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Abstract. In this paper we study codes Cp(HiS) where p = 3, 7, 11
defined by the 3- 7- and 11-modular representations of the simple sporadic
group HS of Higman and Sims of degree 100. With exception of p = 11
the codes are those defined by the row span of the adjacency matrix

of the complement of the Higman-Sims graph over GF (3) and GF (7).
We show that these codes have a similar decoding performance to that
of their binary counterparts obtained from the Higman-Sims graph. In
particular, we show that these are linear codes with complementary duals,

and thus meet the asymptotic Gilbert-Varshamov bound. Furthermore,
using the codewords of weight 30 in Cp(HiS) we determine a subcode of
codimension 1, and thus show that the permutation module of dimension

100 over the fields of 3, 7 and 11-elements, respectively is the direct sum
of three absolutely irreducible modules of dimensions 1, 22 and 77. The
latter being also the subdegrees of the orbit decomposition of the rank-3
representation.

Keywords: Strongly regular graph, Higman-Sims graph, linear code,
automorphism group.
MSC(2010): Primary: 94B05; Secondary: 05B05, 20D45.

1. Introduction

Tonchev [24] proved that the binary codes of the Higman-Sims graph are
optimal and in most cases attain the recorded distance, and moreover are
amenable to majority logic decoding. It seems thus natural to ask whether
this remains true for other primes p such that p | |G|, where G = HS is the
Higman-Sims group. In the present paper, we answer this question in the affir-
mative for the p-ary codes of the complementary graph HiS of the Higman-Sims
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graph HiS. In particular, for p = 3, 7, 11 we show that the codes are optimal
since they meet the asymptotic Gilbert-Varshamov bound. This is achieved by
showing that these codes belong to the class of codes known as linear codes
with complementary duals. A linear code with complementary dual (an LCD
code) was defined in [19] to be a linear code C whose dual code C⊥ satisfies
C ∩C⊥ = {0}. Furthermore, using tools from representation theory we answer
a question posed by Lux and Pahlings [17], by showing that the permutation
module of the Higman-Sims group of dimension 100 over the field of 3-elements
is the direct sum of three absolutely irreducible modules of dimensions 1, 22
and 77, respectively. Observe that the dimensions of these modules are pre-
cisely the sizes of the suborbits of the rank-3 representation of the Higman-Sims
group of degree 100 on the cosets of the Mathieu group M22. As a by-product
we show that the same is true over the field of 7- and 11-elements, i.e., the
permutation module of dimension 100 over the field of 7- and 11 elements is
the direct sum of three absolutely irreducible submodules (i.e., subcodes) of
dimensions 1, 22 and 77 respectively.

Hence, we deduce the following main result summarized in Theorem 1.1. In
the theorem we collect the parameters and some properties of the codes defined
by the row span over Fp (p = 3, 7) of the rows of the adjacency matrix of the

complementary graph HiS of the Higman-Sims graph HiS.

Theorem 1.1. Let HiS denote the complementary graph of the Higman-Sims
graph HiS and let Cp(HiS) (p = 3, 7) be the codes of length 100 defined by the

p-ary row span of the adjacency matrix of HiS. Then the following hold

(a) Cp(HiS) is a linear code with complementary dual.

(b) C3(HiS) = [100, 23, 23]3 and C7(HiS)
⊥

= [100, 23, 23]7, and their dual

codes Cp(HiS)
⊥
= [100, 77, 8]p are irreducible optimal codes.

(c) The permutation module of Higman-Sims group of dimension 100 over Fp

for p ∈ {3, 7, 11} is the direct sum of three absolutely irreducible modules
of dimensions 1, 22 and 77 respectively.

(d) (d) Aut(Cp(HiS)) ∼= HS:2.

The proof of Theorem 1.1 follows from a series of lemmas and propositions in
Sections 4.1 and 5. The paper is organized as follows: after a brief description
of our terminology and some background in Section 2, Section 3 outlines the
background material related with the Higman-Sims graph and its group, and
in Sections 4, 4.1, and in subsections 5.1 through to 5.4 we present our results.
Our results are described explicitly as being those related with the 3-, and 7-ary
codes defined by the row span of the adjacency matrix of the complementary
graph HiS of the Higman-Sims graph HiS, and the 11-ary codes given by the
decomposition of the permutation module of dimension 100 invariant under the
Higman-Sims group.
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2. Preliminaries and notation

Let F be a finite field of order q = pt, where p is a prime and t ∈ N; let G
be a finite group. Let Ω be a finite G-set, i.e. Ω is a finite set and there is a
G-action on Ω, namely, a map · :G×Ω −→ Ω given by (g, ω) 7→ g ·ω, satisfying
(g · h) · ω = g · (h · ω) for all g, h ∈ G and all ω ∈ Ω, and that 1 · ω = ω for all
ω ∈ Ω.

Then FΩ = {
∑

ω∈Ω gωω | gω ∈ F} is a vector space over F with basis Ω.
Extending the G-action on Ω linearly, FΩ becomes an FG-module, called an
FG-permutation module with permutation basis Ω, (we remark that the per-
mutation module FΩ need not be semisimple in general). The F-vector space
FΩ is equipped with a non-degenerate symmetric bilinear form

⟨g,h⟩ = ⟨
∑
ω∈Ω

gωω,
∑
ω∈Ω

hωω⟩

=
∑
ω∈Ω

gωhω, ∀g

=
∑
ω∈Ω

gωω

for all g =
∑

ω∈Ω gωω and h =
∑

ω∈ω hωω ∈ FΩ, called the standard inner
product on FΩ. For any a ∈ G, g =

∑
ω∈Ω gωω and h =

∑
ω∈Ω hωω ∈ FΩ, we

have

⟨a(g), a(h)⟩ = ⟨a(
∑
ω∈Ω

gωω), a(
∑
ω∈Ω

hωω)⟩

= ⟨
∑
ω∈Ω

gωaω,
∑
ω∈Ω

hωaω⟩

=
∑
ω∈Ω

gωhω

= ⟨g,h⟩.
So, the standard inner product on the vector space FΩ is G-invariant in the

following sense:

⟨a(g), a(h)⟩ = ⟨g,h⟩, ∀a ∈ G,∀g,h ∈ FΩ.
Moreover, for any U ⊆ FΩ denote U⊥ = {v ∈ FΩ | ⟨u,v⟩ = 0, ∀u ∈ U}. If

C is an FG-submodule of FΩ, then for any a ∈ G and c′ ∈ C⊥, and for any
c ∈ C, by the G-invariance of the inner-product we have that

⟨ac′, c⟩ = ⟨ac′, aa−1c⟩ = ⟨c′, a−1c⟩ = 0,

so ac′ ∈ C⊥, i.e., C⊥ is G-invariant. Hence, C⊥ is an FG-submodule. The hull
of C is Hull(C) = C ∩C⊥. The all-one vector will be denoted by 1, and is the
constant vector of weight the length of the code, and whose coordinate entries
consist entirely of 1’s. If C1 is an [n1, k1]-code, and C2 is an [n2, k2]-code, then
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we say that C is the direct sum of C1 and C2 if (up to reordering of coordinates)
C = {(x, y) |x ∈ C1, y ∈ C2}. We denote this by C = C1 ⊕C2. If moreover C1

and C2 are nonzero, then we say that C decomposes into C1 and C2. A code C
is said to be decomposable if and only if it is equivalent to a code which is the
direct sum of two or more linear codes. Otherwise, it is called indecomposable.

For a linear code C of length n over F, a permutation of the components
of a codeword of length n is said to be a permutation automorphism of C if
the permutation maps codewords to codewords. By Aut(C) we denote the
automorphism group of C consisting of all the permutation automorphisms of
C. It is easy to see that C is an FG-permutation code of a G-permutation set Ω
of cardinality n if and only if there is a group homomorphism of G to Aut(C).
We are interested in finding all G-invariant FG-submodules, i.e., codes in FΩ.

Remark 2.1. For x ∈ Fn and a permutation σ ∈ Sn we set

(2.1) σx = (xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

Let C be a linear code over F of length n and let G ≤ Aut(C). If the action
of G on C is defined by Equation (2.1) then the code C becomes an FG-module.
Note that the ambient space Fn is also an FG-module with respect to the same
action of G. The fact that C is an FG-module is formulated in the following
statement.

Result 2.2. Let C be an [n, k, d]q code and let G ≤ Aut(C). Then C is a k-
dimensional submodule of the ambient space Fn, considered as an FG-module.

Our notation for designs, graphs and groups will be standard, and it is as
in [1, 6] and ATLAS [9]. An incidence structure D = (P,B, I), with point
set P, block set B and incidence I is a t-(v, k, λ) design, if |P| = v, every
block B ∈ B is incident with precisely k points, and every t distinct points are
together incident with precisely λ blocks. The complement of D is the structure
D̃ = (P,B, Ĩ), where Ĩ = P×B−I. The dual structure of D is Dt = (B,P, It),
where (B, p) ∈ It if and only if (P,B) ∈ I. Thus, the transpose of an incidence
matrix for D is an incidence matrix for Dt. We will say that the design is
symmetric if it has the same number of points and blocks, and self dual if it is
isomorphic to its dual.

The graphs Γ = (V,E) with vertex set V and edge set E, discussed here are
undirected and simple, that is, with no loops or multiple edges, apart from the
case in where all loops are included in which case the graph is called reflexive. A
graph is regular if all its vertices have the same valency. An adjacency matrix A
of a graph of order n := |V | is an n×n matrix with entries aij such that aij = 1
if vertices vi and vj are adjacent, and aij = 0 otherwise. A regular graph is
strongly regular of type (n, k, λ, µ) if it has n vertices, each of degree k, and
if any two adjacent vertices are together adjacent to λ vertices, while any two
non-adjacent vertices are together adjacent to µ vertices. The complementary
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graph of a strongly regular graph of type (n, k, λ, µ) is a strongly regular graph
of type (n, n − k − 1, n − 2k + µ − 2, n − 2k + λ). If x is a vertex of Γ then
the neighbourhood graph Γ(x) with respect to x is the subgraph of Γ which is
induced by all vertices that are adjacent to x. The neighbourhood graph of a
vertex x of a strongly regular graph Γ is also called the first subconstituent of
Γ. The subgraph of Γ induced on all vertices of Γ which are not adjacent to
(and different from) x, is called a second subconstituent. The neighbourhood
design of a regular graph is the 1-design formed by taking the points to be the
vertices of the graph and the blocks to be the sets of neighbours of a vertex,
for each vertex. The code of a graph Γ over a finite field F is the row span
of an adjacency matrix A over the field F , denoted by CF (Γ) or CF (A). The
dimension of the code is the rank of the matrix over F , also written rankp(A)
if F = Fp, in which case we will speak of the p-rank of A or Γ, and write Cp(Γ)
or Cp(A) for the code.

3. The Higman-Sims graph and its group

The notation G.H, G : H, and G·H is used to denote a general extension,
a split extension and a non-split extension, respectively. For a prime p, the
symbol pn denotes an elementary abelian group of that order. If p is an odd
prime, p1+2n

+ and p1+2n
− denote the extraspecial groups of order p1+2n and

exponent p or p2 respectively.
The simple group G = HS of Higman and Sims can be constructed from the

Higman-Sims graph HiS. Let HiS = (Ω, E) be a graph of valence 22 on the set
Ω of 100 points such that any given vertex has 22 neighbours (points) and the
remaining 77 vertices are joined to 6 of these points and may be labelled by the
corresponding hexad. Two of the 77 vertices are joined only if the corresponding
hexads are disjoint. The hexads form a Steiner system S(3, 6, 22). The Higman-
Sims simple group HS is the subgroup of even permutations of Aut(HiS) ∼=
HS:2, the automorphism group of HS. The point stabilizer in Aut(HiS) on
Ω is Aut(S(3, 6, 22)) ∼= M22:2 and the order of the Higman-Sims group HS
is 44352000 = 29·32·53·7·11. The action of HS on Ω yields a unique primitive
rank-3 representation of degree 100, in which the point stabilizer is the Mathieu
group M22, and the orbits have lengths 1, 22 and 77 respectively. The Higman-
Sims graph HiS has parameters (100, 22, 0, 6) and spectrum 221277(−8)22. The
parameters of the complementary graph HiS of HiS are (100, 77, 60, 56) and
spectrum 771, 722, (−3)77. HS and Aut(HS) have the orbits Γ0,Γ1, and Γ2 in
Ω× Ω where

Γ0 = {(α, α) |α ∈ Ω},
Γ1 = {(α, β) | {α, β} ∈ E},
Γ2 = {(α, β) |α, β ∈ Ω, α ̸= β and {α, β} /∈ E}.
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Table 1. Maximal subgroups of HS and HS:2

No. Max. sub. of HS Deg. Max. sub. of HS:2 Deg.

1 M22 100 HS 2
2 U3(5) : 2 176 M22 : 2 100
3 U3(5) : 2 176 L3(4):2

2 1100
4 L3(4) : 21 1100 S8 × 2 1100
5 S8 1100 25 · S6 3850
6 24 · S6 3850 43:(L3(2)× 2) 4125

7 43 : L3(2) 4125 21+6
+ :S5 5775

8 M11 5600 2×A6 · 22 · 2 15400
9 M11 5600 51+2:(Q8:4) 22176
10 4.24:S5 5775 5:4× S5 36960
11 2×A6.2

2 15400
12 5 : 4×A5 36960

We use the notation Γi(α) = {β | (α, β) ∈ Γi} for the Gα-orbits. With this we
observe that |Γi(α)| = 1, 22, 77 for i = 0, 1, 2.

For more information on the Higman-Sims group we refer the reader to the
ATLAS [9, p.80] or [25, Section 5.5.1] and for the Higman-Sims graph the reader
could consult [11].

Result 3.1 (Magliveras [18]). The Higman-Sims group HS has exactly 12
conjugacy classes of maximal subgroups, as follows:

M22 U3(5):2 (2 classes)
L3(4):21 S8

24.S6 43:L3(2)
M11 (2 classes) 4·24:S5

2×A6·22 5:4×A5.

The primitive representations described in Result 3.1 are of degrees 100, 176,
176, 1100, 1100, 3850, 4125, 5600, 5600, 5575, 15400 and 36960 respectively.
In Table 1 below the first column depicts the ordering of the primitive repre-
sentations of HS and HS:2 respectively, as given by Magma (or the ATLAS [9])
and as used in our computations; the second gives the maximal subgroups; the
third gives the degrees (the number of cosets of the point stabilizer).

4. The p-ary codes of length 100 related with the HiS graph

Applying [16, Corollary 3.2], we consider a stem cover U of the groupG = HS
and take Uω to be the inverse image of the stabilizer Gω. Then all linear codes
of a given length over a field F and invariant under a permutation group G are
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obtained by inducing all 1-dimensional FUω-modules up to U . The submod-
ules of the resulting FU -modules form a complete list of codes invariant under
(G, Ω) as a permutation group. Since we are in the modular case we determine
those submodules which are kernels or images of module endomorphisms and as
in [15] we term these types of submodules endo-submodules. The complete lat-
tice of submodules then is obtained from relations between endo-submodules,
their orthogonal spaces and some possible additional considerations.

The reader is reminded of the notation introduced in Section 3 where Ω
represents the set of vertices of HiS and of HiS, and Γ0,Γ1, and Γ2 are the
orbitals of HiS with |Γi(x)| = 1, 77, 22. The matrix Ai in the centralizer algebra
of (G,Ω) is defined by

Ai = (fi(α, β))(α,β)∈Ω×Ω,

where fi(α, β) = 1, if (α, β) ∈ Γi and fi(α, β) = 0, otherwise. Recall from
Section 2 that F is the finite field Fq and that FΩ is the permutation module
of (G,Ω) over F so that to each Ai there is a naturally assigned endomorphism
ai such that

β 7→ βai =
∑

fi(α, β)β.

Let A0, A1, A2 be the matrices in the centralizer algebra of (G,Ω) associated
with the orbitals Γ0,Γ1, and Γ2 and ai denotes the endomorphism of the permu-
tation module FΩ corresponding to the matrix Ai or the orbital Γi. The endo-
morphism algebra E(FΩ) = EndFGFΩ has basis (a0,a1,a2) where a0 = IdFΩ.
This basis is called Schur basis in [17]. According to [17, Theorem 1.2.20] (see
also [5, Chapter 3] or [14,15]),

E(FΩ) → F3×3, ai 7→ Ai = [aijk]j,k=1,...,3 (1 ≤ i ≤ 3),

gives the regular matrix representation of E(FΩ) with respect to the Schur
basis. The matrices Mj = ((aj)ik) are called the intersection matrices of the
orbital graphs (Ω,Γi) or of Ω.

The structure of the Higman-Sims graph (and its complement) gives the
following values:

M0 = I3, M1 =

 0 0 1
0 21 16
77 56 60

 , M2 =

 0 1 0
22 0 6
0 21 16

 .

The common eigenspaces ξi(aj) of the intersection matrices over a field of
characteristic zero are displayed in the “character table” [ξi(aj)]1≤i,j≤3 given
below

[ξi(aj)] =

 1 77 22
1 7 −8
1 −3 2

 .
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This is also the character table of multiplicity-free endomorphism rings of
Higman-Sims group in its rank-3 permutation representation of degree 100 as
given in [20,22].

4.1. The p-ary codes of length 100 from the HiS-graph. Using represen-
tation theory, Knapp and Schaeffer [15] provided an algebraic and geometric
description of the binary codes related with the Higman-Sims graph. To some
extent this paper is a sequel to [15] in that we obtain results on the p-ary codes
defined by the row span of the adjacency matrices of the HiS-graph and its
complement HiS. It turns out that all faithful irreducible modules of HS over
these fields, and defined as the p-ary row span of the adjacency matrix of the
complementary HiS graph can be represented in this way as the code, the dual
code or the hull of the code. We start by examining the p-ary codes of the
HiS-graph.

Unless p = 2, the p-ary codes defined by the adjacency matrix of the HiS-
graph are not interesting as it can be seen in Lemma 4.1.

Lemma 4.1. The p-ary codes of length 100 defined by the row span of the
adjacency matrix of the HiS-graph over Fp are trivial unless p = 2.

Proof. Recall that the eigenvalues of the adjacency matrix A of the HiS-graph
are β0 = 22, β1 = 2, and β2 = −8 with corresponding multiplicities m0 =
1,m1 = 22 and m2 = 77. Since none of the βi mod p vanishes, whenever
p = 3, 5, 7 we deduce from [4, Proposition 13.7.1(iv)] that rankp(HiS) = 100.
That rankp(HiS) = 22 for p = 2, follows from [3] or [24]. Finally, we can show
that rank11(HiS) = 99. □

Remark 4.2. In Lemma 4.1 we saw that the only interesting codes associated
with the HiS-graph are binary. This is essentially the motivation to examine in
the ensuing sections the p-ary codes of the adjacency matrix of the complemen-
tary graph HiS. In particular, the reader will notice in Lemma 4.5 that in this
case the interesting primes are p = 3, 7. We shall show in Section 5 that the
codes are asymptotically good and hence optimal. In view of the preceding dis-
cussion, in the immediate section we use representation theory to understand
the submodule structure of the permutation module of dimension 100 over F3

and discuss the 7-, and 11-ary codes in the subsequent sections of the paper.

The submodule structure of F3Ω is displayed in Table 3.

Proposition 4.3. Let F = F3. Then FΩ has precisely the following endo-
submodules Ni with dimNi = i. N100 = FΩ, N0 = 0, N99 = Ker(a0 + a1 +
a2), N1 = Im(a0 + a1 + a2), N77 = Ker(a1), N23 = Im(a1), N78 = N77 +
N1, N22 = N100/N78. In addition the following hold:

(i)
{Ni | i ∈ {0, 1, 22, 23, 77, 78, 99, 100}}
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Table 2. Incidence matrix of the poset of submodules of
F3Ω = F3

100×1

dim 0 1 22 23 77 78 99 100

0 1 1 1 1 1 1 1 1
1 . 1 . 1 . 1 . 1
22 . . 1 1 . . 1 1
23 . . . 1 . . . 1
77 . . . . 1 1 1 1
78 . . . . . 1 . 1
99 . . . . . . 1 1
100 . . . . . . . 1

is the complete set of FG-submodules of FΩ and dimNi = i for all i.
(ii) We have 0 = N0 < N22 < N99 < N100 = FΩ is a composition series of

FΩ as an FG-module. The dimensions of the composition factors in the
composition series are 22, 77, 1. All composition factors are absolutely
irreducible.

(iii) Every composition factor of FΩ remains irreducible when restricted to
Gω

∼= M22.
(iv) Ni

⊥ = N100−i for all i.

Proof. In this case the result holds, with the proof virtually the same as that
of [15, Proposition 2.6]. Thus we omit the details. □

We summarize the results of this section in the following:

Theorem 4.4. Let G = HS be the Higman-Sims simple in its rank-3 represen-
tations on Ω of degree 100. Then every linear code C3(Ni) of length 100 over
the field F = F3 admitting G is obtained up to isomorphism from one of the
FG-submodules of the permutation module FΩ which are given in Proposition
4.3.

In Remark 4.2 we suggested that apart from the binary codes the only other
codes of length 100 invariant under the HS-group which are of interest for
applications are those associated with the primes p = 3, 7. Lemma 4.5 deals
with the p-ranks of the adjacency matrix A of the graph HiS.

Lemma 4.5. The adjacency matrix A of the graph HiS has 3-rank 23, 7-rank
77, 11-rank 99, and p-rank 100 for p = 2, 5.

Proof. The 3-rank of the adjacency matrix A of HiS and thus the dimension
of C3(HiS) can be deduced readily by using the spectrum of the graph. Ob-
serve from Section 3 that A has eigenvalues θ0 = 77, θ1 = 7, and θ2 = −3



Complementary duals codes of the complement of the HS-graph 2192

with multiplicities m0 = 1,m1 = 22 and m2 = 77. Now, using [4, Propo-
sition 13.7.1] or [3, Section 3] we obtain an upper bound on the 3-rank of
A, namely that rank3(A) ≤ min(m1 + 1,m2 + 1) = 23. Since by [4, Propo-
sition 13.3.2] rank3(A) ≥

∑
{mi | θi ̸≡ 0 (mod 3)} = 1 + 22, the assertions

follows.
For p = 7, since θ0 ≡ θ1 ≡ 0 (mod 7) and θ2 ̸≡ 0 (mod 7), we deduce from [4,

Proposition 13.7.1(iv)] that rank7(A) = 77. Since det(J − A) ̸≡ 0 (mod 11),
where J is the all-one matrix we obtain that the 11-rank of A equals 99. For
p = 2, 5 observe that none of the θi mod p vanishes, so we obtain rankpA =
100. □

5. Linear codes with complementary duals

Massey [19] defines a linear code with a complementary dual to be a lin-
ear code C whose dual C⊥ satisfies C ∩ C⊥ = {0}, and gives the algebraic
characterization of these codes. He showed further that linear codes with
complementary duals are asymptotically good codes, but stopping short of
showing whether these codes attain the Gilbert-Varshamov bound. Much later
Sendrier [23] showed that linear codes with complementary duals meet the as-
ymptotic Gilbert-Varshamov bound in the strong sense. A renewed interest
has emerged in recent years in application of these codes to cryptography in
improving the security of information processed by sensitive devices, in partic-
ular in finding counter-measures to side-channel attacks or fault non-invasive
attacks, see [7] for a complete description. In the sections which follow we use
results of [23] to show that the codes with parameters [100, 23, 23]3, [100, 77, 8]3,
[100, 77, 8]7, and [100, 23, 23]7 obtained from the complementary graph HiS are
linear codes with complementary duals and thus meet the asymptotic Gilbert-
Varshamov bound. In addition, we show the same to hold for the codes with
parameters [100, 77, 8]11, and [100, 23, 23]11 obtained from the decomposition
of the permutation module of dimension 100 over F11.

5.1. Ternary codes of the adjacency matrix of the HiS-graph. Propo-
sition 5.1 is an application of Lemma 4.5, and relates our previous discussions
with coding theory. To this end we prove

Proposition 5.1. C3(HiS) = N3 is a [100, 23, 23]3 code and C3(HiS)
⊥
= N3

⊥

is a [100, 77, 8]3 code with 173250 words of weight 8. The minimum weight 23 of
C3(HiS) is the valency of the reflexive graph (HiS)r with adjacency matrix A+I,
and the minimum weight vectors are the rows of adjacency matrix of (HiS)r and

their scalar multiples. Moreover 1 ∈ C3(HiS), C3(HiS)⊕C3(HiS)
⊥
= F100

3 and

Aut(HiS) = Aut(C3(HiS)) ∼= HS:2. Further, C3(HiS)
⊥
is the unique F3-module

of its dimension on which HS and HS:2 act faithfully and irreducibly.
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Proof. That the dimension of C3(HiS) is as stated, follows from Lemma 4.5
where we showed that rank3(C3(HiS)) = 23.
For the automorphism group of the code, it is well known that
Aut(HiS) ∼= HS:2. Since C3(HiS) is determined by the ternary row span
of the adjacency matrix of HiS, Aut(HiS) ⊆ Aut(C3(HiS)). Now, order
consideration give us the result. In addition, the 3-modular character table of
HS is completely known (see [13]) and it follows from it that the irreducible
77-dimensional F3-representation is unique (this can also be deduced from
Proposition 4.3(i) and (ii); part(i) (uniqueness) and part (ii) (irreducibility)).

It follows from this that C3(HiS)
⊥
is the unique F3-module of its dimension on

which HS and HS:2 act faithfully and irreducibly. Since C3(HiS) is the code
spanned by the rows of the adjacency matrix of the reflexive graph (HiS)r,
we see that the minimum weight of C3(HiS) ≥ 23. However, computations
with Magma [2] show that the minimum weight of C3(HiS) is 23 and so the
assertion follows. Taking the images of the supports of the codewords of
minimum weight under the action of the automorphism we obtain exactly 200
such codewords, and thus these constitute the rows of (HiS)r and their scalar
multiples. In Table 4, we give the weight distribution of C3(HiS). In this
table, i represents the weight of a codeword wi in C3(HiS) and Ai denotes the
number of codewords of weight i.

Computations with Magma show that C3(HiS)
⊥

has minimum weight 8.
That 1 ∈ C3(HiS) follows since 3 ∤ 77, with 77 being the constant column sums
of the adjacency matrix A of the graph HiS. Furthermore, Ω is a transitive
HS-set and since |Ω| = 100 is invertible in F3, it follows from [17, Lemma 1.2.4]

that F100
3 = C3(HiS)⊕C3(HiS)

⊥
as claimed. Moreover, [23, Corollary 8] assures

us that C3(HiS) and C3(HiS)
⊥
meet the asymptotic Gilbert-Varshamov bound

in the strong sense. Finally, it can be verified from [10] that C3(HiS)
⊥

attains
the recorded distance for a code of the given length and dimension. □

Remark 5.2. The code C3(HiS) can also be constructed as the code of the
adjacency matrix A+I of the reflexive graph (HiS)r obtained from the Higman-
Sims graph by including all loops. In this way we obtain a self-dual symmetric
1-(100, 23, 23) design D whose blocks are the incidence vectors of the rows of
A + I. Notice that the dimension and the minimum weight of C3(HiS) equal
23. These can be given a geometrical interpretation.
The minimum weight is the valency of the reflexive graph (HiS)r, and the words
of minimum weight in C3(HiS) are the rows of the adjacency matrix of HiS and
their scalar multiples. Under the action of Aut(C3(HiS)) the set of codewords
of weight 23 splits into two orbits of size 100 each. The stabilizers of a codeword
in each of these orbits are maximal subgroups of HS and Aut(C3(HiS)) of orders
443520 and 887040 that are isomorphic to M22 and M22:2, respectively.



Complementary duals codes of the complement of the HS-graph 2194

Table 3. Weight distribution of C3(HiS)

i Ai i Ai i Ai

0 1 56 689920000 76 1038633750

23 200 57 966152000 77 708492600

30 2200 58 1426792400 78 429137200

34 30100 59 2077567800 79 231316800

36 8250 60 2940814800 80 122075800

40 38500 61 3840513600 81 48602400

42 2200 62 4745194300 82 25995200

43 259600 63 5603888400 83 7838600

44 824100 64 6647269200 84 1478400

45 1940400 65 7343802400 85 1861200

46 616000 66 8152382700 86 1179200

47 739200 67 7941395000 87 123200

48 5005000 68 7994686700 88 869400

49 1463000 69 6813637600 90 246400

50 21900912 70 6298591200 92 78650

51 15994000 71 5069585400 93 46200

52 92369200 72 4456508650 94 7700

53 129360000 73 3407558000 98 2200

54 292630800 74 2467634400 100 906

55 425656000 75 1652458808

The dual code C3(HiS)
⊥

has minimum distance 8 which coincides with the
known recorded distance for the parameters [100, 77] (this follows from [2] and
also from [10]).

5.2. Orbits of Aut(C3(HiS)) on small weight codewords. The reader will
recall that we use (G,Ω) for the right action of G on Ω. Henceforth, we shall
use the notation Ω:G to denote the set of G-orbits on Ω and Ωi(j) will denote
the j-th suborbits of the orbit decomposition of the orbit Ωi. The reader
is cautioned not to confuse this notation with that used for the semidirect
product of two groups. Using this notation we give an explicit description of
the codewords of C3(HiS) of weight up to 44, and where possible using the
geometry of the HiS-graph and the knowledge of the structure of the subgroup
lattice of HS [8], we provide a geometric description of the nature of some
classes of codewords. In particular, for these classes of codewords of given non-
trivial weights in the code, we use the well-known Assmus-Mattson Theorem
to determine some point- and block-primitive 1-designs which are held by the
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codewords. To this end, let M = {23, 30, 34, 36, 40, 42, 43, 44} and for m ∈ M
we define Wm(C3(HiS)) = {wm ∈ C3(HiS) |wt(wm) = m}, where wt(wm)
represents the weight of wm. We have

Proposition 5.3. The orbits in Wm(C3(HiS))) for 1 ≤ m ≤ 8 are as follows:

(i) W23(C3(HiS)):Aut(C3(HiS)) = {Ω1(1),Ω1(2)} with |Ω1(1)| = |Ω1(2)| =
100.

(ii) W30(C3(HiS)):Aut(C3(HiS)) = {Ω2(1),Ω2(2)} with |Ω2(1)| = |Ω2(2)| =
1100.

(iii) W34(C3(HiS)):Aut(C3(HiS)) = {Ω3(i) | 1 ≤ i ≤ 4} with |Ω3(1)| = |Ω3(2)|
= 11200 and |Ω3(3)| = |Ω3(4)| = 3850.

(iv) W36(C3(HiS)):Aut(C3(HiS)) = {Ω4(1),Ω4(2)} with |Ω4(1)| = |Ω4(2)| =
4125.

(v) W40(C3(HiS)):Aut(C3(HiS)) = {Ω5(i) | 1 ≤ i ≤ 4} where |Ω5(1)| =
|Ω5(2)| = 15400 and |Ω5(3)| = |Ω5(4)| = 3850.

(vi) W42(C3(HiS)):Aut(C3(HiS)) = {Ω6(1),Ω6(2)} with |Ω6(1)| = |Ω6(2)| =
1100.

(vii) W43(C3(HiS)):Aut(C3(HiS)) = {Ω7(i) | 1 ≤ i ≤ 6} where |Ω7(1)| =
|Ω7(2)| = 61600, |Ω7(3)| = |Ω7(4)| = 35200 and |Ω7(5)| = |Ω7(6)| =
33000.

(viii) W44(C3(HiS)):Aut(C3(HiS)) = {Ω8(i) | 1 ≤ i ≤ 10} where |Ω8(1)| =
|Ω8(2)| = 154000, |Ω8(3)| = |Ω8(4)| = 132000, |Ω8(5)| = |Ω8(6)| = 67200,
|Ω8(7)| = |Ω8(8)| = 57750, and |Ω8(9)| = |Ω8(10)| = 1100.

Proof. As in the proof of [15, Proposition 3.1], we can use facts about the action
of Gω

∼= M22, where ω ∈ Ω to establish the proposition. □
Remark 5.4. A continuation we give a geometric description of the codewords
of minimum weight, even though using the geometry of the graph and possibly
of the Steiner systems we could achieve a geometric interpretation of almost
all sets Wm(C3(HiS)) given in Proposition 5.3.
(i)W23(C3(HiS)) represents the incidence vectors of the blocks of the 1-(100, 23,
23) design (and their scalar multiples) obtained by taking the support of
the codewords of minimum weight and orbiting their images under HS:2;

W30(C3(HiS)) are copies of the conics of the Higman’s geometry (and their
scalar multiples), see [21];
(ii) Each set W36(C3(HiS)) of 4125 codewords of weight 36 forms the blocks
of a 1-(100, 36, 1485) design. This is in fact a 2-(100, 36, 525) self-orthogonal
design.

In Table 5 the first column represents the codewords of weight m and the
second column gives the parameters of the designs Dwm which were constructed
by taking the images of the supports of the codewords of weight m and orbiting
these under the action of Aut(C3(HiS)). In the third column, we list the number



Complementary duals codes of the complement of the HS-graph 2196

Table 4. 1-designs Dwm from HS:2

m Dwm No. of blocks Primitivity
(23)1 1-(100, 23, 23) 100 Yes

(23)2 1-(100, 23, 23) 100 Yes

(30)1 1-(100, 30, 330) 1100 Yes

(30)2 1-(100, 30, 330) 1100 Yes

(34)1 1-(100, 34, 3808) 11200 No

(34)2 1-(100, 34, 3808) 11200 No

(34)3 1-(100, 34, 1309) 3850 Yes

(34)4 1-(100, 34, 1309) 3850 Yes

(36)1 1-(100, 36, 1485) 4125 Yes

(36)2 1-(100, 36, 1485) 4125 Yes

(40)1 1-(100, 40, 6160) 15400 Yes

(40)2 1-(100, 40, 6160) 15400 Yes

(40)3 1-(100, 40, 1540) 3850 Yes

(40)4 1-(100, 40, 1540) 3850 Yes

(43)1 1-(100, 43, 26488) 61600 No

(43)2 1-(100, 43, 26488) 61600 No

(43)3 1-(100, 43, 15136) 35200 No

Table 5. 1-designs Dwm
from HS:2

m Dwm No. of blocks Primitivity
(43)4 1-(100, 43, 15136) 35200 No

(43)5 1-(100, 43, 14190) 33000 No

(43)6 1-(100, 43, 14190) 33000 No

(44)1 1-(100, 44, 67760) 154000 No

(44)2 1-(100, 44, 67760) 154000 No

(44)3 1-(100, 44, 58080) 132000 No

(44)4 1-(100, 44, 58080) 132000 No

(44)5 1-(100, 44, 29568) 67200 No

(44)6 1-(100, 44, 29568) 67200 No

(44)7 1-(100, 44, 29568) 57750 No

(44)8 1-(100, 44, 29568) 57750 No

(44)9 1-(100, 44, 484) 1100 Yes

(44)10 1-(100, 44, 484) 1100 Yes

of blocks of Dwm . We test the primitivity for the action of HS:2 on Dwm in the
final column.

Next in Lemma 5.5 by considering wm where m ∈ M we describe the struc-
tures of (HS:2)wm and show that these are with some exceptions always maxi-
mal subgroups of HS:2.

Lemma 5.5. Let m ∈ M and wm ∈ Wm(C3(HiS)). Then the following occur:
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(i) If m /∈ {34, 43, 44} then (HS:2)wm is a maximal subgroup of HS:2.
(ii) If m = 34 then (HS:2)wm

∼= 25:S6 or (HS:2)wm
∼= M11 and M11 is not

a maximal subgroup of HS:2.
(iii) If m = 43 then (HS:2)wm is not a maximal subgroup of HS:2.
(iv) If m = 44 then (HS:2)wm ∈ {3:S3 · 2:2× 2× 2 · 2, L2(7):2× 2, L2(11):2,

21+6:2:S3, L3(4):21} and unless (HS:2)wm = L3(4):21 any other group
in this list is not a maximal subgroup of HS:2.

Proof. The proof follows from a case-by-case analysis. For part (i) consider a
subset M of M such that M = {23, 30, 36, 40, 42}. For each choice of m ∈ M ,
we have that under the action of HS:2 the set Wwm(C3(HiS)) splits into at
least two pairwise orbits of the same size, and moreover, the number of sub-
orbits in this action is always even. Without loss of generality, we choose
m = 40, as a prototype and give an explicit proof in this case. All the remain-
ing cases follow the same arguments, and so we omit them. For m = 40
the set Ww40

(C3(HiS)) splits into four distinct suborbits of pairwise equal
size, namely W40(1),W40(2),W40(3), and W40(4), of lengths 15400, 15400, 3850
and 3850 respectively. Let a ∈ W40(1), b ∈ W40(2), c ∈ W40(3) and
d ∈ W40(4). By the orbit stabilizer Theorem and the ATLAS (or Table 2) we
have [HS:2 : (HS:2)wm ] ∈ {15400, 3850}. Using the list of maximal subgroups of
HS:2 (see Table 2), we deduce that (HS:2)w40a

∈ {2×A6 · 22 · 2, H, K, L,N},
where H is a subgroup of index 154 in M22:2, K of index 4 in 25 ·S6, L of index
14 in S8× 2 and N of index 14 in L3(4):2

2. We deal with the elimination of H,
K, L and N in the following:

(1) From the list of maximal subgroups of M22:2, there are two possible
candidates for H, either a subgroup of index 7 in L3(4):22 or of index 2
in 24:S6. The list of maximal subgroups of L3(4) shows that it contains
no subgroup of index 7. The group 24:S6 is a maximal subgroup of
M22:2 and computations with Magma show that its non-trivial normal
subgroups are of type 24, and hence it cannot have a subgroup of index
2.

(2) We constructed the maximal subgroup 25 · S6 inside HS:2 and found
out that it does not contain a subgroup of index 4.

(3) Lists of maximal subgroups of S8 × 2 and L3(4):2
2 [9] eliminate the

possibilities of L and N .

Therefore, (HS:2)a = 2 × A6 · 22 · 2. Similarly, (HS:2)b = 2 × A6 · 22 · 2. Since
(HS:2)c or (HS:2)d is a subgroup of order 23040, we deduce from Table 2 that
(HS:2)c ∼= 25 · S6 (respectively (HS:2)d ∼= 25 · S6).
Parts (ii), (iii) and (iv) follow similarly. □

In Table 6 we give the structure of the stabilizers of the codewords wm as
described in Lemma 5.5.



Complementary duals codes of the complement of the HS-graph 2198

Table 6. Stabilizer in HS:2 of a word wm

m (HS:2)wm Maximality

23 M22:2 Yes

30 S8 × 2 Yes

(34)1,2 M11 No

(34)3,4 25 · S6 Yes

36 43(L3(2)× 2) Yes

(40)1,2 2×A6 · 22 · 2 Yes

(40)3,4 25 · S6 Yes

(42)1,2 L3(4):22 Yes

(43)1,2 A6:2:2 No

(43)3,4 A7 No

(43)5,6 23:L2(7)× 2 No

(44)1,2 3:S3 · 2:2× 2× 2 · 2 No

(44)3,4 L2(7):2× 2 No

(44)5,6 L2(11):2 No

(44)7,8 21+6:2:S3 No

(44)9,10 L3(4):21 Yes

A problem in Lux and Pahlings, see [17, Exercise 1.3.7 (d)] requires to show
that the permutation module of the Higman-Sims group of dimension 100 over
F3 is the direct sum of three absolutely irreducible modules of dimensions 1,
22 and 77 respectively. It can be observed from the ATLAS [9] that these
are the irreducible constituents of the permutation representation of HS on
the cosets of the Mathieu group M22, and coincide with the subdegrees of this
representation. In Lemma 5.6 below, we show that the words of weight 30 in
C3(HiS) span a subcode of codimension 1, and that this is the smallest and
unique irreducible F3-module of its dimension invariant under HS and HS:2,
respectively. Moreover, we show that F100

3 = ⟨1⟩ ⊕ L⊕K, where ⟨1⟩, L and K
are absolutely irreducible modules of dimensions 1, 22 and 77, respectively.

Lemma 5.6. The codewords of weight 30 in C3(HiS) span a subcode L of co-
dimension 1. L is a [100, 22, 30]3 code and its dual L⊥ is a [100, 78, 8]3 code
with 189200 codewords of weight 8. Moreover, L is the smallest and unique
irreducible F3-module of its dimension invariant under HS and L⊥ = ⟨1⟩ ⊕ K
where K ∼= C3(HiS)

⊥
. Aut(L) ∼= HS:2 and C3(HiS)⊕C3(HiS)

⊥
= ⟨1⟩⊕L⊕K =

F100
3 .

Proof. The first statement of the proposition follows from the submodule struc-
ture of the permutation module F3Ω = F3

100 given in Proposition 4.3(i) as
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Table 7. Weight distribution of L

i Ai i Ai i Ai

0 1 57 297598400 74 843242400

30 2200 58 492881400 75 542372600

34 7700 59 663108600 76 343169750

40 30800 60 1015568400 77 228782400

42 2200 61 1206436000 78 160941400

43 70400 62 1624299600 79 82051200

44 513900 63 1871284800 80 39732000

46 616000 64 2339880400 81 9240000

48 3480400 65 2385134400 82 9363200

49 231000 66 2685767700 83 3511200

50 4154304 67 2515128000 85 308000

51 3850000 68 2727578700 86 528000

52 29198400 69 2292136000 87 123200

53 48048000 70 2200712800 88 231000

54 101085600 71 1650950400 90 246400

55 144267200 72 1476772000 92 8250

56 240702000 73 1095710000 100 904

N23 = N1 ⊕N22. Now, [15, Proposition 2.4] gives the unique decomposition of
F100
3 into irreducible submodules of dimensions 1, 22 and 77 respectively, as the

reduction modulo 3 of the ordinary characters of M22 of degrees 21 and 55 re-
main irreducible. In addition, we deduce from [12, Table 1] (see also [13]) that
22 is the smallest dimension for a non-trivial irreducible F3-module invariant
under HS (see also Proposition 4.3, part (i) (uniqueness and minimality) and
part (ii) (irreducibility)). Finally, Table 7 below gives the weight distribution
of L.

That the minimum distance of L⊥ coincides with the known recorded dis-
tance for the given parameters follows from [10] and also from computations
with Magma [2]. □

Below we compute the stabilizers of some vectors of small weight in L (say
of weight ≤ 49, as required in [17, Exercise 1.3.7 (d)]) and determine their
structure.

5.3. 7-Ary codes of the adjacency matrix of the HiS-graph. Results
similar to those discussed in the preceding sections for modules and codes can
be obtained for p = 7 in relation with the graph HiS. The submodule structure
of F7Ω is displayed in Table 10
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Table 8. 1-designs Dwl
from HS:2

l Dwl
No. of blocks Primitivity

30 1-(100, 30, 330) 1100 Yes

34 1-(100, 34, 1309) 3850 Yes

40 1-(100, 40, 6160) 15400 Yes

42 1-(100, 42, 462) 1100 Yes

43 1-(100, 43, 15136) 35200 Yes

(44)1 1-(100, 44, 58080) 132000 No

(44)2 1-(100, 44, 25410) 57750 No

(44)3 1-(100, 44, 29568) 67200 No

46 1-(100, 46, 141680) 308000 No

(48)1 1-(100, 48, 147840) 308000 No

(48)2 1-(100, 48, 354816) 739200 No

(48)2 1-(100, 48, 354816) 739200 No

(48)3 1-(100, 48, 332640) 693000 No

49 1-(100, 49, 56595) 115500 No

Table 9. Stabilizer in HS:2 of a word wl

i (HS:2)wi
Maximality i (HS:2)wi

Maximality
30 S8 × 2 Yes (44)3 2:L2(11) No

34 25 · S6 Yes 46 25:32 No

40 2 × A6 · 22 · 2 Yes (48)1 25:32 No

42 L3(4):2
2 Yes (48)2 S5 No

43 A6:2:2 No (48)3 28 No

(44)1 2 × L2(7):2 Yes 49 28:3 No

(44)2 29 · 3 No

Table 10. Upper triangular part of the incidence matrix of
the poset of submodules of F7Ω = F7

100×1

dim 0 1 22 23 77 78 99 100

0 1 1 1 1 1 1 1 1
1 . 1 . 1 . 1 . 1
22 . . 1 1 . . 1 1
23 . . . 1 . . . 1
77 . . . . 1 1 1 1
78 . . . . . 1 . 1
99 . . . . . . 1 1
100 . . . . . . . 1

Proposition 5.7. The code C7(HiS) is a [100, 77, 8]7 code and C7(HiS)
⊥

is a
[100, 23, 23]7 with 600 words of weight 23. Moreover 1 ∈ C7(HiS), C7(HiS) ⊕
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Table 11. Upper triangular part of the incidence matrix of
the poset of submodules of F11Ω = F11

100×1

dim 0 1 22 23 77 78 99 100

0 1 1 1 1 1 1 1 1
1 . 1 . 1 . 1 . 1
22 . . 1 1 . . 1 1
23 . . . 1 . . . 1
77 . . . . 1 1 1 1
78 . . . . . 1 . 1
99 . . . . . . 1 1
100 . . . . . . . 1

C7(HiS)
⊥

= F100
7 and Aut(HiS) = Aut(C7(HiS)) ∼= HS:2. Further, C7(HiS) is

the unique F7-module on which HS and HS:2 act faithfully and irreducibly.

Proof. The dimension 77 of C7(HiS) follows from Lemma 4.5, since rank7(A)
= 77. The rest of the proof follows using [15, Proposition 2.4(ii)]. The minimum

weight 23 of C7(HiS)
⊥

was determined by computations with Magma [2]. □

Lemma 5.8. The codewords of weight 30 in C7(HiS)
⊥

span a subcode R of
co-dimension 1. R is a [100, 22, 30]7 code with 6600 codewords of weight 30 and
its dual R⊥ is a [100, 78, 8]7 code. Moreover, R is the smallest and unique ir-
reducible F7-module invariant under HS and R⊥ = ⟨1⟩⊕S where S ∼= C7(HiS).

Aut(S) ∼= HS:2 and C7(HiS)⊕ C7(HiS)
⊥
= ⟨1⟩ ⊕ R⊕ S = F100

7 .

Proof. The proof follows similar arguments to those used in proving Lemma 5.6.
So we omit the details. □
Remark 5.9. Up to this point, we dealt with the 3- and 7-modular representa-
tions of the Higman-Sims group of degree 100 in relation with the complemen-
tary graph HiS of the Higman-Sims graph. In addition, we showed that the
permutation module of the Higman-Sims group of dimension 100 over the fields
Fp where p = 3, 7 is the direct sum of three absolutely irreducible modules of
dimensions 1, 22 and 77 respectively. The next results show that the latter
also holds for F11, i.e., the permutation module of the Higman-Sims group of
dimension 100 over the field F11 is the direct sum of three absolutely irreducible
modules of dimensions 1, 22 and 77 respectively.

5.4. 11-Ary codes from the 100-dimensional modular representation.
The submodule structure of F11Ω is displayed in Table 11.

The reader would have noticed that the assertions of the next results do not
follow from either graphs in discussion, since by Lemma 4.1 and Lemma 4.5
we have rank11(A) = rank11(A) = 99, and thus the codes are trivial. The
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assertions in the next results follow directly from the structure of the module
decomposition of the permutation module of dimension 100 over F11 as depicted
in Table 11. Below, we describe the submodule F11Ω in relation with coding
theory.

Proposition 5.10. For F = F11, the following occurs:

(i)

{Ni | i ∈ {0, 1, 22, 23, 77, 78, 99, 100}}

is the complete set of FG-submodules of FΩ and dimNi = i for all i.
(ii) We have 0 = N0 < N1 < N78 < N100 = FΩ is a composition series of

FΩ as an FG-module. The dimensions of the composition factors in the
composition series are 1, 77, 22. All composition factors are absolutely
irreducible.

(iii) Ni
⊥ = N100−i for all i.

Proof. In this case the result holds, with the proof virtually the same as that
of [15, Proposition 2.6]. Thus we omit the details. □

Results similar to those discussed in the preceding sections on the strongly
regular graphs can be obtained for modules and codes for p = 11. We state
below those results concerned with coding theory and give an outline of the
proofs; leaving the full details to the reader.

Proposition 5.11. N77 is a [100, 77, 8]11 code, and N77
⊥ is a [100, 23, 23]11

code. Moreover 1 ∈ N77, N77 ⊕ N77
⊥ = F100

11 and Aut(N77) ∼= HS:2. Fur-
ther, N77 is the unique F11-module on which HS and HS:2 act faithfully and
irreducibly.

Proof. The dimension 77 ofN77 follows from the decomposition of the permuta-
tion module of dimension 100, as depicted in Table 11. By [15, Proposition 2.4

(i)] it follows that N77 ⊕ N77
⊥ = F100

11 and also that N77 is the unique F11-
module on which HS and HS:2 act faithfully and irreducibly. □

Lemma 5.12. The codewords of weight 30 in N77
⊥ span a subcode U of co-

dimension 1. U is a [100, 22, 30]11 code, and its dual U⊥ is a [100, 78, 8]11 code.
Moreover, U is the smallest and unique irreducible F11-module invariant under
HS and U⊥ = ⟨1⟩ ⊕ V where V ∼= N77. Aut(V) ∼= HS:2 and N77 ⊕ N77

⊥ =
⟨1⟩ ⊕ U ⊕ V = F100

11 .

Proof. Similar arguments to those used in the proof of Lemma 5.6 could be used
in conjunction with [12, Table 1] for the irreducibility of U and the minimality
of its dimension as a submodule invariant under HS. □
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6. Concluding remarks

In this paper, we showed that the permutation module of the Higman-Sims
group of dimension 100 over the fields Fp where p = 3, 7, 11 is the direct sum
of three absolutely irreducible codes of dimensions 1, 22 and 77 respectively.
Observe that the dimensions of these modules are precisely the sizes of the
suborbits of the rank-3 representation of the Higman-Sims group of degree
100 on the cosets of the Mathieu group M22. It is an interesting question to
investigate whether there are groups G other than the simple sporadic group
HS for which a permutation module of a given degree defined over Fp where
p | |G|, on the cosets of a maximal subgroup is the direct sum of irreducible
submodules whose dimensions are precisely the lengths of the suborbits of
the orbit decomposition. The author is aware of only two other finite groups
with this property, namely the simple unitary group U4(2) and the sporadic
Hall-Janko group J2 in their rank-3 representations of degrees 36 and 100,
respectively. It would be interesting to attempt a classification of such groups,
and establish the extent of this class of groups. In addition we have shown that

the dual codes Cp(HiS)
⊥
= [100, 77, 8]p for p = 3, 7, 11 are irreducible optimal

codes.
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