian subring of $\operatorname{End}(_DU)^{\operatorname{op}}$, D is a division ring and $_DU_S$ is a left stable bimodule. Thus $S = \operatorname{End}_{\mathcal{H}}(_DU)^{\operatorname{op}}$ and $\{\langle \mathcal{B} \rangle \mid \mathcal{B} \in \Box \mathcal{H}\}$ is the set of submodules of U_S by Proposition 3.6. Consequently, \mathcal{H} is triangular by Lemma 3.3. Applying Lemma 3.7 completes the proof. \Box

The Wedderburn-Artin Theorem can be derived from Theorem 3.8 and Lemma 3.3.

References

- [1] V. Camillo, Distributive modules, J. Algebra 36 (1975) 16–25.
- [2] S. P. Coelho, Automorphism groups of certain structural matrix rings, Comm. Algebra 22 (1994), no. 14, 5567–5586.
- [3] S. Dascalescn and L. van Wyk, Complete blocked triangular matrix rings over a Noetherian ring, J. Pure Appl. Algebra 133 (1998) 65–68.
- [4] G. Lee, C.S. Roman and X. Zhang, Modules whose endomorphism rings are division rings, Comm. Algebra 42 (2014), no. 12, 5205–5223.
- [5] C. Li and Y. Zhou, On p.p. structural matrix rings, Linear Algebra Appl. 436 (2012) 3692–3700.
- [6] M.S. Li and J.M. Zelmanowitz, Artinian rings with restricted primness conditions, J. Algebra 124 (1989) 139–148.

(Hossein Khabazian) DEPARTMENT OF MATHEMATICAL SCIENCE, ISFAHAN UNIVERSITY OF TECHNOLOGY, ISFAHAN, IRAN.

E-mail address: khabaz@cc.iut.ac.ir