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Abstract. We prove completeness of the category of crossed modules
in a modified category of interest. We define pullback crossed modules
and pullback cat1-objects that are both obtained by pullback diagrams
with extra structures on certain arrows. These constructions unify many

corresponding results for the cases of groups, commutative algebras and
can also be adapted to various algebraic structures.
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1. Introduction

The notion of category of interest was introduced to unify various properties
of algebraic structures. The main idea is due to Higgins [13] which was im-
proved by Orzech [19]. As indicated in [8,9,15–17,19], algebraic categories are
the main examples of category of interest. On the other hand, the categories
of cat1-objects of Lie (associative, Leibniz, etc.) algebras are not category of
interest. Because of this, the authors of [5] introduced a new type of this no-
tion, called modified category of interest, that satisfies all axioms of the former
notion except one, which is replaced by a new and modified axiom. The main
examples are those which are equivalent to the categories of crossed modules in
the categories of groups, (commutative) algebras, dialgebras, Lie and Leibniz
algebras, etc. See [4, 7, 11, 18,20] for more examples.

Crossed modules were introduced by Whitehead in [23] as a model of ho-
motopy 2-types and they were used to classify higher dimensional cohomology
groups. The notion of crossed module is also defined for various algebraic
structures. However, the definition of crossed modules in modified categories
of interest unifies all of these definitions. As an equivalent model of homotopy
2-types, cat1-groups were introduced by Loday in [14]. This notion and the
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corresponding equivalence were also adapted to several algebraic structures, as
well as to modified category of interest [22].

In this paper, we first prove that the category of crossed modules in a mod-
ified category of interest C is finitely complete. This unifies a number of con-
structions given in [21]. Then, we define pullback crossed modules and pullback
cat1-objects in C that are both obtained by pullback diagrams with extra cat-
egorical structures on certain arrows. These definitions unify the constructions
and results given in [2, 3, 6]. Moreover, one can adapt them to other different
algebraic structures such as Lie algebras, Leibniz algebras, dialgebras, etc.

2. Preliminaries

In this section, we recall some notions from [5,14,22].

2.1. Modified Category of Interest.

Definition 2.1. Let C be a category of groups with a set of operations Ω and
with a set of identities E such that E includes the group identities and the
following conditions hold. If Ωi is the set of i-ary operations in Ω, i = 0, 1, 2,
then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) the group operations (written additively : 0,−,+) are elements of Ω0,

Ω1 and Ω2 respectively. Let Ω
′
2 = Ω2\{+}, Ω′

1 = Ω1\{−}. Assume that
if ∗ ∈ Ω2, then Ω′

2 contains ∗◦ defined by x ∗◦ y = y ∗ x. Furthermore,
assume Ω0 = {0};

(c) for each ∗ ∈ Ω′
2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for each ω ∈ Ω′
1 and ∗ ∈ Ω′

2, E includes the identities ω(x + y) =
ω(x) + ω(y) and either the identity ω(x ∗ y) = ω(x) ∗ ω(y) or the
identity ω(x ∗ y) = ω(x) ∗ y.

Denote by Ω′
1S the subset of those elements in Ω′

1 which satisfy the identity
ω(x ∗ y) = ω(x) ∗ y, and by Ω′′

1 all other unary operations, i.e., those which
satisfy the first identity in (d).

Let C be an object of C and x1, x2, x3 ∈ C:

(e) x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′
2,

(f) for each ordered pair (∗, ∗) ∈ Ω′
2 × Ω′

2 there is a word W such that:

(x1 ∗ x2) ∗ x3 =W
(
x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2
)
,

where each juxtaposition represents an operation in Ω′
2.

A category of groups with operations C satisfying conditions (a)-(f) is called
a modified category of interest, or MCI for short.
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As indicated in [5], the difference between this definition and that of the
original category of interest is the modification of the second identity in
(d). According to this definition every category of interest is also a modified
category of interest.

Definition 2.2. Let A,B be two objects of C. A map f : A → B is called a
morphism of C if it satisfies

f(a+ a′) = f(a) + f(a′),

f(a ∗ a′) = f(a) ∗ f(a′),

for all a, a′ ∈ A, ∗ ∈ Ω′
2 and commutes with all w ∈ Ω′

1.

Example 2.3. The categories of groups, algebras, commutative algebras, Lie
algebras, Leibniz algebras, dialgebras are all (modified) categories of interest.

Example 2.4. The categories Cat1Ass, Cat1Lie, Cat1Leibniz, i.e., the
categories of cat1-associative algebras, cat1-Lie algebras and cat1-Leibniz alge-
bras are the examples of modified categories of interest, which are not categories
of interest (see [5] for details).

Notation. From now on, C will denote an arbitrary but a fixed modified cate-
gory of interest.

Definition 2.5. Let B ∈ C. A subobject of B is called an ideal if it is the
kernel of some morphism.

In other words, A is an ideal of B if and only if A is a normal subgroup of
B and a ∗ b ∈ A, for all a ∈ A, b ∈ B and ∗ ∈ Ω′

2.

Definition 2.6. Let A,B ∈ C. An extension of B by A is a sequence:

0 // A
i // E

p // B // 0(2.1)

where p is surjective and i is the kernel of p. We say that an extension is split
if there exists a morphism s : B → E such that ps = 1B .

Definition 2.7. The split extension (2.1) induces an action of B on A corre-
sponding to the operations of C with

b · a = s(b) + a− s(b),

b ∗ a = s(b) ∗ a,

for all b ∈ B, a ∈ A and ∗ ∈ Ω′
2.

The actions defined by the previous equations are called derived actions of
B on A. Note that we use the notation “ ∗ ” to denote both the star operation
and the star action.
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Given an action of B on A, a semi-direct product A⋊B is a universal algebra,
whose underlying set is A×B and the operations are defined by

ω(a, b) = (ω (a) , ω (b)),

(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),

(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b)

for all a, a′ ∈ A, b, b′ ∈ B, ∗ ∈ Ω′
2. An action of B on A is a derived action if

and only if A⋊B is an object of C.
Denote a general category of groups with operations of a modified category

of interest C by CG. A set of actions of B on A in CG is a set of derived actions
if and only if it satisfies the following conditions

(1) 0 · a = a,
(2) b · (a1 + a2) = b · a1 + b · a2,
(3) (b1 + b2) · a = b1 · (b2 · a),
(4) b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,
(5) (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,
(6) (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,
(7) (b1 ∗ b2) · (a ∗ b) = a ∗ b,
(8) a1 ∗ (b · a2) = a1 ∗ a2,
(9) b ∗ (b1 · a) = b ∗ a,
(10) ω(b · a) = ω(b) · ω(a),
(11) ω(a ∗ b) = ω(a) ∗ b = a ∗ω(b) for any ω ∈ Ω′

1S , and ω(a ∗ b) = ω(a) ∗ω(b)
for any ω ∈ Ω′′

1 ,
(12) x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′
1, ∗ ∈ Ω′

2, b, b1, b2 ∈ B, a, a1, a2 ∈ A; and for x, y, z, t ∈ A ∪ B
whenever both sides of the last condition are defined.

2.2. Crossed Modules.

Definition 2.8. A crossed module (C1, C0, ∂) in C is given by a morphism
∂ : C1 → C0 with a derived action of C0 on C1 such that

XM1)
∂(c0 · c1) = c0 + ∂(c1)− c0
∂(c0 ∗ c1) = c0 ∗ ∂(c1)

XM2)
∂(c1) · c′1 = c1 + c′1 − c1
∂(c1) ∗ c′1 = c1 ∗ c′1

for all c0 ∈ C0, c1, c
′
1 ∈ C1, ∗ ∈ Ω′

2.
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A morphism between two crossed modules (C1, C0, ∂) → (C ′
1, C

′
0, ∂

′) is a
pair (µ1, µ0) of morphisms µ0 : C0 → C ′

0, µ1 : C1 → C ′
1, such that the diagram

C1
∂ //

µ1

��

C0

µ0

��
C ′

1
∂′

// C ′
0

commutes and

µ1(c0 · c1) = µ0(c0) · µ1(c1) ,

µ1(c0 ∗ c1) = µ0(c0) ∗ µ1(c1)

for all c0 ∈ C0, c1 ∈ C1 and ∗ ∈ Ω′
2.

Crossed modules and their morphisms form the category of crossed modules
in C that will be denoted by XMod.

Example 2.9 ([12]). A crossed module of groups is given by a group homo-
morphism ∂ : E → G together with an action ▷ of G on E such that (for all
e, f ∈ E and g ∈ G)

• ∂(g ▷ e) = g ∂(e) g−1,
• ∂(e) ▷ f = e f e−1.

Example 2.10 ( [12]). A crossed module of Lie algebras is given by a Lie
algebra homomorphism ∂ : e → g together with an action ▷ of g on e such that
(for all e, f ∈ e and g ∈ g)

• ∂(g ▷ e) = [g, ∂(e)],
• ∂(e) ▷ f = [e, f ].

Note that in the previous examples ▷ denotes both the group action and the
Lie algebra action, respectively.

2.3. Cat1 Objects.

Definition 2.11. Let S be a subobject of R. A cat1-object (e; s, t, R → S)
in C is an object C together with morphisms s, t : R → S and e : S → R such
that the following conditions are satisfied

• se = idS and te = idS ,
• x ∗ y = 0, x+ y − x− y = 0

for all ∗ ∈ Ω′
2 and x ∈ ker s, y ∈ ker t.

Let C = (e; s, t : R→ S) and C ′ = (e′; s′, t′ : R′ → S′) be two cat1-objects.
A cat1-morphism (ϕ, φ) : C → C ′ is a tuple which consists of
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morphisms ϕ : R → R′ and φ : S → S′ such that the following diagram
commutes

R

��

st

��

ϕ // R′

��

s′t′

��
S

φ
//

@A
GF

e

//

S′
BC
ED

e′ .

oo

Cat1-objects and their morphisms form the category of cat1-objects in C
that will be denoted by Cat1.

Notation. We denote any cat1-object in C by (R,S) for short.

Example 2.12 ([10]). A cat1-Leibniz algebra consists of a Leibniz algebra L,
a sub Leibniz algebraM and Leibniz algebra homomorphisms s, t : L→M and
e : M → L such that

• se = idM and te = idM ,
• [x, y] = 0 = [y, x],

for all x ∈ ker s, y ∈ ker t.

Example 2.13. A cat1-dialgebra consists of a dialgebra [16]D, a sub dialgebra
and dialgebra homomorphisms s, t : D → F and e : F → D such that

• se = idF and te = idF ,
• x ⊣ y = 0 = y ⊣ x, x ⊢ y = 0 = y ⊢ x

for all x ∈ ker s, y ∈ ker t.

Proposition 2.14. The categories XMod and Cat1 are naturally equivalent.

Proof. Let (C1, C0, ∂) be a crossed module in C. Consider the corresponding
semi-direct product C1⋊C0 induced from the action of C0 on C1. By using the
morphisms s, t : C1 ⋊ C0 → C0 and e : C0 → C1 ⋊ C0 defined by s(c1, c0) = c0,
t(c1, c0) = ∂(c1) + c0 and e(c0) = (0, c0), we obtain a cat1-object. This yields
to the functor C1 : XMod → Cat1. See [22] for the converse. □

3. Limits in MCI

The cartesian product P × R is the product object of P and R in C with
the projection morphisms satisfying the universal property.

Suppose that α : P → S and β : R → S are two morphisms in C. Then the
subobject of the cartesian product

P ×S R = {(p, r) | α (p) = β (r)} ,

i.e., the fiber product, defines the pullback of α, β.
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Therefore, a modified category of interest C has products and pullbacks
which guarantees the existence of equalizer objects. Briefly, suppose that
we have two parallel morphisms f, g : P → R. Their equalizer is defined as
Eq(f, g) = {x ∈ P | f(x) = g(x)}.

Consequently, we can say that C has all finite limits since it has both prod-
ucts and equalizers. Thus, C is finitely complete.

3.1. Limits in the Category of Crossed Modules in MCI.

Definition 3.1. The category of crossed modules in C with fixed codomain X
forms a full subcategory of XMod that is denoted by XMod/X. These kind
of crossed modules will be called crossed X-modules.

Lemma 3.2. Given two crossed modules (P, S, α) and (R,S, β) there is a
crossed module

∂ : P ×S R→ S,

where ∂ (p, r) = α (p) = β (r) and the action of S on P ×S R is defined by

s · (p, r) = (s · p, s · r) , s ∗ (p, r) = (s ∗ p, s ∗ r) .

Proof. The action given above is well-defined and the action conditions are
already satisfied. Moreover, ∂ : P ×S R→ S is a morphism of C since

∂ ((p, r) + (p′, r′)) = ∂ (p+ p′, r + r′)

= α (p+ p′)

= α (p) + α (p′)

= ∂ (p, r) + ∂ (p′, r′) .

Similarly, we have

∂ ((p, r) ∗ (p′, r′)) = ∂ (p, r) ∗ ∂ (p′, r′) ,

for all (p, r) , (p′, r′) ∈ P ×S R. Also ∂ commutes with all w ∈ Ω′
1 since

∂
(
w(p, r)

)
= ∂

(
w(p), w(r)

)
= α

(
w(p)

)
= w

(
α(p)

)
= w

(
∂(p, r)

)
.

Finally, ∂ satisfies the crossed module conditions

XM1)

∂ (s · (p, r)) = ∂ (s · p, s · r) = α(s · p) = s+ α (p)− s = s+ ∂ (p, r)− s,

∂ (s ∗ (p, r)) = ∂ (s ∗ p, s ∗ r) = α (s ∗ p) = s ∗ α (p) = s ∗ ∂ (p, r) ,
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XM2)

∂ (p′, r′) · (p, r) = α (p′) · (p, r)
= (α (p′) · p, α (p′) · r)
= (α (p′) · p, β (r′) · r)
= (p′ + p− p′, r′ + r − r′)

= (p′, r′) + (p, r)− (p′, r′),

∂ (p′, r′) ∗ (p, r) = α (p′) ∗ (p, r)
= (α (p′) ∗ p, α (p′) ∗ r)
= (α (p′) ∗ p, β (r′) ∗ r)
= (p′ ∗ p, r′ ∗ r)
= (p′, r′) ∗ (p, r) ,

for all (p, r) , (p′, r′) ∈ P ×S R and s ∈ S. □

Lemma 3.3. Let (α, id) : (P,X, γ) → (S,X, ∂′) be a crossed module morphism.
Then there exists a crossed module (P, S, α) where the action of S on P are
defined along ∂′, namely,

s · p = ∂′(s) · p, s ∗ p = ∂′(s) ∗ p.

Proof. Since (α, id) is a crossed module morphism, the diagram

P

α

��@
@@

@@
@@

@

γ

��

S

∂′
��~~
~~
~~
~

X

commutes; namely, α(x · p) = x ·α(p) and α(x ∗ p) = x ∗α(p) for all x ∈ X and
p ∈ P . Thus,

XM1)

α(s · p) = α
(
∂′(s) · p

)
= ∂′(s) · α(p) = s+ α(p)− s ,

α(s ∗ p) = α
(
∂′(s) ∗ p

)
= ∂′(s) ∗ α(p) = s ∗ α(p) ,

XM2)

α(p) · p′ = ∂′(α(p)) · p′ = γ(p) · p′ = p+ p′ − p ,

α(p) ∗ p′ = ∂′(α(p)) ∗ p′ = γ(p) ∗ p′ = p ∗ p′ ,

for all s ∈ S and p, p′ ∈ P . □
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Remark 3.4. If (A,B, ∂) and (B,C, ∂′) are crossed modules such that C acts
on A in a compatible way with B (i.e., (∂′b ·a) = b ·a), then (A,C, ∂′∂) becomes
a crossed module as well, see [21] for details.

Lemma 3.5. Suppose that we have crossed module morphisms

(α, id) : (P,X, γ) → (S,X, ∂′) and (β, id) : (R,X, δ) → (S,X, ∂′).

Then there exists a crossed module

P ×S R→ X ,

which leads to the pullback object in XMod/X.

Proof. By using crossed module morphisms (α, id) and (β, id), we get the fol-
lowing morphisms of C

α : P → S and β : R→ S.

We already know that the pullback of these morphisms in C are defined by
the fiber product P ×S R that makes the following diagram commutative and
satisfies the universal property

P ×S R
π1

{{ww
ww
ww
ww
w

π2

##H
HH

HH
HH

HH

P

α
##H

HH
HH

HH
HH

H R.

β
zzvvv

vv
vv
vv
v

S

By using Lemma 3.3, α and β turn into crossed modules. Thus, we get a crossed
module ∂ : P ×S R → S in the sense of Lemma 3.2. Moreover, ∂′ : S → X is
already a crossed module and X acts on P ×S R in a natural way. Therefore,
by using Remark 3.4, we get the crossed module

∂′∂ : P ×S R→ X,
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which leads to the pullback object in the category of crossed X-modules. All
fitting into the diagram

P ×S R
π1

{{ww
ww
ww
ww
w

π2

##G
GG

GG
GG

GG

∂

��

P

α
##H

HH
HH

HH
HH

H

γ

''

R

β
{{vv
vv
vv
vv
vv

δ

ww

S

∂′

��
X

□

Proposition 3.6. The category of crossed X-modules has an initial object
0 → X and a terminal object id : X → X. Consequently, one can construct the
product object as a pullback of the morphisms

X

��?
??

??
??

? X ′

~~~~
~~
~~
~~

1

where X ,X ′ are two crossed X-modules and 1 is the terminal object.

This yields the following:

Proposition 3.7. Given two crossed modules α : P → S and β : R → S in a
modified category of interest C, their product is the crossed module ∂ : P×SR→
S.

Thus, we have proved the following theorem:

Theorem 3.8. The category XMod/X is finitely complete.

Remark 3.9. As a consequence of this section, one can obtain the completeness
of the categories of crossed X-modules of groups, (commutative) algebras, Lie
and Leibniz algebras, dialgebras, etc.

4. Pullback Crossed Modules

Definition 4.1. For a given crossed module (P,R, ∂) and a morphism ϕ : S →
R in C, the pullback crossed module is defined as a crossed module morphism

(ϕ′, ϕ) : ϕ⋆(P,R, ∂) → (P,R, ∂) ,
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where the crossed module:

ϕ⋆(P,R, ∂) = (ϕ⋆(P ), S, ∂⋆)

satisfies the following universal property:
For any crossed module morphism

(f, ϕ) : (X,S, µ) → (P,R, ∂),

there exists a unique crossed module morphism

(f⋆, idS) : (X,S, µ) → (ϕ⋆(P ), S, ∂⋆) ,

such that the following diagram commutes

(X,S, µ)

(f,ϕ)

��

(f⋆,idS)

tth h h h h h h h h h h h h h h

(ϕ⋆(P ), S, ∂⋆)
(ϕ′,ϕ)

// (P,R, ∂).

(4.1)

In other words, it can be seen as a pullback diagram [1],

X

µ

��

f //

f⋆

""

P

∂

��

ϕ⋆(P )
ϕ′

;;xxxxxxx

∂⋆

||xx
xx
xx
x

S
ϕ

// R.

(4.2)

In order to give a particular construction for the pullback crossed module,
let (P,R, ∂) be a crossed module and let ϕ : S → R be a morphism in C. Define

ϕ⋆(P ) = P ×R S = {(p, s) | ∂ (p) = ϕ (s)} ,

and define the morphism ∂⋆ : ϕ⋆(P ) → S by

∂⋆ (p, s) = s.

There exists an action of S on ϕ⋆(P ) defined by

S × ϕ⋆(P ) → ϕ⋆(P )
(t, (p, s)) 7→ t · (p, s) = (ϕ (t) · p, t+ s− t) ,

and
S × ϕ⋆(P ) → ϕ⋆(P )
(t, (p, s)) 7→ t ∗ (p, s) = (ϕ (t) ∗ p, t ∗ s) .

Then, (ϕ⋆(P ), S, ∂⋆) defines a crossed module since
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XM1)

∂⋆ (t · (p, s)) = ∂⋆ (ϕ (t) · p, t+ s− t) = t+ s− t = t+ ∂⋆ (p, s)− t ,

∂⋆ (t ⋆ (p, s)) = ∂∗ (ϕ (t) ∗ p, t ∗ s) = t ∗ s = t ∗ ∂⋆ (p, s) ,

XM2)

∂⋆ (p′, s′) · (p, s) = s′ · (p, s)
= (ϕ (s′) · p, s′ + s− s′)

= (∂ (p′) · p, s′ + s− s′)

= (p′ + p− p′, s′ + s− s′)

= (p′, s′) + (p, s)− (p′, s′) ,

∂⋆ (p′, s′) ∗ (p, s) = s′ ∗ (p, s)
= (ϕ (s′) ∗ p, s′ ∗ s)
= (∂ (p′) ∗ p, s′ ∗ s)
= (p′ ∗ p, s′ ∗ s)
= (p′, s′) ∗ (p, s) ,

for all (p, s) (p′, s′) ∈ ϕ⋆(P ) and t ∈ S.
This construction satisfies the universal property. Consider the crossed module
morphism

(ϕ′, ϕ) : (ϕ⋆(P ), S, ∂⋆) → (P,R, ∂) ,

where ϕ′ : ϕ⋆(P ) → P is defined by ϕ′ (p, s) = p.
Suppose that (X,S, µ) is a crossed module and the tuple

(f, ϕ) : (X,S, µ) → (P,R, ∂)(4.3)

is a crossed module morphism.
Define: f⋆ : X → ϕ⋆(P ) by f⋆(x) = (f (x) , µ (x)) . Then,

(f⋆, idS) : (X,S, µ) → (ϕ⋆(P ), S, ∂⋆)

becomes a crossed module morphism. In fact the diagram

X
µ //

f⋆

��

S

idS

��
ϕ⋆(P )

∂⋆
// S

is commutative since

∂⋆f⋆(x) = ∂⋆ (f (x) , µ (x)) = µ (x) = idSµ (x) ,(4.4)
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and

f⋆ (s · x) = (f (s · x) , µ (s · x))
= (ϕ (s) · f (x) , s · µ (x))
= s · (f (x) , µ (x))
= idS (s) · f⋆(x),

f⋆ (s ∗ x) = (f (s ∗ x) , µ (s ∗ x))
= (ϕ (s) ∗ f (x) , s ∗ µ (x))
= s ∗ (f (x) , µ (x))
= idS (s) ∗ f⋆(x),

for all s ∈ S and x ∈ X. Moreover, we have

ϕ′f⋆(x) = ϕ′ (f (x) , µ (x)) = f (x) ,(4.5)

that makes diagram (4.1) commutative. In other words, pullback diagram (4.2)
commutes since

• ∂⋆f⋆(x) = µ (x) from (4.4),
• ϕµ = ∂f since (4.3) is a crossed module morphism,
• ϕ′f⋆ = f from (4.5).

Finally, we need to prove that (f⋆, id) is unique in (4.1). Suppose that

(f⋆⋆, idS) : (X,S, µ) → (ϕ⋆(P ), S, ∂⋆)

is a crossed module morphism with the same property as (f⋆, id). We get

∂⋆f⋆⋆(x) = f(x), ∂⋆f⋆⋆(x) = µ(x),

for all x ∈ X which implies

f⋆⋆(x) = (p, s) = (f(x), µ(x)) = f⋆(x),

and proves that (f⋆, id) is unique.
Therefore, we have the following:

Corollary 4.2. We get a functor in C

ϕ⋆ : XMod/R → XMod/S.

Moreover, let (P,R, ∂) be a crossed module and let ϕ : S → R be a morphism
in C. We have the pullback diagram
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ϕ⋆(P )
ϕ′

//

∂⋆

��

P

∂

��
S

ϕ
// R.

Example 4.3. Given an object R and a normal subobject N of R, then
(N,R, ∂) is a crossed module where ∂ is the inclusion map. Suppose that
ϕ : S → R is a morphism. Then the pullback crossed module is defined by

ϕ⋆ (N) = {(n, s) | ∂ (n) = ϕ (s) , n ∈ N , s ∈ S}
∼= {s ∈ S | ϕ (s) = n, n ∈ N}
= ϕ−1 (N) ,

and the pullback diagram is

ϕ−1 (N)
ϕ′

//

∂⋆

��

N

∂

��
S

ϕ
// R.

where the preimage ϕ−1 (N) is a normal subobject of S.
In particular, if N = {0}, then

ϕ⋆ ({0}) ∼= {s ∈ S | ϕ (s) = 0} = kerϕ.

So kernels are particular cases of pullback crossed modules.

5. Pullback Cat1-Objects

Definition 5.1. The definition of pullback cat1-object along a morphism is
similar to the one for crossed modules given in Definition 4.1. For a given
cat1-object (R,S) and a morphism ϕ : Q → S in C, we require a cat1-object
ϕ⋆(R,S) = (ϕ⋆(R), Q) to fill the pullback diagrams

(P,Q)

(φ,ϕ)

��

(ψ,idS)

tti i i i i i i i i i i i i i i

(ϕ⋆(R), Q)
(π,ϕ)

// (R,S)

(5.1)
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and

P

��

s′t′

��

φ //

ψ

""

R

��

st

��

ϕ⋆(R)

π

<<yyyyyyyy

||zz
zz
zz
zz

s⋆
t⋆

||zz
zz
zz
zz

Q
ϕ

// S.

(5.2)

Note that we do not include the embedding morphisms in the above diagrams
for the sake of simplicity.

In order to give a particular construction for the pullback cat1-object, let
(e; s, t : R→ S) be a cat1-object and let ϕ : Q→ S be a morphism. Define

ϕ⋆ (e; s, t : R→ S) = (e⋆; s⋆, t⋆ : ϕ⋆(R) → Q) ,

where

ϕ⋆(R) = {(q1, r, q2) ∈ Q×R×Q | ϕ (q1) = s (r) , ϕ (q2) = t (r)}

is a subobject of Q×R×Q. Define the morphisms:

s⋆ (q1, r, q2) = q1, t⋆ (q1, r, q2) = q2, e⋆ (q) = (q, eϕ (q) , q) .

It is easily verified that s⋆e⋆ = t⋆e⋆ = idQ. Moreover, let (q′1, r1, q1) ∈ ker s⋆

and (q2, r2, q
′
2) ∈ ker t⋆. Then

s⋆ (q′1, r1, q1) = 0Q and t⋆ (q2, r2, q
′
2) = 0Q,

which implies q′1 = q′2 = 0Q, hence we get r1 ∈ ker s and r2 ∈ ker t. Therefore,

(q′1, r1, q1) ∗ (q2, r2, q′2) = (0Q ∗ q2, r1 ∗ r2, q1 ∗ 0Q)
= (0Q, r1 ∗ r2, 0Q)
= (0Q, 0R, 0Q),

and

(q′1, r1, q1) + (q2, r2, q
′
2) = (0Q + q2, r1 + r2, q1 + 0Q)

= (q2, r2 + r1, q1)

= (q2, r2, q
′
2) + (q′1, r1, q1) ,

which implies

(q′1, r1, q1) + (q2, r2, q
′
2)− (q′1, r1, q1)− (q2, r2, q

′
2) = 0ϕ∗(R).

Consequently, we get the cat1-object structure

(e⋆; s⋆, t⋆ : ϕ⋆(R) → Q) .
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Define the morphism

π : ϕ⋆(R) → R
(q1, r, q2) 7→ π (q1, r, q2) = r.

Since

ϕs⋆ ((q1, r, q2)) = ϕ (q1) = s (r) = sπ (q1, r, q2) ,

ϕt⋆ ((q1, r, q2)) = ϕ (q2) = t (r) = tπ (q1, r, q2) ,

πe⋆ (q) = π (q, eϕ (q) , q) = eϕ (q) ,

for all (q1, r, q2) ∈ ϕ⋆(R), q ∈ Q, the following diagram commutes

ϕ⋆(R)

��

s⋆t⋆

��

π // R

t

��

s

��
Q

ϕ
//

e⋆

DD

S

e

[[

.

Hence (π, ϕ) becomes a cat1-object morphism.
Now we need to prove the universal property. Let

(φ, ϕ) : (e′; s′, t′ : P → Q) → (e; s, t : R→ S)

be any cat1-morphism such that the following diagram commutes

P

��

s′t′

��

φ // R

��

st

��
Q

ϕ
//

@A
GF

e′

//

S
BC
ED

e

oo

.

Define ψ : P → ϕ⋆(R) by ψ (p) = (s′ (p) , φ (p) , t′ (p)). Then

(ψ, idQ) : (e′; s′, t′ : P → Q) → (e⋆; s⋆, t⋆ : ϕ⋆(R) → Q)

becomes a cat1-object since

s⋆ψ (p) = s⋆ (s′ (p) , φ (p) , t′ (p)) = s′ (p) = idQs
′ (p) ,

t⋆ψ (p) = t⋆ (s′ (p) , φ (p) , t′ (p)) = t′ (p) = idQt
′ (p) ,

and

ψe′ (q) = (s′e′ (q) , φe′ (q) , t′e′ (q)) = (q, eϕ (q) , q) = e⋆idQ (q) ,
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for all p ∈ P and q ∈ Q. Moreover we have

πψ (p) = π (s′ (p) , φ (p) , t′ (p)) = φ (p) ,

which makes (5.1) commutative and leads to the pullback diagram (5.2). The
uniqueness of (π, ϕ) can be proven analogous to the crossed module case given
in the previous section.

6. Conclusion

We have provided the commutativity of the following diagram (up to iso-
morphism) for a fixed morphism ϕ of C.

XMod/R
ϕ⋆

//

C1

��

XMod/S

C1

��
Cat1

ϕ⋆
// Cat1.

Another main outcome of the paper is the following:
One can obtain pullback crossed modules and pullback cat1-objects in many

well-known algebraic categories listed in Example 2.3 such as category of groups,
(commutative) algebras, dialgebras, Lie algebras and Leibniz algebras, etc. For
instance, if we consider the cases of category of groups and commutative alge-
bras, we are lead to the constructions given in [2, 3, 6].
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