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Abstract. The concept of self-similarity on subsets of algebraic varieties
is defined by considering algebraic endomorphisms of the variety as ‘sim-

ilarity’ maps. Self-similar fractals are subsets of algebraic varieties which
can be written as a finite and disjoint union of ‘similar’ copies. Fractals
provide a framework in which, one can unite some results and conjectures
in Diophantine geometry. We define a well-behaved notion of dimension

for self-similar fractals. We also prove a fractal version of Roth’s theorem
for algebraic points on a variety approximated by elements of a fractal
subset. As a consequence, we get a fractal version of Siegel’s theorem on
finiteness of integral points on hyperbolic curves and a fractal version of

Faltings’ theorem on Diophantine approximation on abelian varieties.
Keywords: Self-similarity, Diophantine approximation, arithmetic dy-
namics.

MSC(2010): Primary: 14G40; Secondary: 11D45.

1. Introduction

Self-similar fractals are very basic geometric objects which presumably could
have been defined as early as Euclid. By self-similar fractals, we mean objects
which are (almost) disjoint union of pieces ‘similar’ to the whole object. In
Euclidean context, one can think of Euclidean plane as the ambient space
and Euclidean similarities as ‘similarity’ maps. There are several interesting
examples of such fractals in the literature. Sierpinski carpet, Koch snowflake,
and Cantor set are among the typical examples of Euclidean fractals. In a
more modern geometric context, the ambient space of an affine fractal could
be a real vector space, and ‘similarity’ maps could be chosen to be affine maps,
which are usually assumed to be distance decreasing.

In the algebraic context, ambient space of an affine fractal could be a vector
space over arbitrary field and polynomial self-maps of the vector space with
coefficients in the base field could be taken as ‘similarity’ maps. Ideals in the
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ring of integers of a number field are examples of affine fractals in this context.
Self-similar fractals in a ring could be much more complicated. For example,
integers missing a number of digits in their decimal expansion form a fractal.
The algebraic concept of self-similar fractals could also be extended to subsets
of algebraic varieties, if we take algebraic endomorphisms as ‘similarity’ maps.

In this paper, we assume that a fractal is a finite union of its similar images
except for finitely many points and a self-similar fractal has the extra condition
that this fractal is a finite union of its similar images and its similar images are
disjoint or at most with finite intersection. For example, rational points on a
projective space could be thought of as a self-similar set, but not as a fractal,
since it is union of infinitely many similar copies of itself.

The first important question about self-similar fractals is how to define their
dimension. One can introduce a notion of dimension which is independent of
the representation of the self-similar fractal as union of similar images. We
use arithmetic height-functions to introduce such a concept of dimension for
self-similar fractals. In fact, this notion of fractal-dimension turns out to be
related to the growth of the number of points of bounded height in our fractal.
This way, we recover some classical computations in this direction.

One can think of Diophantine approximation of algebraic points by a fractal
whose elements are algebraic over Q. Self-similarity of fractals imply a strong
version of Roth’s theorem in this case.

One shall note that, fractals are not necessarily dense in the ambient space
with respect to complex topology. Therefore, such approximation theorems are
only interesting if we are approximating a limiting point with respect to some
Riemannian metric.

As a reward, we get fractal versions of Siegel’s theorem on finiteness of in-
tegral points and Faltings’ theorem on diophantine approximation on abelian
varieties. Here are special cases, which could be formulated without any refer-
ence to fractals. We have treated these special cases separately in [19] and [20]:

Theorem 1.1. Let X be an affine open subcurve of a connected smooth projec-
tuve curve of genus ≥ 1 defined over C in the ambient affine space An(C) and
let F ⊂ An(C) denote any finitely generated subgroup of Cn . Then X(K) ∩ F
is finite.

This implies that Siegel’s theorem is an algebro-geometric fact, not an Arith-
metic one.

Theorem 1.2. Let A be an abelian variety defined over a finitely generated
subfield K of C. Let E be a geometrically irreducible subvariety of A defined
over K and F be a finitely generated subgroup of A(K). Let w be a valuation on
K and H(x) a height function on K coming from a choice of projective model
for K over the algebraic closure of Q in K. If dw(x,E) denotes the w-adic
distance from x to E, and κ and c are positive constants, then, there are only
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finitely many points in F satisfying the following inequality

dw(x,E) < cH(x)−κ.

This, in turn, implies that Faltings’ theorem on Diophantine approximation
on abelian varieties is also an algebro-geometric fact, not an Arithmetic one.

There are quite a few classical objects in arithmetic geometry which can
be considered as self-similar fractals. For example, for an abelian variety A
defined over a number-field as ambient space, the set of rational points A(Q)
or any finitely generated subgroup of A(Q̄) and the set of torsion points Ator

can be thought of as self-similar fractals with respect to endomorphisms of A.
In fact, fractals provide a common framework in which similar theorems

about objects in arithmetic geometry could be united in a single context. For
example, similarity between Manin-Mumford conjecture on torsion points on
an abelian variety (proved by Raynaud [21]), and Lang’s conjecture on finitely
generated subgroups of rational points on an abelian variety (proved by Faltings
[6]), made us propose the following general conjecture about fractals (Defined
in section 2):

Conjecture 1.3. Let V be an irreducible variety defined over a finitely gener-
ated field K and let F ⊂ V (K) denote a fractal in V . Then, for any reduced
subscheme Z of V defined over K the Zariski closure of Z(K) ∩ F is union of
finitely many points and finitely many components Bj such that Bj(K) ∩ F is
a fractal in Bj with respect to some of the same self-similarity maps for each
j.

A generalized version of Lang’s conjecture is covered by the above conjecture.
Some of our results in this paper also can be considered as its special cases.
Detailed evidences are presented in the final section. We will also present a
conjecture extending the above covering Andre-Oort conjecture, proved by Pila
and Tsimerman ([17] and [18]).

2. Fractals in Z

The idea of considering fractal subsets of Z is due to Omid Naghshineh [13]
who proposed the following problem for ”International Mathematics Olympiad”
held in United Kingdom in July 2002.

Problem 2.1. Let F be an infinite subset of Z such that F =
∪n

i=1 ai.F + bi
for integers ai and bi where ai.F + bi and aj .F + bj are disjoint for i ̸= j and
|ai| > 1 for each i. Prove that

n∑
i=1

1

|ai|
≤ 1.
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In [13], he explains his ideas about fractals in Z and suggests how to define
their dimension and how to prove this notion is independent of the choice of self-
similarity maps. His suggestions are carried out by Hessam Mahdavifar [13].
In this section, we present their results and ideas.

Definition 2.2. Let ϕi : Z → Z for i = 1 to n denote linear maps of the form
ϕi(x) = ai.x + bi where ai and bi are integers with |ai| > 1. A subset F ⊆ Z
is called a self-similar fractal with respect to ϕi if F is disjoint union of its
images under the linear map ϕi. In this case, we write F = ⊔iϕi(F ) and define
dimension of F to be the real number s such that

n∑
i=1

|ai|−s = 1.

The basic example for self-similar fractals in Z is the set of integers which
miss a number of digits in their decimal expansion. This definition of dimension
is motivated by the notion of box dimension for fractals on real vector spaces,
which coincides with Hausdorff dimension. The challenge is to prove that, this
notion of dimension is independent of all the choices made, and depends only
on self-similar fractal itself as a subset of Z. Also, smaller self-similar fractals
must have smaller dimension. Now, it is easy to solve the above IMO problem.
Note that Z is a self-similar fractal of dimension one. A self-similar F ⊆ Z is
of dimension ≤ 1 which solves the problem.

Theorem 2.3. Let F ⊆ Z satisfy F ⊆ ∪iϕi(F ) (ϕi and ai as in Definition
2.2). If s is a real number such that

∑
i |ai|−s < 1 then the number of elements

of F in the ball B(x) is bounded above by cxs for some constant c and for large
x.

Proof. Let Fi = ϕi(F ), and let N(x) and Ni(x) denote the number of elements
of F and Fi in the ball B(x), respectively. We have

N(x) ≤
∑
i

Ni(x)

and since for f ∈ Fi and ϕ
−1
i (f) ∈ F we have |ϕ−1

i (f)| ≤ (|f | + |bi|)/|ai| we
can write

Ni(x) ≤ N(
x+ |bi|
|ai|

)

If we let t =Maxi{|bi|/|ai|} then we get the following estimate

N(x) ≤
∑
i

N(
x

|ai|
+ t)

We define a function h : [1,∞] → R by h(x) = x−sN(x) and we shall show
that h is a bounded function. The above estimate will give:

h(x) ≤
∑
i

(
1

|ai|
+
t

x
)sh(

x

|ai|
+ t)
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There exists a constant M such that for x > M we have (x/|ai|)+ t < x for all
i and ∑

i

(
1

|ai|
+
t

x
)s < 1

Now, assume |a1| ≤ ... ≤ |an| and define x0 = |an|(M−t) and xj = |a1|(xj−1−t)
for j ≥ 1. Then xj is an unbounded decreasing sequence. The function h is
bounded on [M,x0] and we inductively show that it has the same bound on
[xj , xj+1]: for if x ∈ [xj , xj+1] then (x/|ai|)+ t ∈ [(xj/|ai|)+ t, x− j + 1/|ai|)+
t] ⊂ [M,xj ] and since by induction hypothesis we have h(x/|ai|) + t) ≤ c for
all i,

h(x) ≤
∑
i

(
1

|ai|
+
t

x
)sh(

x

|ai|
+ t) < c

∑
i

(
1

|ai|
+
t

x
)s < c

It remains to notice that h is also bounded on [1,M ]. □

Theorem 2.4. Let F ⊆ Z satisfy F ⊇ ⊔iϕi(F ) where ϕi are as above. If r is
a real number such that

∑
iNorm(ai)

−r > 1 then the number of elements of F
in the ball B(x) is bounded below by cxr for some constant c and for large x.

Proof. We use the notation in the proof of the previous lemma. Since for f ∈ Fi

and ϕ−1
i (f) ∈ F we have |ϕ−1

i (f)| ≥ (|f | − |bi|)/|ai| and we get

Ni(x) ≥ N(
x− |bi|
|ai|

) ≥ N(
x

|ai|
− t)

where t = Maxi{|bi|)/|ai|}. Now, it remains to show that h : [1,∞] → R
defined by h(x) = x−rN(x) is bounded below, which can be proved along the
same line as the previous lemma. □

Proposition 2.5. Let F1 ⊆ F2 ⊆ Z be fractals. Then the notion of fractal
dimension is well-defined and dim(F1) ≤ dim(F2).

Proof. Suppose F = ⊔iϕi(F ) = ⊔jψj(F ) where ϕi and ψi are linear functions
ϕi(x) = ai.x+bi and ψj(x) = cj .x+dj . Assume

∑
i |ai|−α = 1 and

∑
i |cj |−β =

1. We must show that α = β. Suppose α < β. Insert real numbers α < s <
r < β. Since F ⊂ ∪iϕi(F ) and

∑
i |ai|−s < 1, we get N(x) ≤ cxs for large

x and since F ⊇ ⊔iψj(F ) and
∑

i |cj |−r > 1, we get N(x) ≥ cxr for large x
which is a contradiction. Thus α = β.

Now, for fractals F1 ⊆ F2 suppose that F1 = ⊔iϕi(F ) and F2 = ⊔jψj(F )
where ϕi and ψi functions as above, and let

∑
i |ai|−α = 1 and

∑
i |cj |−β = 1.

We must show that α ≤ β. Suppose α > β and insert real numbers α > r >
s > β. Then one can get a contradiction as above. □

Naghshineh and Mahdavifar also suggest that the same calculations work
for Z[i] if we use norm of a complex number instead of absolute value for a
real number. The same arguments indicate that, the notion of dimension of
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a fractal is linked to asymptotic behavior of the number of points of bounded
norm.

3. Affine fractals

It would be more convenient for the reader, if we formulate the most general
form of an affine fractal, and then treat special cases.

Definition 3.1. Let X be an affine algebraic variety defined over a finitely
generated field K, and let fi for i = 1 to n, denote nonconstant polynomial
endomorphisms of X with coefficients in K. A subset F ⊂ X(K) is called an
affine self-similar fractal with respect to f1, ..., fn if F is an almost disjoint (i.e.
finite intersection) union of its images under the polynomial endomorphisms
fi for i = 1 to n, in which case, by abuse of notation, we write F = ⊔ifi(F ).
An affine fractal in X is a subset which is affine fractal with respect to some
polynomial endomorphisms f1, ..., fn. Note that such a representation is not
unique. In case we only have F = ∪ifi(F ) except for finitely many points of F
which are outside ∪ifi(F ) we simply call F a fractal.

Example 3.2. Let K be a number field and let OK denote its ring of integers.
One can take OK as ambient space and polynomial maps ϕi : OK → OK with
coefficients in OK as self-similarities. Let ai denote the leading coefficient of
ϕi, and ni denote the degree of ϕi. Fix an embedding ρ : K ↪→ C. Assume
Normρ(ai) > 1 in case ϕi is linear. Let F ⊆ OK be an affine fractal with
respect to ϕi for i = 1 to n. One can define the fractal-dimension of F to be
the real number s for which

n∑
i=1

Norm(ai)
− s

ni = 1.

Arguments of the previous section hold almost line by line, if one replaces the
absolute value of an integer with the product of various archemidian norms of
an algebraic integer in OK . Therefore, we have the following result:

Proposition 3.3. The above notion of dimension for affine fractals in OK

is well-defined and well-behaved with respect to inclusion of affine fractals, i.e.
dimension of an affine fractal is independent of the choice of self-similarities
and compatible with inclusion of fractal subsets.

For a fractal generated by finitely many points we have proved the following:

Proposition 3.4. Let F be a fractal with respect to fi as above, the number
of points of norm bounded by X is O(Xs) where s is determined by

n∑
i=1

Norm(ai)
− s

ni = 1.
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Example 3.5. Start from a linear semi-simple algebraic groupG and a rational
representation ρ : G → GL(WQ) defined over Q. Let w0 ∈ WQ be a point
whose orbit V = w0ρ(G) is Zariski closed. Then the stabilizer H ⊂ G of w0 is
reductive and V is isomorphic to H \G. By a theorem of Borel-Harish-Chandra
V (Z) breaks up to finitely many G(Z) orbits [1]. Thus the points of V (Z) are
parametrized by cosets of G(Z). Fix an orbit w0G(Z) with w0 in G(Z). Then
the stabilizer of w0 is H(Z) = H ∩G(Z).

The additive structure of G allows one to define self-similar subsets of V (Z)
and study their asymptotic behavior using the idea of fractal dimension. For
example, one can define self-similarities to be maps ϕ : V (Z) → V (Z) of the
form

ϕ(ω0γ) = ω0([n]γ + g0)

where [n] denotes multiplication by n in G(Z) and g0 is an element in G(Z).
These similarity maps are expansive if n > 1 and lead to a notion of dimension
for self-similar fractals in V (Z). Upper bound similar to above holds for fractals
in V (Z).

Duke-Rudnick-Sarnak [4] putting some extra technical assumptions, have
determined the asymptotic behavior of

N(V (Z), x) = ♯{γ ∈ H(Z) \G(Z) : ||w0γ|| ≤ x}.
They prove that there are constants a ≥ 0, b > 0 and c > 0 such that

N(V (Z), x) ∼ cxa(logx)b.

Note that, the whole set V (Z) could not be a fractal, since the asymptotic
behavior of its points is not polynomial.

Example 3.6. Here is an example of an affine self-similar fractal with respect
to nonlinear polynomial maps. The subset

{(2i, 2j) ∈ Q2|i, j ∈ Z}
is an affine self-similar fractal with respect to f1(x1, x2) = (x21, x

2
2),

f2(x1, x2) = (2x21, x
2
2), f3(x1, x2) = (x21, 2x

2
2) and f4(x1, x2) = (2x21, 2x

2
2). No-

tice that, after projectivization, we still get a self-similar set in the projective
line P 1(Q). The subset

{(2i; 2j) ∈ P 1(Q)|i, j ∈ N ∪ {0}}
is a self-similar fractal with respect to f1(x1;x2) = (x21;x

2
2) and f2(x1;x2) =

(2x21;x
2
2).

4. Fractals in arithmetic geometry

In general, there is no global norm on the set of points in a fractal to motivate
us how to define the notion of fractal-dimension. In special cases, arithmetic
height functions are appropriate replacements for the norm of an algebraic
integer, particularly because finiteness theorems hold in this context.
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Northcott associated a height function to points on the projective space
which are defined over number fields [15]. In course of his argument for the
fact that, the number of periodic points of an endomorphism of a projective
space which are defined over a given number-field are finite, he proved that
the number of points of bounded height is finite. Therefore, one can study
the asymptotic behavior of rational points on a fractal hosted by a projective
variety. Let us formulate a general definition.

Definition 4.1. Let V be a projective variety defined over a finitely generated
field K and let fi for i = 1 to n denote finite surjective endomorphisms of
V defined over K, which are of degrees > 1. A subset F ⊂ V (K) is called
a self-similar fractal with respect to fi, if F is almost disjoint union of its
images under the endomorphisms fi, i.e. F = ⊔ifi(F ). F is called a fractal if
F = ∪ifi(F )

Example 4.2. Let fi for i = 1, ..., n denote homogeneous endomorphisms
of a projective space defined over a global field K with each homogeneous
component of degree mi. Let F ⊆ Pn(K) be a fractal with respect to fi:
F = ⊔ifi(F ). One can define the fractal-dimension of F to be the real number
s for which

∑
im

−s
i = 1.

Proposition 4.3. In the context of projective spaces, dimension of a self-
similar fractal F is well-defined and well-behaved with respect to fractal embed-
dings.

Proof. Indeed, for the number-field case, we use the logarithmic height h to
control the height growth of points under endomorphisms. Again we claim
that if

∑
im

−s
i < 1 and F ⊆ ∪ifi(F ) then the number of elements of F of

logarithmic height less than x, which we denote again by N(x), is bounded
above by cxs for some constant c and large x. Let Fi = fi(F ), and Ni(x)
denote the number of elements of Fi of logarithmic height less than x. We have

N(x) ≤
∑
i

Ni(x)

and for f ∈ Fi and f
−1
i (f) ∈ F we have h(fi(f)) = mi.h(f) +O(1). Therefore

N(x) ≤
∑
i

N(m−1
i x+ t)

for some t. We define a function h̄ : [1,∞] → R by h̄(x) = x−sN(x). The
argument of Theorem 2.3 implies that h̄ is bounded, and hence the claim fol-
lows. By a similar argument, if F ⊇ ⊔ifi(F ) and if r is a real number such that∑

im
−r
i > 1 then N(x) is bounded below by cxs for some constant c and large

x. One can follow the argument of Proposition 2.5 to finish the proof. □
Example 4.4. For the function field case, one could use another appropriate
height function. Let F̄q(X) denote the function field of an absolutely irreducible
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projective variety X which is non-singular in codimension one, defined over
a finite field F̄q of characteristic p. One can use the logarithmic height on
Pn(F̄q(X)) defined by Neron [10]. Finiteness theorem holds for this height
function as well.

Example 4.5. Let h,R,w, r1, r2, dK , ζK denote class number, regulator, num-
ber of roots of unity, number of real and complex embeddings, absolute dis-
criminant and the zeta function associated to the number field K. Schanuel
proved that [23] the asymptotic number of points in Pn(K) of logarithmic
height bounded by log(x) is given by

hR

wζK(n+ 1)

(
2r1(2π)r2

d
1/2
K

)n+1

(n+ 1)r1+r2−1xn+1.

This proves that rational points on projective space can not be regarded as a
fractal of finite dimension.

Example 4.6. Schmidt in case K = Q [24] and Thunder for general number
field K [26] generalized the estimate of Shanuel to Grassmanian varieties, and
proved that

C(G(m,n)(K), log(x)) ∼ cm,n,Kx
n

where C denotes the number of points of bounded logarithmic height and
cm,n,K is an explicitly given constant. Also, Franke-Manin-Tschinkel provided
a generalization to flag manifolds [8]. Let G be a semi-simple algebraic group
over K and P a parabolic subgroup and V = P\G the associated flag manifold.
Choose an embedding of V ⊂ Pn such that the hyperplane section H is linearly
equivalent to −sKV for some positive integer s, then there exists an integer
t ≥ 0 and a constant cV such that

C(V (K), x)s ∼ cV x(logx)
t.

All of these spaces are self-similar objects which have the potential to be am-
bient spaces for fractals, but they are too huge to be fractals themselves.

Example 4.7. Wan [27] proved that in the function field case, the asymptotic
behavior of points in Pn(K) of logarithmic height bounded by d is given by

hq(n+1)(1−g)

(q − 1)ζX(n+ 1)
q(n+1)d.

which shows that Pn(F̄q(X)) can indeed be considered as a finite dimensional
fractal.

Example 4.8. Let A be an abelian variety over a number-field K and let
F ⊆ A(Q̄) be a fractal with respect to endomorphisms ϕi which are translations
of multiplication maps [ni] by elements of A(Q̄). We define dimension of F to
be the real number s for which

∑
i n

−s
i = 1. Then dimension of F is well-defined

and well-bahaved with respect to fractal embeddings.
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Proposition 4.9. In the context of abelian varieties, dimension of a self-
similar fractal F is well-defined and well-bahaved with respect to fractal em-
beddings.

Proof. Indeed, in this case, we use the Neron-Tate logarithmic height ĥ to
control the growth of the heights of points under the action of endomorphisms
ϕi. The same proof as before works except that

ĥ([ni](f)) = (ni)
2ĥ(f)

does not hold for translations of the form [ni]. One should use the fact that
for the Néron-Tate height associated to a symmetric ample bundle on A and
for every a ∈ A(Q̄) and n ∈ N, we have

ĥ([n](f) + a) + ĥ([n](f)− a) = 2ĥ([n](f)) + 2ĥ(a).

This helps to get the right estimate. The rest of proof goes as before. □

The above notion of dimension implies that the number of points of bounded
height defined over a fixed number-field has polynomial growth, which gives an
immediate proof for a classical result of Néron [14].

Example 4.10. Analogous to abelian varieties, one also can define fractals on
t-modules. By a t-module of dimension N and rank d defined over the algebraic

closure k̄ = F̄q(t) we mean, fixing an additive group (GSp(2g)a)
N (k̄) and an

injective homomorphism Phi from the ring F̄q[t] to the endomorphism ring of
(GSp(2g)a)

N which satisfies

Phi(t) = a0F
0 + ...+ adF

d

with ad non-zero, where ai are N × N matrices with coefficients in k̄, and F
is a Frobenius endomorphism on (GSp(2g)a)

N . One can think of polynomials
Pi ∈ F̄q[t] of degrees ri for i = 1 to n as self-similarities of the t-module
(GSp(2g)a)

N and let F ⊆ (GSp(2g)a)
N (k̄) be a fractal with respect to Pi ,

i.e. F = ⊔iPhi(Pi)(F ). We define the fractal dimension of F to be the real
number s such that

∑
i(rid)

−s = 1. Then dimension of F is well-defined and
well-bahaved with respect to inclusions.

Proposition 4.11. In the context of t-modules dimension of a self-similar
fractal F is well-defined and well-bahaved with respect to fractal embeddings.

Proof. Indeed, Denis defines a canonical height ĥ on t-modules which satisfies

ĥ[Phi(P )(α)] = qdr.ĥ[α]

for all α ∈ (GSp(2g)a)
N , where P is a polynomial in F̄q[t] of degree r [3].

This can be used to prove the result in the same lines as before. One can get

information on the asymptotic behavior of N(GSp(2g)
N
a (k̄), x) by representing

GSp(2g)
N
a (k̄) as a fractal. □
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5. Diophantine approximation by fractals

This section is devoted to proving theorems which were mentioned in the
introduction. The arguments are along the same lines as analogous classical
results.

Roth’s theorem on Diophantine approximation of rational points on projec-
tive line implies a version on projective varieties defined over number-fields.
Self-similarity of rational points on abelian varieties makes room to improve
the estimates. This argument can be imitated in case of arithmetic fractals
defined over finitely generated fileds.

Theorem 5.1 (Fractal version of Roth’s thereom on diophantine approxima-
tion). Fix a finitely generated field of characteristic zero K and σ : K ↪→ C a
complex embedding. Let V be a smooth projective algebraic variety defined over
K and let L be a very ample line-bundle on V . Denote the arithmetic height
function associated to the line-bundle L by hL. Suppose F ⊂ V (K) is a frac-
tal subset with respect to finitely many height-increasing self-endomorphisms
ϕi : V → V defined over K such that for all i we have

hL(ϕi(f)) > mihL(f) + 0(1)

wheremi > 1. Fix a Riemannian metric on Vσ(C) and let dσ denote the induced
metric on Vσ(C). Then, for every δ > 0 and every choice of an algebraic point
α ∈ V (K̄) which is not a critical value of any of the ϕi’s and all choices of a
constant C, there are only finitely many fractal points ω ∈ F approximating α
such that

dσ(α, ω) ≤ Ce−δhL(ω).

Proposition 5.2. With assumptions of the above theorem, suppose for some
δ0 > 0 we have that, for any choice of a constant C and every choice of an
algebraic point α ∈ V (K̄) there are only finitely many fractal points ω ∈ F
approximating α in the following manner

dσ(α, ω) ≤ Ce−δ0hL(ω).

Then, for every δ > 0 and every choice of an algebraic point α ∈ V (K̄) which
is not a critical value of any of the ϕi’s and all choices of a constant C, there
are only finitely many fractal points ω ∈ F approximating α such that

dσ(α, ω) ≤ Ce−δhL(ω).

Proof of Proposition 5.2. Note that, we have assumed that the above is true
for some δ0 > 0 without any assumption on ϕi or on α. Let δ

′ > 0 be infimum
of such δ0 > 0.

Fix ϵ > 0 such that ϵ < δ′ < miϵ for all i. Suppose that wn is an infinite
sequence of elements in F such that ωn → α which satisfies the estimate

dσ(α, ωn) ≤ Ce−ϵhL(ωn).
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then infinitely many of them are images of elements of F under the same ϕi.
By going to a subsequence, one can find a sequence ω′

n in F and an algebraic
point α′ in V (K̄) such that ω′

n → α′ and for a fixed ϕi we have ϕi(α
′) = α and

ϕi(ω
′
n) = ωn for all n. Then

dσ(α, ωn) ≤ Ce−ϵhL(ωn) ≤ C ′e−ϵmihL(ω′
n)

for an appropriate constant C ′. On the other hand,

dσ(α
′, ω′

n) ≤ C ′′dσ(α, ωn)

holds for an appropriate constant C ′′ and large n by injectivity of dϕ−1
i on the

tangent space of α. This contradicts our assumption on δ′, since δ′ < miϵ. □

Proof of Theorem 5.1. If we assume that points of F and similarity maps are
defined over some number-field, Roth’s theorem implies that the assumption of
theorem is true for any δ0 > 2. All such examples are forward orbits of finitely
many height increasing self-similarities. The same is true for finitely generated
field of characteristic zero by a result of Lang [9] generalizing Roth’s theorem
and height defined by Moriwaki [12]. □

Remark 5.3. The conditions of Thereom 5.1. do not hold for general fractals in
V (K̄). For example, torsion points of an abelian variety are dense in complex
topology, and have vanishing height. Therefore, our fractal analogue of Roth’s
theorem could not hold in this case.

Let us state a more precise version of our version of Siegel’s theorem.

Theorem 5.4 (Fractal version of Siegel’s theorem on integral points). Fix
a finitely generated field of characteristic zero K. Let V be a smooth affine
algebraic variety defined over K with smooth projectivization V̄ and let L be an
very ample line-bundle on V̄ . Denote the arithmetic height function associated
to the line-bundle L by hL. Suppose F ⊂ V (K) is a fractal subset with respect
to finitely many height-increasing polynomial self-endomorphisms ϕi : V → V
defined over K such that for all i we have

hL(ϕi(f)) > mihL(f) + 0(1),

where mi > 1. One could also replace this assumption with norm analogue
replacing hL with complex norm. For any affine hyperbolic algebraic curve X
embedded in V defined over K, X(K) ∩ F is a finite set.

We borrow a lemma from [25] albeit in our notation.

Lemma 5.5. Let K be a finitely generated field of characteristic zero. Let X be
a curve defined over K of genus at least 1, where ϕ is a non-constant rational
function on X defined over K and Pn are points on X(K) whose height tend
to ∞ and none is a pole of ϕ.
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Then for zn = ϕ(Pn) we have

lim
n→∞

log|zn|v
logH(zn)

= 0,

where log(HL) = hL.

Proof of Theorem 5.4. Let σ : K ↪→ C denote a complex embedding of K. Fix
a Riemannian metric on Vσ(C) and let dσ denote the induced metric on Vσ(C).
Then by Theorem 5.1 (our version of Roth’s theorem), for every δ > 0 and
every choice of an algebraic point α ∈ V (K̄) which is not a critical value of any
of the ϕi’s and all choices of a constant C, there are only finitely many fractal
points ω ∈ F approximating α such that

dσ(α, ω) ≤ HL(ω)
−δ.

In case K is transcendental, we have to pick a model for K over algebraic
closure of Q in K following Lang [9]. Now if Pn is a sequence of distinct
points in X(K) ∩ F , their heights tends to infinity and if ϕ is a non-constant
rational function on X from some point on no Pn is a pole of ϕ. Then by above
proposition

lim
n→∞

log|zn|σ
logH(zn)

= 0.

On the other hand, one defines height of rational points by

H(z) =
∏

v∈MK

sup(1, |z|v),

where |.|v are normalized according to a product formula. Since similarity maps
of F are expanding, we know that F is forward orbit of finitely many points.
So for a finite set of places S we have

H(z) =
∏
v∈S

sup(1, |z|v),

and therefore

logH(z) =
∑
v∈S

log(sup(1, |z|v)).

Then, we have

1 =
∑
v∈S

sup(0,
log|zn|σ
logH(zn)

) ≤
∑
v∈S

log|zn|σ
logH(zn)

which could not be true, because the above limit is zero. This implies the
finiteness result we are seeking for. □

Remark 5.6. If F and its self-similarity maps are defined over K, then F is
forward orbit of finitely many points which are not neccessarily algebraic, and
the above result is not implied by Siegel’s theorem for S-integral points.
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Based on this, we expect the following version of Liouville’s theorem on
diophantine approximation holds:

Theorem 5.7 (Fractal version of Liouville’s theorem on diophantine approx-
imation). Fix a finitely generated field of characteristic zero K. Let V be a
smooth projective algebraic variety defined over K and let L be a very am-
ple line-bundle on V with arithmetic height function hL. Then there exists
a positive constant δ0 such that for any positive constant c and any geomet-
rically irreducible algebraic subvariety E of V defined over K, there are only
finitely many points defined over K in V (K) outside E satisfying the following
inequality

dw(x,E) < cH(x)−δ0

except for points in an algebraic variety V (δ0) which is of strictly smaller di-
mension than V . Here dw(x,E) denotes the w-adic distance from x to E.

Proof. This is a weak form of Vojta conjectures. In the number field case, this is
mentioned in Faltings-Wustholz [7] as a trivial result in case E is geometrically
irreducible. In the case of finitely generated fields of characteristic zero the
result is a consequence of theorem I’ in seminal work of Lang [9]. □

Now, the following version of Faltings’ theorem, can be proved using the
methods of self-similarity and height expansion.

Theorem 5.8 (Fractal version of Faltings’ theorem on diophantine approxi-
mation on abelian varieties). Fix a finitely generated field of characteristic zero
K. Let V be a smooth projective algebraic variety defined over K and let L be a
very ample line-bundle on V . Denote the arithmetic height function associated
to the line-bundle L by hL. Suppose F ⊂ V (K) is a fractal subset with respect
to finitely many height-increasing polynomial finite endomorphisms ϕi : V → V
defined over K such that for all i we have

hL(ϕi(f)) > mihL(f) + 0(1),

where mi > 1. Fix any positive constants κ and c. For any irreducible algebraic
subvariety E of V defined over K and dw(x,E) denoting the w-adic distance
from x to E, there are only finitely many points defined over K in F outside
E satisfying the following inequality

dw(x,E) < cH(x)−κ.

Proof. Reduction of the inequalty for some positive δ0 to arbitrary δ > 0 is
done in the same manner as in Theorem 5.1. Getting rid of V (δ) is the result
of the fact that V (δ) is invariant under ϕi and F ∩V (δ) is again a fractal. One
can proceed by reducing the problem from V and E to V (δ) and E ∩V (δ) and
applying induction on dimension. □

The following will be a special case:
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Corollary 5.9. Fix a number field K. Let E be an irreducible affine smooth
algebraic variety defined over K. For any positive constants δ and c there are
only finitely many points defined over ring of integers OK outside E satisfying
the following inequality

dw(x,E) < cH(x)−δ,

where dw(x,E) denotes the w-adic distance from x to E.

In particular, we have the following:

Corollary 5.10. Let D be an irreducible affine smooth divisor defined over
Q. If dw(x,E) denotes the w-adic distance from x to E, then for any positive
constants δ and c there are only finitely many points defined defined over Z
outside D satisfying the following inequality

d(x,E) < c||x||−δ.

A simple implication would be the following:

Corollary 5.11. Let f be an algebraic equation in two variables determining
an irreducible algebraic curve C in R2. Then for positive constant δ and for
any positive constant c there are only finitely many points defined in Z2 outside
the curve C satisfying the following inequality

d(x,C) < c||x||−δ.

6. Fractal conjecture

Conjecture 6.1 (Fractal conjecture). Let V be an irreducible variety defined
over a finitely generated field K and let F ⊂ V (K) denote a fractal on V with
respect to finitely many height-increasing endomorphisms

fi : V → V

defined over K. Then, for any reduced subscheme Z of V defined over K the
Zariski closure of Z(K̄)∩F is a union of finitely many points and finitely many
components Bj such that Bj(K)∩F is a fractal in Bj for each j, with respect to
some fi’s. If no Bj are pre-priodic with respect to any fi then any Bj(K) ∩ F
is a fractal in Bj with respect to all fi’s.

Remark 6.2. We can start with F ⊂ V (K̄), but then we can not assume fi are
height increasing and instead we may join some Bj to make a fractal.

In particular, we have stated the following conjecture:

Conjecture 6.3. For any algebraic curve C embedded in V defined over K
which is not invariant under fi, C(K̄) ∩ F is at most a finite set.

The following conjecture would be a corollary:
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Conjecture 6.4. For any hyperbolic projective curve C embedded in an abelian
variety A and any finitely generated subgroup Γ in A (all defined over a finitely
generated field K of characteristic zero), C(K̄)∩Γ is finite. Even C(K̄)∩Div(Γ)
is finite, where Div(Γ) is divisible group of Γ.

Remark 6.5. In case A, X and Γ are defined over a number field, the above was
content of a generalization a conjecture of Mordell, proved by G. Faltings [5].

There is also another implication of our conjecture 5.1:

Conjecture 6.6 (Forward orbit conjecture). Let V be an irreducible variety
defined over a finitely generated field K and let fi : V → V denote finitely many
self maps of V defined over K. Let F denote the forward orbit with respect to fi
of finitely many points of V defined over K. Then, for any reduced subscheme
Z of V defined over K the Zariski closure of Z(K̄)∩F is union of finitely many
points and finitely many components Bj such that Bj(K̄) ∩ F is the forward
orbit with respect to some fi of finitely many points of Bj defined over K, for
each j.

It is instructive to notice that, the common geometric structures appearing
in the context of Diophantine geometry, is exactly the same as the objects
appearing in dynamics of endomorphisms of algebraic varieties which was the
original context that height functions were introduced.

Let us start by restating Raynaud’s theorem on torsion points of abelian
varieties lying on a subvariety [21], which is a special case of conjecture 5.1.

Theorem 6.7 (Raynaud). Let K be a number field and let A be an abelian
variety over the algebraically closed field K̄, and Z a reduced subscheme of A.
Then every irreducible component of the Zariski closure of Z(K̄) ∩ A(K̄)tor is
a translation of an abelian subvariety of A by a torsion point.

Another special case is Faltings’ theorem on finitely generated subgroups of
abelian varieties which has a very similar feature [6].

Theorem 6.8 (Faltings). Let K be a number field and let A be an abelian vari-
ety over the algebraically closed field K̄, and Γ be a finitely generated subgroup
of A(K̄). For a reduced subscheme Z of A, every irreducible component of the
Zariski closure of Z(K̄) ∩ Γ is a translation of an abelian subvariety of A.

Another consequence of 6.1 would be the following version of generalized
Lang’s conjecture [28].

Conjecture 6.9 (S. Zhang). Let X be an algebraic variety defined over a
number-field K and let f : X → X be a surjective endomorphism defined over
K. Suppose that the subvariety Y of X is not pre-periodic in the sense that the
orbit {Y, f(Y ), f2(Y ), ...} is not finite, then the set of pre-periodic points in Y
is not Zariski-dense in Y .
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Lang’s conjecture is confirmed by Raynaud’s result mentioned above in the
case of abelian varieties and by results of Laurent [11] and Sarnak [22] and S.
Zhang [28] in the case of multiplicative groups.

7. Quasi-fractal conjecture

Andre-Oort conjecture on sub-varieties of Shimura varieties is motivated
by conjectures of Lang and Manin-Mumford which were proved by Faltings
and raynaud respectively as mentioned above. Motivated by the Andre-Oort
conjecture, we also present another conjecture in the same lines for quasi-
fractals in an algebraic variety X, where self-similarities are allowed to be
induced by correspondences instead of maps. For quasi-fractals, we drop the
requirement that similar images shall be almost-disjoint.

Conjecture 7.1. (Quasi-fractal conjecture) Let V be an irreducible variety
defined over a finitely generated field K and let F ⊂ V (K̄) denote a quasi-
fractal on V with respect to correspondences Y1, ..., Yn on V living in V × V
with both projections finite and surjective. F may contain a subvariety of V .
Then, for any reduced subscheme Z of V defined over K the Zariski closure of
Z(K̄) ∩ F is union of finitely many points and finitely many components Bi

such that for each i the intersection Bi(K̄) ∩ F is a quasi-fractal in Bi with
respect to some correspondences induced by Yi.

Conjecture 6.1 is a more sophisticated version of our previous conjecture,
which implies fractal conjecture also absorbs Andre-Oort conjecture into the
fractal formalism. This version utilizes the concept of quasi-fractals.

Definition 7.2. Let V be an algebraic variety and let Yi ↪→ V × V for i = 1
to n be correspondences on V whose incuced maps to V under canonical pro-
jections are finite and surjective. A subset F ⊆ V (K̄) is called a quasi-fractal
with respect to Y1, ..., Yn if F is invariant under the action of correspondences
Y1, ..., Yn.

The l-Hecke orbit of a point on the moduli-space of principally polarized
abelian varieties is an example of a quasi-fractal with respect to the l-Hecke
correspondences associated to l-isogenies.

J. Pila also gives an unconditional proof of the Andre-Oort conjecture for
arbitrary products of modular curves [16]. Pila and Tsimerman eventually
prove the full Andre-Oort conjecture [17,18].

Conjecture 6.1 also covers a parallel version of Andre-Oort conjecture for
l-Hecke orbit of a special point in the function field case [2].
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