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Abstract. Suppose that for an arbitrary function f(x, y) of two discrete
variables, we have the formal expansions.

f(x, y) =
∞∑

m,n=0

am,n Pm(x)Pn(y),

∇p
x∇q

yf(x, y) = f (p,q)(x, y) =
∞∑

m,n=0

a
(p,q)
m,n Pm(x)Pn(y), a

(0,0)
m,n = am,n,

where Pn(x), n = 0, 1, 2, . . . are the Hahn, Meixner, Kravchuk and Char-
lier polynomials.

We prove formulae which give a
(p,q)
m,n , as a linear combination of ai,j , i,

j = 0, 1, 2, . . . . Using the moments of a discrete orthogonal polynomial,

xmPj(x) =
2m∑
n=0

am,n(j)Pj+m−n(x),

we find the coefficients b
(p,q,ℓ, r)
i,j in the expansion

xℓyr ∇p
x∇q

y f(x, y) = xℓyrf (p,q)(x, y) =
∞∑

i,j=0

b
(p,q,ℓ, r)
i,j Pi(x)Pj(y).

We give applications of these results in solving partial difference equa-
tions with varying polynomial coefficients, by reducing them to recurrence

relations (difference equations) in the expansion coefficients of the solu-
tion.
Keywords: Hahn, Meixner, Kravchuk and Charlier polynomials, expan-
sion coefficient, recurrence relations, linear difference equations, connec-

tion coefficients.
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1. Introduction

Classical orthogonal polynomials of a discrete variable (the Hahn, Meixner,
Kravchuk, and Charlier polynomials) which are solutions of difference equations
of hypergeometric type on uniform lattices [32, Eq. (2.1.4)] are widely used
in various fields of physics and mathematics (see [20, 29, 32, 39, 41, 53]). These
polynomials have long been used in two dimensional problems of approximation
theory and numerical analysis. In the last three decades, many authors aimed
to generalize the construction of the theory of classical orthogonal polynomials
of a discrete variable as solutions of a difference equation of hypergeometric type
from one to several variables, see for instance, Rodal [33–35], Tratnik [42, 43],
Van Diejen [44] and Xu [45,46]. They presented a multivariable generalization
for all the discrete families of the Askey-Wilson tableau (see [24]), giving for
each family an hypergeometric representation and the orthogonality weight
function, proving that these are orthogonal with respect to subspaces of lower
degree and biorthogonal within a given subspace. These results motivate the
researchers interested in multidimensional mathematical physics problems to
use expansions in terms of orthogonal polynomials of several discrete variables
(see, for instance [29, 41, 53]). According to this situation, the generation of
recurrence relations for the expansion coefficients of multivariable orthogonal
polynomials like in the one continuous/discrete variable case, see, Ahmed [1],
Ahmed and El-Soubhy [2], Area et al. [8], Doha [13–15], Doha and Ahmed
[17–19], Godoy et al. [21–23], Koepf [25], Lewanowicz [26,27], Lewanowicz and
Woźny [28], Ronveaux et al. [36–38] and Woźny [51] is a problem of great
interest.

Up to now and to the best of the author’s knowledge, explicit formulae for
the expansion coefficients of general-order difference derivatives of an arbitrary
function of two discrete variables and for the evaluation of the expansion co-
efficients of the moments of high-order difference derivatives of such function
in terms of the product of two classical orthogonal polynomials of a discrete
variable (the Hahn, Meixner, Kravchuk and Charlier polynomials), similar to
those obtained by Doha [10–12] and Doha et al. [16], for classical orthogonal
polynomials of continuous variable (the Chebyshev, Legendre, ultraspherical
and Jacobi), respectively, are not well-known and traceless in the literature.
Another motivation is that the theoretical and numerical analysis of numerous
physical and mathematical problems very often require the expansion of an
arbitrary polynomial or the expansion of an arbitrary function of two discrete
variables with its difference derivatives and moments into a set of orthogonal
polynomials. This is also true for the product of two Hahn, Meixner, Kravchuk
and Charlier polynomials. To be precise, these polynomials form a set of or-
thogonal polynomials on the set [0, N ] × [0, N ], [0,∞) × [0,∞), [0, N ] ×[0, N ]
and [0,∞) ×[0,∞), respectively.
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In this paper, some basic results about the product of two classical orthog-
onal polynomials (see [34, 45,46]) of one single discrete variable :

{Fmn(x, y) : Fmn(x, y) = Pm(x)Pn(y) , Pm(x) ∈ T},

where T = {Pn(x) : Hahn, Meixner, Kravchuk and Charlier}, are provided,
mainly to show that the exact explicit formulae for the coefficients of differ-
entiated expansions in Pn(x) obtained by Doha and Ahmed [18, 19] can be
extended to expansions in Fmn(x, y).

This paper is organized as follows. In Section 2, we recall some relevant
properties of the Hahn, Meixner, Kravchuk and Charlier polynomials. In Sec-
tion 3, we give relevant properties of Fm,n(x, y). In Section 4, two corollaries

are proved: the first expresses the relation between the coefficients a
(p,q)
m,n and

am,n, whereas the second expresses the Pm(x)Pn(y) expansion coefficients of
the moments of general order difference derivatives of an arbitrary function
of two discrete variables in terms of its Pm(x)Pn(y) original expansion coeffi-
cients. Application of these corollaries for solving partial difference equations
with varying coefficients, by reducing them to recurrence relations in the ex-
pansion coefficients of the solution, is discussed in Section 5. Two applications
of the work developed which provides an algebraic symbolic approach (using
Mathematica Version 8) in order to build recurrence relations for the coeffi-
cients appearing in the two problems

(x+ y)n =
∑

i+j≤n

ai,j(n) Pi(x)Pj(y),

where xn = (−1)n(−x)n (with (a)n = Γ(a + n)/Γ(a)), denote the falling fac-
torial polynomials, and

Qn(x+ y) =
∑

i+j≤n

ai,j(n)Pi(x)Pj(y), Q ∈ T,

are discussed in Sections 6 and 7, respectively, and the analytical solutions of
these recurrence relations are provided.

2. Some relevant properties of discrete polynomials

Let {Pn(x) : Hahn, Meixner, Kravchuk and Charlier} be one of the families
of monic classical discrete orthogonal polynomials. These polynomials are so-
lutions of the second-order difference equation of hypergeometric type [24, pp.
204-247],

(2.1) [σ(x)∇∆+ τ(x)∆ + λn ]Pn(x) = 0,

where σ(x) and τ(x) are polynomials of degree not greater than 2 and 1, re-
spectively, λn = −n∆τ(x)− 1

2n(n− 1)∆2σ(x), and

∇y(x) = y(x)− y(x− 1), ∆y(x) = y(x+ 1)− y(x),
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denote the backward and forward difference operators, respectively. Doha and
Ahmed [18,19] showed that the difference equation (2.1) can be written in the
form

(2.2) [σ(x− 1)∇2 + [τ(x− 1)− λn]∇+ λn]Pn(x) = 0.

The orthogonality relation of the polynomials Pn(x) is

b−1∑
xi =a

Pn(xi)Pm(xi)ρ(xi) = δnm d2n, xi+1 = xi + 1,

where the weight function ρ(x) defined on [a, b − 1] must be a solution of the
Pearson-type difference equation:

∆[σ(x)ρ(x)] = τ(x)ρ(x),

provided that the following condition

ρ(x)σ(x)xk
∣∣
x=a,b

= 0, ∀k ≥ 0,

holds. The monic classical discrete orthogonal polynomials Pn(x) may be gen-
erated by using the Rodrigues formula

Pn(x) =
Bn

ρ(x)
∇n [ρn(x)] ,

where the function ρn(x) is defined in terms of the weight function ρ(x) and
the polynomial σ(x),

ρn(x) = ρ(x+ n)
n∏

m=1

σ(x+m).

The four referred families of monic discrete orthogonal polynomials: Hahn

h̃
(α,β)
n (x;N), Meixner M̃

(γ,µ)
n (x), Kravchuk K̃

(p)
n (x;N) and Charlier C̃

(µ)
n (x),

have the following hypergeometric representations [24, pp. 204-247]:

h̃(α,β)
n (x;N) =

(1−N)n(β + 1)n
(λ+ n)n

3F2

[
−n, λ+ n, −x
1−N, β + 1

; 1

]
,

M̃ (γ,µ)
n (x) = (γ)n(

µ

µ− 1
)n 2F1

[
−n, −x

γ
; 1− 1

µ

]
,

K̃(p)
n (x;N) =

(−p)nN !

(N − n)!
2F1

[
−n, −x
−N

;
1

p

]
,

C̃(µ)
n (x) = (−µ)n 2F0

[
−n, −x

− ;− 1

µ

]
.

The following two recurrence relations are of fundamental importance in
developing the present work. These are (see [24,25])

(2.3)
xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x) (n ≥ 0),
P−1(x) = 0; P0(x) = 1,
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and

(2.4) Pn(x) =
1

n+ 1
∆Pn+1(x) + Fn ∆Pn(x) +Gn∆Pn−1(x), n ≥ 0.

Remark 2.1. For the sake of completeness, the expressions of σ(x), τ(x),
ρ(x), λn, d

2
n, βn, γn, Fn and Gn, for each one of the referred monic classical

discrete orthogonal families can be found in [18,19], [24, pp. 204-247], [25, pp.
58-61], and [32, p. 44].

Lemma 2.2. Pn(x) has the ∇-difference representation

(2.5) Pn(x) =
1

n+ 1
∇Pn+1(x) + (Fn + 1)∇Pn(x) +Gn∇Pn−1(x), n ≥ 0.

Proof. By replacing x by x− 1 in (2.4) and using the property

∆y(x− 1) = ∇y(x),

we obtain

Pn(x− 1) =
1

n+ 1
∇Pn+1(x) + Fn∇Pn(x) +Gn∇Pn−1(x), n ≥ 0.

Using the definition of the backward difference operator gives immediately
relation (2.5) which completes the proof. □

Now, suppose a function f(x) of a discrete variable x is given, which is
formally expanded in an infinite series of monic discrete classical orthogonal
polynomials Pn(x) ∈ {Pn(x) : Hahn, Meixner, Kravchuk and Charlier}; in the
case of Kravchuk and Hahn polynomials, which are orthogonal on a finite set,
we assume that f is a polynomial. Let

(2.6) f(x) =

∞∑
n=0

anPn(x),

and for the pth backward-difference derivatives of f(x), i.e., ∇pf(x),

(2.7) f (p)(x) = ∇pf(x) =
∞∑

n=0

a(p)n Pn(x), a(0)n = an,

then it is possible to derive a recurrence relation involving the expansion coef-
ficients of successive backward-difference derivatives of f(x). Let us write

∇

[ ∞∑
n=0

a(p−1)
n Pn(x)

]
=

∞∑
n=0

a(p)n Pn(x),

then the use of identity (2.5) leads to the recurrence relation

(2.8)
1

n
a
(p)
n−1 + (Fn + 1)a(p)n +Gn+1a

(p)
n+1 = a(p−1)

n , p ≥ 1, n ≥ 1.



Formulae for the product of two classical discrete orthogonal polynomials 2590

Lemma 2.3.

(2.9) ∇pPn(x) =

n−p∑
k=0

Cp,k(n)Pk(x), n ≥ 0, p ≥ 0,

if and only if

(2.10) a(p)n =
∞∑
k=0

Cp,n(n+ p+ k) an+p+k, n ≥ 0, p ≥ 0,

where the expansion coefficients Cp,k(n) are assumed to be known.

Proof. Suppose we are given the expansion (2.9), then by applying the operator
∇p to the expansion (2.6), we obtain

(2.11) ∇pf(x) =

∞∑
n=p

an∇pPn(x).

Substituting (2.9) into (2.11), expanding and collecting similar terms, we
obtain

(2.12) ∇pf(x) =
∞∑

n=0

[ ∞∑
k=0

Cp, n(n+ p+ k) an+p+k

]
Pn(x).

Identifying (2.7) with (2.12) gives immediately (2.10).
On the other hand, suppose we have (2.10). Substituting (2.10) into (2.7)

gives (2.12). Expanding (2.12) and collecting similar terms and identifying the
result with (2.11), we get (2.9) which completes the proof. □

Using Lemma 2.3, for the case of Hahn polynomials, Doha and Ahmed [19]
proved that the solution of (2.8) is,

a(p)n =

∞∑
k=0

(n+ k + p+ λ)p Cn+k,n(α+ p, β + p, α, β,N − p,N,−p) an+p+k,

n ≥ 0, p ≥ 0,

where

(2.13)

Cn,i(γ, δ, α, β,M,N, s) =
(
n
i

) (1−M + i)n−i(1 + δ + i)n−i

(µ+ n+ i)n−i

×
n−i∑
k=0

(i− n)k
k!

(µ+ n+ i)k(1−N + i)k(1 + β + i)k
(2i+ λ+ 1)k(1−M + i)k(1 + δ + i)k

×3F2

[
−(n− i− k), µ+ n+ k + i,−s
1−M + i+ k, 1 + i+ δ + k

; 1

]
,
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with an = 0, n > N, and µ = γ + δ+1 and λ = α+ β +1. While for the case
of Meixner, Kravchuk and Charlier polynomials [18]

a(p)n =
∞∑
k=0

Cp,n(n+ p+ k) an+p+k, n ≥ 0, p ≥ 0,

where

(2.14) Cp,k(n) =
(−1)n−p−kn!

(p− 1)!

(n− k − 1)!

(n− p− k)!k!
(θ + 1)n−p−k,

with θ = µ
1−µ , −p, 0 , respectively.

Also, for each case of Pj(x), they (see [18,19]) proved by the aid of recurrence
relation (2.3) that the coefficients am,n(j) in the expansion

(2.15) xmPj(x) =

2m∑
n=0

am,n(j)Pj+m−n(x), j ≥ 0, m ≥ 0,

satisfy the recurrence relation

am,n(j) = am−1,n(j) + βj+m−nam−1,n−1(j) + γj+m−n+1am−1,n−2(j),

n = 0, 1, ..., 2m,

with a0,0(j) = 1, am−1,−ℓ(j) = 0, ∀ℓ > 0, am−1,r(j) = 0, r = 2m− 1, 2m.

Remark 2.4. The explicit expression of am,n(j) for the case of Hahn polyno-
mials, is given in Doha and Ahmed [19, p. 792], while for the case of Meixner,
Kravchuk and Charlier polynomials, the explicit expressions of am,n(j) are
given in Doha and Ahmed [18, p. 335].

Using formula (2.15), for each case of Pj(x), Doha and Ahmed [18,19] proved
the following theorem which expresses the Pn(x) expansion coefficients of the
moments of a general order difference derivative of an arbitrary function of a
discrete variable in terms of its Pn(x) original expansion coefficients.

Theorem 2.5 ( [18, 19]). Assume that f(x), f (p)(x) and xmPj(x) have the
expansions (2.6), (2.7) and (2.15) respectively, and assume also that

xm

( ∞∑
i=0

a
(p)
i Pi(x)

)
=

∞∑
i=0

b
(p,m)
i Pi(x) = Ip,m,



Formulae for the product of two classical discrete orthogonal polynomials 2592

say then the expansion coefficients bp,mi are given by

b
(p,m)
i =



m−1∑
k=0

am, k+m−i(k)a
(p)
k +

i∑
k=0

am, k+2m−i(k +m)a
(p)
k+m, 0 ≤ i ≤ m,

m−1∑
k=i−m

am, k+m−i(k)a
(p)
k +

i∑
k=0

am, k+2m−i(k +m)a
(p)
k+m,

m+ 1 ≤ i ≤ 2m− 1,
i∑

k=i−2m

am, k+2m−i(k +m)a
(p)
k+m, i ≥ 2m.

Corollary 2.6. It is not difficult to show that

b
(p,m)
i =

2m∑
r=0

am, r(r + i−m) a
(p)
r+i−m, i ≥ 0.

3. Some properties of product of classical discrete orthogonal
polynomials

Comparing to the theory in one variable, the structure of discrete orthogonal
polynomials in several variables is much more complicated. Some basic results
are obtained in Area et al. [4–7, 9], Rodal et al. [35] and Xu [46]; the relevant
ones will be recalled in this section. The orthogonal polynomials that satisfy
the second-order partial difference equation

A1,1(x, y)∆x∇xu+A1,2(x, y)∆x∇yu+A2,1(x, y)∆y∇xu

+A2,2(x, y)∆y∇yuB1(x, y)∆xu+B2(x, y)∆yu− λu = 0,
(3.1)

will be discrete orthogonal polynomials of two variables, where Ai,j are poly-
nomials of second degree and Bi are polynomials of the first degree, λ is a real
number and

∇xu(x, y) = u(x, y)− u(x− 1, y), ∇yu(x, y) = u(x, y)− u(x, y − 1).

In particular, for the special case A1,2(x, y) = A2,1(x, y) = 0, A1,1(x, y) =
σ(x), A2,2(x, y) = σ(y), B1(x, y) = τ(x), B2(x, y) = τ(y) and λ = −(n +m),
Eq. (3.1) becomes

(3.2) [σ(x)∆x∇x + σ(y)∆y∇y + τ(x)∆x + τ(y)∆y + (n+m) ]Fmn(x, y) = 0,

where Fmn(x, y) = Pm(x)Pn(y). These types of orthogonal polynomials satisfy
the orthogonality relation
(3.3)∑

G

Fmn(xi, yj)Fks(xi, yj)Ω(xi, yj) = δmkδn s d
2
md2n, m, n, k, s = 0, 1, 2, ...,
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where Ω(x, y) = ρ(x)ρ(y), (x, y) ∈ G = {(x, y) : x, y ∈ [a, b]}.
Replacing x and y by x− 1 and y − 1 in (3.2), respectively, and using

∆xu(x− 1, y) = ∇xu(x, y),
∆yu(x, y − 1) = ∇yu(x, y),

we get

[σ(x− 1)∇2
x + σ(y − 1)∇2

y + [τ(x− 1)−m]∇x + [τ(y − 1)− n]∇y

+(m+ n)]Fmn(x, y) = 0.

Now, suppose a function f(x, y) of two discrete variables x and y is given,
which is formally expanded as follows

(3.4) f(x, y) =
∞∑

m,n=0

amnPm(x)Pn(y),

and for the partial backward difference derivatives f(x, y), i.e., ∇p
x∇q

yf(x, y),

(3.5) f (p,q)(x, y) = ∇p
x∇q

yf(x, y) =
∞∑

m,n=0

a(p,q)mn Pm(x)Pn(y), a(0,0)mn = amn.

In view of (2.5) with the two relations

∇x

∞∑
m,n=0

a(p−1,q)
mn Pm(x)Pn(y) =

∞∑
m,n=0

a(p,q)mn Pm(x)Pn(y),

and

∇y

∞∑
m,n=0

a(p,q−1)
mn Pm(x)Pn(y) =

∞∑
m,n=0

a(p,q)mn Pm(x)Pn(y),

it is not difficult to derive the recurrences
(3.6)
1

m
a
(p,q)
m−1,n + (Fm + 1) a(p,q)m,n +Gm+1 a

(p,q)
m+1,n = a(p−1,q)

m,n , m, p ≥ 1, n, q ≥ 0 ,

and
(3.7)
1

n
a
(p,q)
m,n−1 + (Fn + 1) a(p,q)m,n +Gn+1 a

(p,q)
m,n+1 = a(p,q−1)

m,n , n, q ≥ 1, m, p ≥ 0.

4. Relation between the coefficients a
(p,q)
m,n and am,n and explicit

formula for the expansion coefficients of xm1ym2 ∇p
x∇q

yf(x, y)

The main objective of this section is to state and prove two theorems such

that the first expresses the relation between the coefficients a
(p,q)
m,n and am,n,

whereas the second expresses the Pm(x)Pn(y) expansion coefficients of the mo-
ments of general order difference derivatives of an arbitrary function of two
discrete variables in terms of its Pm(x)Pn(y) original expansion coefficients.
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Theorem 4.1. The coefficients a
(p,q)
mn are related to the coefficients a

(0,q)
mn , a

(p,0)
mn

and the original coefficients amn by

(4.1) a(p,q)mn =
∞∑
i=0

Cp,m(p+m+ i)a
(0,q)
p+m+i,n, p ≥ 1,

(4.2) a(p,q)mn =

∞∑
j=0

Cq,n(q + n+ j)a
(p,0)
m,q+n+j , q ≥ 1 ,

and
(4.3)

a(p,q)mn =
∞∑
i=0

∞∑
j=0

Cp,m(p+m+i) Cq,n(q+n+j) ap+m+i, q+n+j , p, q ≥ 1, m, n ≥ 0,

where the coefficients Cp,m(p + m + i) and Cq,n(q + n + j) can be defined
according to formula (2.13) for the case of Hahn and formula (2.14) for the
cases of Meixner, Kravchuk and Charlier polynomials.

Proof. We can write equation (3.5) as

f (p,q)(x, y) =
∞∑

m=0

b(p,q)m,n (y)Pm(x),

where

(4.4) b(p,q)m,n (y) =

∞∑
n=0

a(p,q)mn Pn(y),

and keeping y and q fixed. In view of formula (2.10), we can deduce that

(4.5) b(p,q)m,n (y) =

∞∑
i=0

Cp,m(p+m+ i)b
(0,q)
m+i+p,n(y).

Using (4.4) and (4.5) yields the formula

∞∑
n=0

a
(p,q)
mn Pn(y) =

∞∑
i=0

Cp,m(p+m+ i)

[ ∞∑
n=0

a
(0,q)
m+i+p,nPn(y)

]

=
∞∑

n=0

[ ∞∑
i=0

Cp,m(p+m+ i) a
(0,q)
m+i+p,n

]
Pn(y),

which implies that

a(p,q)mn =
∞∑
i=0

Cp,m(p+m+ i) a
(0,q)
p+m+i,n, p ≥ 1,

and the proof of formula (4.1) is complete.
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It can be also shown that formula (4.2) is true by the same procedure as
outlined for (4.1), keeping x and p fixed. Formula (4.3) is obtained immediately
by substituting (4.2) into (4.1). This completes the proof. □

Theorem 4.2. Assume that f(x, y) and f (p,q)(x, y) have the expansions (3.4)
and (3.5) respectively, and suppose that

(4.6) xm1Pi(x) =

2m1∑
ℓ1=0

am1, ℓ1(i)Pi+m1−ℓ1(x),

(4.7) ym2Pj(y) =

2m2∑
ℓ2=0

am2, ℓ2(j)Pj+m2−ℓ2(y),

and

xm1ym2

 ∞∑
i,j=0

a
(p,q)
i,j Pi(x)Pj(y)

 =
∞∑

i,j=0

b
(p,q,m1,m2)
i,j Pi(x)Pj(y)

= I(p,q,m1,m2), say,

(4.8)

then the expansion coefficients b
(p,q,m1,m2)
i,j are given by

b
(p,q,m1,m2)
i, j =

2m1∑
ℓ1=0

2m2∑
ℓ2=0

am1,ℓ1(ℓ1 + i−m1) am2, ℓ2(ℓ2 + j −m2)

× a
(p,q)
ℓ1+i−m1,ℓ2+j−m2

, i, j ≥ 0.

(4.9)

Proof. In view of Corollary 2.6 and formula (4.6), we get

I(p,q,m1,m2) = ym2

∞∑
j=0

( ∞∑
i=0

a
(p,q)
i,j xm1Pi(x)

)
Pj(y)

= ym2

∞∑
i=0

∞∑
j=0

b
(p,q,m1)
i,j Pi(x)Pj(y),

(4.10)

where

(4.11) b
(p,q,m1)
i,j =

2m1∑
ℓ1=0

am1, ℓ1(ℓ1 + i−m1) a
(p,q)
ℓ1+i−m1, j

.
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In view of Corollary 2.6 and formula (4.7), Equation (4.10) takes the form

I(p,q,m1,m2) =
∞∑
i=0

Pi(x)

 ∞∑
j=0

b
(p,q,m1)
i,j ym2Pj(y)


=

∞∑
i,j=0

b
(p,q,m1,m2)
i,j Pi(x)Pj(y),

where

(4.12) b
(p,q,m1,m2)
i,j =

2m2∑
ℓ2=0

am2, ℓ2(ℓ2 + j −m2) b
(p,q,m1)
i, ℓ2+j−m2

.

By substituting (4.11) into (4.12), we obtain (4.9). □

5. Construction of recurrence relations for the coefficients of
expansions in series of the product of two classical discrete

orthogonal polynomials

Let f(x, y) have the expansion (3.4), and assume that it satisfies the linear
nonhomogeneous partial difference equation

(5.1)
m∑
i=0

n∑
j=0

pi,j(x, y)f
(i,j)(x, y) = g(x, y),

where pi,j(x, y), i = 0, 1, ...,m, j = 0, 1, ..., n, are polynomials in x and y such
that pm,0, p0,n ̸= 0, and the coefficients in the expansion

g(x, y) =

∞∑
i,j=0

gi,jPi(x)Pj(y),

are known, then Theorems 4.1 and 4.2 enable one to construct in view of
equation (5.1) the linear recurrence relation of order (d1, d2),

(5.2)

d1∑
i=0

d2∑
j=0

αi,j(r, k)ar+i,j+k = β(r, k), r, k ≥ 0,

where αi,j(r, k), i = 0, 1, ..., d1, j = 0, 1, ..., d2, are polynomials in r and k such
that αd1,0(r, k), α0,d2(r, k) ̸= 0.

An example dealing with a nonhomogeneous partial difference equation of
two discrete variables is considered in order to clarify application of the results
obtained.
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Example 5.1. Consider the nonhomogeneous partial difference equation

(5.3) x∇xu− y∇yu+ (x− y)u = d(x, y), u(0, y) = y, u(x, 0) = x.

where d(x, y) = x2 − y2 + x− y and u(x, y) are expanded as follows
(5.4)

u(x, y) =
∞∑

i,j=0

ai,j C̃
(α)
i (x)C̃

(α)
j (y), d(x, y) =

∑
i+j≤2

d
(α)
i,j C̃i(x)C̃

(α)
j (y),

then by virtue of formula (4.8), equation (5.3) takes the form

I(1,0,1,0) − I(0,1,0,1) + I(0,0,1,0) − I(0,0,0,1) =
∑

i+j≤2

di,jC̃
(α)
i (x)C̃

(α)
j (y),

which in turn gives

(5.5) b
(1,0,1,0)
i, j − b

(0,1,0,1)
i, j + b

(0,0,1,0)
i, j − b

(0,0,0,1)
i, j = di,j , i, j = 0, 1, 2, ... ,

where

di,j =



−2(α+ 1), i = 0, j = 1,

−1, i = 0, j = 2,

2(α+ 1), i = 1, j = 0,

1, i = 2, j = 0,

0, otherwise.

By making use of formula (4.9), equation (5.5) takes the form
(5.6)

(i− j)ai,j + α(i+ 1)(a
(1,0)
i+1,j + ai+1,j) + (i+ α)a

(1,0)
i,j + (a

(1,0)
i−1,j + ai−1,j)

−α(j + 1)(a
(0,1)
i,j+1 + ai,j+1)− (j + α)a

(0,1)
i,j − (a

(0,1)
i,j−1 + ai,j−1) = di,j .

Using formulae (4.1) and (4.2) with (5.6)− and after some manipulation-yield
the following recurrence relation.

ai,j + 2(i− j + 1)ai+1,j + 2α(i+ 2)ai+2,j − ai+1,j−1 − 2α(j + 1)ai+1,j+1

= di+1,j , i, j ≥ 0.

(5.7)

The complete solution of this example, may be obtained by solving the
recurrence relation (5.7). It is worthy noting that the analytical solution for
this recurrence relation is given explicitly by [see Appendix A]

(5.8) ai,j =


α2

4 e−α + 2α, i = 0, j = 0,
α(2−α)

8 e−α + 1, i = 1, j = 0,
α(2−α)

8 e−α + 1, i = 0, j = 1,
(−2)−(i+j+2)(2i−α)(2j−α)

i!j! e−α, otherwise.

Note 1. The solution of this example can also be obtained by using the
Hahn, Mexiner and Kravchuk polynomials, but details are not given here.
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6. The expansion of (x+ y)n in series of the product of two classical
discrete orthogonal polynomials

In the problem

(6.1) (x+ y)n =
∑

i+j≤n

ai,j(n)Pi(x)Pj(y),

u(x, y) = (x+ y)n satisfies the homogeneous partial difference equation

(6.2) [x∇x + y∇y − n ]u(x, y) = 0.

By virtue of formula (4.8), equation (6.2) takes the form

I(1,0,1,0) + I(0,1,0,1) − n I(0,0,0,0) = 0,

which in turn gives

(6.3) b
(1,0,1,0)
i, j + b

(0,1,0,1)
i, j − n b

(0,0,0,0)
i, j = 0, i, j = 0, 1, 2, ... .

By making use of formula (4.9), equation (6.3) takes the form
(6.4)

a
(1,0)
i−1,j(n) + (βi + 1)a

(1,0)
i,j (n) + γi+1a

(1,0)
i+1,j(n) + a

(0,1)
i,j−1(n) + (βj + 1) a

(0,1)
i,j (n)

+γj+1a
(0,1)
i,j+1(n)− nai,j(n) = 0.

Now, using formulae (4.1) and (4.2) with (6.4)− and after some manipulation-
yield the recurrence relation satisfied by ai,j(n).

Note 2. Repeated use of (3.6) and (3.7) to eliminate the coefficients a
(1,0)
i±1,j(n),

a
(1,0)
i,j (n), a

(0,1)
i,j±1(n) and a

(0,1)
i,j (n) yields the recurrence relation satisfied by

ai,j(n).
6.1. The link between (x+ y)n and Charlier-Charlier polynomials.

In the problem

(6.5) (x+ y)n =
∑

i+j≤n

ai,j(n)C̃
(α)
i (x)C̃

(α)
j (y),

the coefficients ai,j(n) satisfy the recurrence relation

(n− i− j)ai,j(n)− α(j + 1) ai,j+1(n)− α(i+ 1) ai+1,j(n) = 0,

i, j = n− 1, n− 2, ..., 0,
(6.6)

with ai,j(n) = 0, i+ j > n and an,0(n) = a0,n(n) = 1. The solution of (6.6) is
given by [see Appendix B]

ai,j(n) =


(−1)i+j

i!j!
(−n)i+j(2α)

n−i−j , i+ j ≤ n,

0, otherwise.
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In particular, for the special case y = 0, Eq. (6.5), after some manipulation,
becomes

xn =

n∑
i=0

(
n

i

)
αn−iC̃

(α)
i (x),

which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
180] and Zarzo et al. [52, p. L38].

6.2. The link between (x+ y)n and Meixner-Meixner polynomials.
In the problem

(6.7) (x+ y)n =
∑

i+j≤n

ai,j(n)M̃
(α,β)
i (x)M̃

(α,β)
j (y),

the coefficients ai,j(n) satisfy the recurrence relation

(β − 1)(n− i− j)ai,j(n) + β(i+ 1)(i+ α)ai+1,j(n)

+ β(j + 1)(j + α)ai,j+1(n) = 0, i, j = n− 1, n− 2, ..., 0,
(6.8)

with ai,j(n) = 0, i+ j > n and an,0(n) = a0,n(n) = 1. The solution of (6.8) is

ai,j(n) =


(−1)i+j(−n)i+j(2α)n

i!j!(2α)i+j

(
β

1− β

)n−i−j

, i+ j ≤ n,

0, otherwise.

In particular, for the special case y = 0, Eq. (6.7), after some manipulation,
becomes

xn =
n∑

i=0

(
n

i

)
(α+ i)n−i

(
β

1− β

)n−i

M̃
(α,β)
i (x),

which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
180] and Zarzo et al. [52, p. L38].

6.3. The link between (x+ y)n and Kravchuk-Kravchuk polynomials.
In the problem

(6.9) (x+ y)n =
∑

i+j≤n

ai,j(n)K̃
(s)
i (x;N)K̃

(s)
j (y;N), n ≤ N,

the coefficients ai,j(n) satisfy the recurrence relation

(n− i− j)ai,j(n)− s(i+ 1)(N − i)ai+1,j(n)

− s(j + 1)(N − j)ai,j+1(n) = 0, i, j = n− 1, n− 2, ..., 0,
(6.10)

with ai,j(n) = 0, i+ j > n and an,0(n) = a0,n(n) = 1. The solution of (6.10) is

ai,j(n) =


(−1)i+jsn−i−j(−n)i+j(2N − i− j)!

i!j!(2N − n)!
, i+ j ≤ n,

0, otherwise.
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In particular, for the special case y = 0, Eq. (6.9), after some manipulation,
becomes

xn =
n∑

i=0

(
n

i

)
sn−i(N − n+ 1)n−i K̃

(s)
i (x;N), n ≤ N,

which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
180] and Zarzo et al. [52, p. L38], .

6.4. The link between (x+ y)n and Hahn-Hahn polynomials.
The problem

(6.11) (x+ y)n =
∑

i+j≤n

ai,j(n) h̃
(0,0)
i (x;N) h̃

(0,0)
j (y;N), n ≤ N − 1,

where h̃
(0,0)
n (x;N) = tn(x) is an important special case of the Hahn polynomials

which is called the Chebyshev polynomials of a discrete variable (see [32, p.
33]). The coefficients ai,j(n) satisfy the recurrence relation

γi,j ai,j(n) + γi+1,,j−1 ai+1,j−1(n) + γi+1,,j ai+1,j(n) + γi+1,,j+1 ai+1,j+1(n)

+ γi+2,,j−2 ai+2,j−2(n) + γi+2,,j−1 ai+2,j−1(n) + γi+2,,j ai+2,j(n)

+ γi+2,,j+1 ai+2,j+1(n) + γi+2,,j+2 ai+2,j+2(n) = 0, i, j = n− 1, n− 2, ..., 0,

(6.12)

where

γi,j = −16(2i+ 3)(2i+ 5)(2j + 3)(2j + 5)(n− i− j),

γi,,j+1 = 8(j + 1)(2i+ 3)(2i+ 5)(2j + 3)(2j + 5)(N − n+ i),

γi,,j+2 = −4(j + 1)2(2i+ 3)(2i+ 5)(−N + j + 2)(N + j + 2)(n+ j − i+ 3),

γi+1,,j = 8(i+ 1)(2i+ 3)(2i+ 5)(2j + 3)(2j + 5)(N − n+ j),

γi+1,,j+1 = 4(i+ 1)(j + 1)(2i+ 3)(2i+ 5)(2j + 3)(2j + 5)(2N − n),

γi+1,,j+2 = −2(i+ 1)(j + 1)2(2i+ 3)(2i+ 5)(2j + 5)

× (−N + j + 2)(N + j + 2)(−N + n+ j + 3),

γi+2,,j = −4(i+ 1)2(2j + 3)(2j + 5)(−N + i+ 2)(N + i+ 2)(n+ i− j + 3),

γi+2,,j+1 = −2(i+ 1)2(j + 1)(2j + 3)(2j + 5)(−N + i+ 2)(N + i+ 2)

× (n+ i−N + 3),

γi+2,,j+2 = −(i+ 1)2(j + 1)2(−N + i+ 2)(N + i+ 2)(N + j + 2)

× (n+ i+ j + 6),
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with ai,j(n) = 0, i+ j > n and an,0(n) = a0,n(n) = 1.The solution of (6.12) is

ai,j(n) =
(
n
i

)(
n−i
j

) (N − n+ j)n−i−j(i+ 1)n−i−j

(2i+ 2)n−i−j

× 4F3

[
−n+ i+ j, j −N + 1, j − (n+ i+ 1), j + 1

N − n+ j, j − n, 2j + 2
; 1

]
,

i+ j ≤ n.

In particular, for the special case y = 0, equation (6.11) becomes

(6.13) xn =

n∑
i=0

c
(n)
i h̃

(0,0)
i (x;N),

where

(6.14) c
(n)
i =

n−i∑
j=0

ai,j(n) h̃
(0,0)
j (0;N), h̃

(0,0)
j (0;N) =

(1)j(1−N)j
(j + 1)j

.

The formula (6.14), after some manipulation, can be written in the form

c
(n)
n−i =

(
n
i

) (N − n)i(n− i+ 1)n−i

(2n− 2i+ 2)i

×
i∑

j=0

(
i
j

) (a1)j(a2)j(α1)j
(j + ν)j(b1)j(b2)j

×4 F3

[
−i+ j, j + a1, j + a2, j + α1

2j + ν + 1, j + b1, j + b2
; 1

]
,

where ν = 1, a1 = 1−N, a2 = 1, b1 = N − n, b2 = −n, α1 = −2n+ i− 1.
Using relation (4) in Sánchez-Ruiz [40, p. 262], (see also, Luke [30], Volume II,
p. 7) with suitable choices of the parameters (p = q = 2, r = s = u = 0, z =
1, ω = 0), one can obtain the following identity

i∑
j=0

(
i
j

) (a1)j(a2)j(α1)j
(j + ν)j(b1)j(b2)j

4F3

[
−i+ j, j + a1, j + a2, j + α1

2j + ν + 1, j + b1, j + b1
; 1

]
= 1,

then the form of c
(n)
i becomes

c
(n)
i =

(
n
i

) (N − n)n−i(i+ 1)n−i

(2i+ 2)n−i
,

and hence Eq. (6.13) takes the form

xn =
n∑

i=0

(
n
i

) (N − n)n−i(i+ 1)n−i

(2i+ 2)n−i
h̃
(0,0)
i (x;N),
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which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
181] with α = β = 0.
Note 3. It is worth mentioning here the problem

(6.15) (x+ y)n =
∑

i+j≤n

ai,j(n) h̃
(α,β)
i (x;N) h̃

(α,β)
j (y;N), n ≤ N − 1,

could be also considered in a similar way as in the above example. In fact,
the corresponding recurrence relation for the expansion coefficients ai, j(n) can

be obtained by inserting the data of monic Hahn polynomials h̃
(α,β)
i (x;N).

However, this recurrence relation is very lengthy, but the expansion coefficients
ai,j(n) in (6.15) has the formula:

ai,j(n) =
(
n
i

)(
n−i
j

) (N − n+ j)n−i−j(i+ β + 1)n−i−j

(2i+ λ+ 1)n−i−j

× 4F3

[
−n+ i+ j, j −N + 1, β + j + 1, j − (λ+ n+ i)

2j + λ+ 1, N − n+ j, j − n− β,
; 1

]
,

i+ j ≤ n.

Moreover, for the special case y = 0, by following the same manipulation
and using relation (4) in [40, p. 262] with suitable choices of the parameters
(p = q = 2, r = s = u = 0, z = 1, ω = 0, ν = λ, a1 = 1 −N, a2 = 1 + β, b1 =
N − n, b2 = −n− β, α1 = λ− 2n+ i− 1), one can obtain

xn =
n∑

i=0

(
n
i

) (N − n)n−i(i+ β + 1)n−i

(2i+ λ+ 1)n−i
h̃
(α,β)
i (x;N),

which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
180], and Zarzo et al. [52, p. L38], .

7. Connection problem in the sense of the product of two classical
discrete orthogonal polynomials

The connection problem in this case is to determine the coefficients ai,j(n)
in

Qn(x+ y) =
∑

i+j≤n

ai,j(n)Pi(x)Pj(y),

where Qn(x) is a classical orthogonal polynomial of a discrete variable.
We know that the classical orthogonal polynomials of a discrete variable

satisfy the second order difference equation of the form (2.2), then we get

[σ(x+ y − 1)∇2
x + [τ(x+ y − 1)− λn]∇x + λn] Qn(x+ y) = 0.
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7.1. The Charlier− Charlier-Charlier connection problem.
In the problem

(7.1) C̃(γ)
n (x+ y) =

∑
i+j≤n

ai,j(n)C̃
(α)
i (x)C̃

(α)
j (y),

where C̃
(γ)
n (x+ y) satisfies the difference equation

[(x+ y − 1)∇2
x + (γ − x− y − n+ 1)∇x + n]C̃(γ)

n (x+ y) = 0,

the coefficients ai,j(n) satisfy the partial difference equation

(n− i)ai,j(n)− (i+ 1)ai+1,j−1(n)− (i+ 1)(1 + i+ j − n+ 2α− γ)ai+1,j(n)

− α(i+ 1)(j + 1)ai+1,j+1(n)− (α− γ)(i+ 1)(i+ 2)ai+2,j(n) = 0,

j = n− 1, n− 2, ..., 0,

(7.2)

with ai,j(n) = 0 if i+j > n, a−1, j(n) = ai,−1(n) = 0 and an,0(n) = a0,n(n) = 1.
The solution of (7.2) is [see Appendix C]

ai,j(n) =


(−1)i+j

i!j!
(−n)i+j (2α− γ)n−i−j , i+ j ≤ n,

0, otherwise.

In particular, for the special case y = 0, Eq. (7.1), after some manipulation,
becomes

C̃(γ)
n (x) =

n∑
i=0

(
n

i

)
(α− γ)n−i C̃

(α)
i (x),

which is in agreement with the result obtained by Àlvarez-Nodarse et al. [3, p.
187], and Area et al. [8, p. 316].
For the case γ = 2α, we get

C̃(2α)
n (x+ y) =

n∑
i=0

(
n

i

)
C̃

(α)
i (x)C̃

(α)
n−i(y).

7.2. The Meixner− Meixner-Meixner connection problem.
In the problem

(7.3) M̃ (α,β)
n (x+ y) =

∑
i+j≤n

ai,j(n)M̃
(γ,β)
i (x)M̃

(γ,β)
j (y),

where M̃
(α,β)
n (x+ y) satisfies the difference equation

[(x+ y− 1)∇2
x + [αβ+(β− 1)(x+ y+n− 2)]∇x +n(1− β)]M̃ (α,β)

n (x+ y) = 0,



Formulae for the product of two classical discrete orthogonal polynomials 2604

the coefficients ai,j(n) satisfy the recurrence relation

(β − 1)2(n− i)ai,j(n)− (β − 1)2(i+ 1)ai+1,j−1(n)

− β(i+ 1)(j + 1)(j + γ)ai+1,j+1(n)− (β − 1)(i+ 1)(n− 2β − (β + 1)(i+ j)

+ β(n+ α− 2γ))ai+1,j(n)− (i+ 1)2(β(i− n− α+ γ + 3)− 1)ai+2,j(n) = 0,

j = n− 1, n− 2, ..., 0,

(7.4)

with ai,j(n) = 0, i+ j > n, a−1, j(n) = ai,−1(n) = 0 and an,0(n) = a0,n(n) = 1.
The solution of (7.4) is given by

ai,j(n) =


(

β

β − 1

)n−i−j
(−1)i+j(α)n(−n)i+j(α− 2γ)n−i−j

i!j!(α)i+j(α+ i+ j)n−i−j
, i+ j ≤ n,

0, otherwise.

In particular, for the special case y = 0, equation (7.3), after some manipula-
tion, becomes

M̃ (α,β)
n (x) =

n∑
i=0

(
n

i

)
(α− γ)n−i

(
β

β − 1

)n−i

M̃
(γ,β)
i (x),

which agrees with the result obtained by Àlvarez-Nodarse et al. [3, p. 188],
and Area et al. [8, p. 318].

For the case α = 2γ, we get

M̃ (2γ,β)
n (x+ y) =

n∑
i=0

(
n

i

)
M̃

(γ,β)
i (x)M̃

(γ,β)
n−i (y).

7.3. The Kravchuk− Kravchuk-Kravchuk connection problem.
In the problem

(7.5) K̃(s)
n (x+ y;N) =

∑
i+j≤n

ai,j(n)K̃
(s)
i (x;N)K̃

(s)
j (y;N), n ≤ N,

where K̃
(s)
n (x+ y;N) satisfies the difference equation

[(1− s)(x+ y − 1)∇2
x + [N s− (x+ y + n− 1)]∇x + n]K̃(s)

n (x+ y;N) = 0,

the coefficients ai,j(n) satisfy the recurrence relation

(n− i)ai,j(n)− (i+ 1)ai+1,j−1(n) + s(s− 1)(i+ 1)(j + 1)(N − j)ai+1,j+1(n)

− (i+ 1)(1 + (1− 2s)(i+ j)− n+ s(N + 2n− 2))ai+1,j(n)

+ s(s− 1)(i+ 1)2(n− i− 2)ai+2,j(n) = 0, i, j = n− 1, n− 2, ..., 0,

(7.6)
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with ai,j(n) = 0, i+ j > n, a−1, j(n) = ai,−1(n) = 0 and an,0(n) = a0,n(n) = 1.
The solution of (7.6) is given by

ai,j(n) =

sn−i−j (−1)i+j(−N)n(−n)i+j(N)n−i−j

i!j!(−N)i+j(−N + i+ j)n−i−j
, i+ j ≤ n,

0, otherwise.

7.4. The Hahn− Hahn-Hahn connection problem.
In the problem

(7.7)

h̃(γ,δ)
n (x+y;M) =

∑
i+j≤n

ai,j(n)h̃
(0,0)
i (x;N)h̃

(0,0)
j (y;N), n ≤ min{N−1,M−1},

where h̃
(γ,δ)
n (x+ y;M) satisfies the difference equation

[(x+ y − 1)(M + γ − x− y + 1)∇2
x + [(δ + 1)(M − 1)− (µ+ 1)(x+ y − 1)]∇x

+ n(µ+ n)]h̃(γ,δ)
n (x+ y;M) = 0, µ = γ + δ + 1,

the coefficients ai,j(n) satisfy the recurrence relation

γi,j ai,j(n) + γi+1,,j−1 ai+1,j−1(n) + γi+1,,j ai+1,j(n) + γi+1,,j+1 ai+1,j+1(n)

+ γi+2,,j−2 ai+2,j−2(n) + γi+2,,j−1 ai+2,j−1(n) + γi+2,,j ai+2,j(n)

+ γi+2,,j+1 ai+2,j+1(n) + γi+2,,j+2 ai+2,j+2(n) = 0, i, j = n− 1, n− 2, ..., 0,

(7.8)

where

γi,j = (i+ 3)2(µ+ n+ i)(n− i),

γi+1,j−1 = −(i+ 1)(i+ 3)2(2i+ µ+ 1),

γi+2,j−2 = −(i+ 1)4,

γi+2,j−1 =
1

2
(i+ 1)4(5 + 2M −N(N + 2) + γ − δ),

γi+1,j =
1

4
(i+ 1)(i+ 4) [i2(4M + 4(γ − 1)−N(µ+ 5)) + 2((1− 6N)(µ+ 1)

+ 6n(n+ µ)) + i(12M −N(19 + 7µ) + 2(−8 + 5γ − δ + 2n(n+ µ)))],

γi+1,j+1 = (i+ 1)(i+ 3)2[−2i+ [(1 + j)2(j −N + 1)(j +N + 1)(µ+ 1)]

× [4(3 + 4j(j + 2))]−1],

γi+2,j =
1

16
(i+ 1)4 [−16(M + 1)− 8(N − 1)2 + 16n (n+ µ)

+ 4(µ+ n(n+ µ)− 3)− 16γ + 8(N − 1)(M − δ)

+ 4(N − 1)(2M − 2N + γ − δ) + 4(γ − 3δ + 4M +N(µ− 3)
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− 4n(n+ µ) + 6) +
8 i (N + i+ 2)(−N + i+ 2)

(2i+ 3)(2i+ 5)

+
8(i+ 1)(N + i+ 3)(−N + i+ 3)

(2i+ 5)(2i+ 7)
− 4 j2(N2 − j2)

4j2 − 1

+
4(j + 1)2(N + j + 1)(−N + j + 1)

3 + 4 j (j + 2)
− 16(µ+ 1)(i+ 2)

(3 + i)2

− (i+ 1)2(i+ 3)(N + j + 1)2(−N + j + 1)2(µ+ 1)

(2i+ 1)(2i+ 3)2(2i+ 5)

+
4n(n+ µ)(N + i+ 2)(−N + i+ 2)

(2i+ 3)(2i+ 5)

+
4n(n+ µ)(N + i+ 3)(−N + i+ 3)

(2i+ 5)(2i+ 7)

+
16(3 + γ + 2δ +M(δ + 1)− n(n+ µ))

(i+ 3)

+
4(81 + 272 i+ 316 i2 + 168 i3 + 42 i4 + 4i5

(2i+ 3)(2i+ 5)(2i+ 7)

− 4(9 + 2i(16 + i(2i+ 11)))N2)

(2i+ 3)(2i+ 5)(2i+ 7)
],

γi+2,j+1 =
1

4
(i+ 1)4[2(1−N2)

+ [2(2j + 1)(2j + 3)]
−1×

[(j + 1)2(N + j + 1)(−N + j + 1)(δ − γ + 2N − 2M − 4)],

γi+2,j+2 = − (i+ 1)4(j + 1)2(j + 2)2(−N + j + 1)2(N + j + 1)2
16(2j + 1)(2j + 3)2(2j + 5)

,

with ai,j(n) = 0, i+ j > n, a−1, j(n) = ai,−1(n) = 0 and an,0(n) = a0,n(n) = 1.
The solution of (7.8) is given by

ai,j(n) =



(−1)i+j(1−M)n(1 + δ)n(−n)i+j (n+ µ)i+j

i! j!(1−M)i+j(1 + δ)i+j(n+ µ)n

×
n−i−j∑
ℓ=0

1
ℓ!

(−n+ i+ j)ℓ (n+ µ+ i+ j)ℓ (j + 1)ℓ (−N + j + 1)ℓ
(−M + i+ j + 1)ℓ(2j + 2)ℓ(δ + i+ j + 1)ℓ

× 4F3

[
−ℓ,−N + i+ 1, i+ 1,−2j − ℓ− 2

N − ℓ− j,−j − ℓ, 2i+ 2
; 1

]
, i+ j ≤ n,

0, otherwise.
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Note 4. The problem
(7.9)

h̃(γ,δ)
n (x+ y;M) =

∑
i+j≤n

ai,j(n)h̃
(α,β)
i (x;N)h̃

(α,β)
j (y;N), n ≤ min{N,M},

could be also considered in a similar way as in the above example. In fact,
the corresponding recurrence relation for the expansion coefficients ai,j(n) can

be obtained by inserting the data of monic Hahn polynomials h̃
(α,β)
i (x;N).

However, this recurrence relation is very lengthy, but the expansion coefficients
ai, j(n) in (7.9) has the formula:

ai, j(n) =
(−1)i+j(1−M)n(1 + δ)n(−n)i+j (n+ µ)i+j

i! j!(1−M)i+j(1 + δ)i+j(n+ µ)n

×
n−i−j∑
ℓ=0

1
ℓ!

(−n+ i+ j)ℓ (n+ µ+ i+ j)ℓ (j + β + 1)ℓ (−N + j + 1)ℓ
(−M + i+ j + 1)ℓ(2j + λ+ 1)ℓ(δ + i+ j + 1)ℓ

×4F3

[
−ℓ,−N + i+ 1, β + i+ 1,−2j − ℓ− λ− 1

N − ℓ− j,−j − β − ℓ, 2i+ λ+ 1
; 1

]
.

Remark 7.1. Up to now, and to the best of the author’s knowledge that an-
alytical solutions of the recurrence relations of variable coefficients with two
indices may be very difficult in general (see [47–50]), but the authors in these
papers present the formulae of general solutions for some definite classes of ho-
mogeneous and non-homogeneous recurrences of variable coefficients with two
indices. Hence, the given analytical solutions of the recurrences (5.7), (6.6),
(6.8), (6.10), (6.12), (7.2), (7.4), (7.6) and (7.8) may be obtained by alternative
method. This method depends on using some algebraic manipulation, the aid
of the symbolical expression of Newton’s formula for a function f(x),

(7.10) f(x) =

∞∑
k=0

(
x

k

)
∆kf(0),

and the known representations for the falling factorials in terms of the classical
discrete orthogonal polynomials (see [25, pp.85-6]), to find the expansions (5.4),
(6.5), (6.7), (6.9), (6.11), (7.1), (7.3), (7.5) and (7.7) [see Appendices A, B and
C]. Then, the obtained expansions coefficients will be actually the analytical
solutions of these recurrences.

Remark 7.2. It should be mentioned that one of our aims here is to empha-
size the systematic character and simplicity of our algorithm to build linear
recurrence relations of the form (5.2), which allows one to implement it in any
computer algebra (here Mathematica Version 8) symbolic language has been
used.
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Appendices

Appendix A

The analytical solution of (5.3) is u(x, y) = x y 2−x2−y+x+y. The analytical
solution (5.8) can be obtained as follows.

First, we show that

(A.1) f(x) = x 2−x =
∞∑
i=0

fi C̃
(α)
i (x),

where

fi =
(−2)i−1

i!
(2i− α) e−α/2.

It is easy to see that ∆kf(x) = (−1)k2−x−k(x − k), then
[
∆kf(x)

]
x=0

=

(−1)k+12−k k. Using (7.10) and the equality(
x

k

)
=

Γ(x+ 1)

Γ(x− k + 1) k!
=

xk

k!
,

yield the formula

(A.2) f(x) =
1

2

∞∑
k=0

xk

k!
(−2)−k.

Substituting the formual [3, p. 180]

xk =
k∑

i=0

(
k

i

)
αk−iC̃

(α)
i (x),

in (A.2), expanding and collecting similar terms, lead to

f(x) =

∞∑
i=0

(
(−2)−(i+1)

i!
(2i− α)

∞∑
k=0

(−α/2)k

k!

)
C̃

(α)
i (x)

=
∞∑
i=0

(
(−2)−(i+1)

i!
(2i− α) e−α/2

)
C̃

(α)
i (x) ,

then (A.1) is obtained. Now, in view of (A.1), one can see that

(A.3)
u(x, y) =

∞∑
i,j=0

(−2)−(i+j+2)(2i−α)(2j−α)
i!j! C̃

(α)
i (x)C̃

(α)
j (y)

+2αC̃
(α)
0 (x)C̃

(α)
0 (y) + C̃

(α)
1 (x)C̃

(α)
0 (y) + C̃

(α)
0 (x)C̃

(α)
1 (y).
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The expansion (A.3) can be written in the form

u(x, y) =
∞∑

i,j=0

ai,j C̃
(α)
i (x)C̃

(α)
j (y),

where the coefficients ai,j are given in (5.8). By using Mathematica, it can be
checked that the formula (5.8) satisfies the recurrence relation (5.7).
Appendix B

In the expansion

(x+ y)n =

n∑
i=0

n−i∑
j=0

ai,j(n)Pi(x)Pj(y),

the coefficients ai,j(n) have the form

(B.1) ai,j(n) =

n−i−j∑
r=0

(
n

j + r

)
d
(n−j−r)
i d

(j+r)
j ,

where d
(n)
i (i = 0, 1, ..., n) are the coefficients in the expansion

(B.2) xn =

n∑
i=0

d
(n)
i Pi(x).

The formula (B.1) can be proved as follows:
By using (7.10), it is not difficult to show that

(B.3) (x+ y)n =
n∑

k=0

b
(n)
k (y)xk, b

(n)
k (y) =

(
n

k

)
yn−k.

Substituting (B.2) in (B.3), expanding and collecting similar terms give

(B.4) (x+ y)n =
n∑

i=0

c
(n)
i (y)Pi(x),

where

c
(n)
i (y) =

n−i∑
j=0

b
(n)
i+j(y) d

(i+j)
i .

The coefficients c
(n)
i (y) can be written in the form

c
(n)
i (y) =

n−i∑
j=0

λ
(i)
j (n) yj , λ

(i)
j (n) =

(
n

j

)
d
(n−j)
i .
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Using (B.2), expanding and collecting similar terms, yields the formula
(B.5)

c
(n)
i (y) =

n−i∑
j=0

(
j∑

r=0

d(j)r Pr(y)

)
λ
(i)
j (n) =

n−i∑
j=0

(
n−i−j∑
r=0

λ
(i)
r+j(n) d

(r+j)
j

)
Pj(y).

Substituting (B.5) in (B.4) leads to

(B.6) (x+ y)n =
n∑

i=0

n−i∑
j=0

(
n−i−j∑
r=0

λ
(i)
j+r(n) d

(r+j)
j

)
Pi(x)Pj(y),

then (B.6) takes the form

(x+ y)n =

n∑
i=0

n−i∑
j=0

ai,j(n)Pi(x)Pj(y),

where

ai,j(n) =

n−i−j∑
r=0

λ
(i)
j+r(n) d

(r+j)
j =

n−i−j∑
r=0

(
n

j + r

)
d
(n−j−r)
i d

(r+j)
j .

The solution of recurrence relation (6.6): In this case d
(n)
i =

(
n
i

)
αn−i,

then

(B.7) ai,j(n) =

n−i−j∑
r=0

(
n

j + r

)(
n− j − r

i

)(
j + r

j

)
αn−i−j .

The formula (B.7), after some manipulation, can be written in the form

ai,j(n) = (−1)i+j (−n)i+j

i!j!
αn−i−j

n−i−j∑
r=0

(
n− i− j

r

)
= (−1)i+j (−n)i+j

i!j!
(2α)n−i−j .

(B.8)

By using Mathematica, one can see that the formula (B.8) satisfies the recur-
rence relation (6.6). Similarly, the analytical solutions of recurrence relations
(6.8), (6.10) and (6.12) can be obtained.

Appendix C
In the expansion

Qn(x+ y) =
∑

i+j≤n

Ai,j(n)Pi(x)Pj(y),
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the coefficients ai,j(n) have the form

(C.1) Ai,j(n) =

n−i−j∑
r=0

r∑
s=0

(
r + i+ j

j + s

)
d
(r+i−s)
i d

(j+s)
j ar+i+j(n),

where ak(n), k = 0, 1, ..., n, are the coefficients in the expansion

(C.2) Qn(x) =

n∑
k=0

ak(n)x
k.

The formula (C.1) can be proved as follows:
By using (C.2), one can see that

(C.3) Qn(x+ y) =
n∑

k=0

ak(n) (x+ y)k.

Substituting (B.1) in (C.3) yields,

Qn(x+ y) =
n∑

k=0

ak(n)

 k∑
i=0

k−i∑
j=0

ai,j(k)Pi(x)Pj(y)

 ,

then expanding and collecting similar terms lead to

(C.4) Qn(x+ y) =
n∑

i=0

B
(n)
i (y)Pi(x),

where

(C.5) B
(n)
i (y) =

n∑
r=i

r−i∑
j=0

ai, j(r)Pj(y)

 ar.

Again, by expanding and collecting similar terms, the formula (C.5) takes the
form

(C.6) B
(n)
i (y) =

n−i∑
j=0

(
n−i−j∑
r=0

ai, j(r + i+ j) ar+i+j

)
Pj(y).

Substituting (C.6) in (C.4) gives

Qn(x+ y) =
n∑

i=0

n−i∑
j=0

(
n−i−j∑
r=0

ai, j(r + i+ j) ar+i+j

)
Pi(x)Pj(y).

Using (B.1) yields the formula

Qn(x+ y) =
n∑

i=0

n−i∑
j=0

Ai,j(n)Pi(x)Pj(y),
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where

Ai,j(n) =

n−i−j∑
r=0

r∑
s=0

(
r + i+ j

j + s

)
d
(r+i−s)
i d

(j+s)
j ar+i+j .

The solution of recurrence relation (7.2): In this case d
(n)
i =

(
n
i

)
αn−i

and ak(n) =
(−1)k(−n)k

k!
(−γ)n−k then

Ai,j(n) =

n−i−j∑
r=0

(
r∑

s=0

(
r + i+ j

j + s

)(
r + i− s

i

)(
j + s

j

))

× αr(−γ)n−r−i−j(−1)r+i+j (−n)r+i+j

(r + i+ j)!
.

By using Mathematica, one can obtain
r∑

s=0

(
r + i+ j

j + s

)(
r + i− s

i

)(
j + s

j

)
= 2r

(
r + i

i

)(
i+ j + r

j

)
,

then

Ai,j(n) =

n−i−j∑
r=0

(
r + i

i

)(
i+ j + r

j

)
(2α)r(−γ)n−r−i−j(−1)r+i+j (−n)r+i+j

(r + i+ j)!
.

Using the equality (−n)k = (−1)kk!
(
n
k

)
leads to the form

Ai,j(n) =

n−i−j∑
r=0

(
r + i

i

)(
i+ j + r

j

)(
n

r + i+ j

)
(2α)r(−γ)n−r−i−j .

Using Mathematica, after some manipulation, yields the formula

(C.7) Ai,j(n) =
(−1)i+j

i!j!
(−n)i+j (2α− γ)n−i−j .

By using Mathematica, it can be seen that the formula (C.7) satisfies the
recurrence relation (7.2). Similarly, the analytical solutions of recurrence rela-
tions (7.4), (7.6) and (7.8) can be obtained.
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