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Abstract. Let complex matrices A and B have the same sizes. Using

the singular value decomposition, we characterize the g-inverse B(1) of B
such that the distance between a given g-inverse of A and the set of all
g-inverses of the matrix B reaches minimum under the unitarily invariant
norm. With this result, we derive additive and multiplicative perturba-

tion bounds of the nearest perturbed g-inverse. These results generalize
and improve the existing results published recently to some extent.
Keywords: g-inverse, additive perturbation bound, multiplicative per-

turbation bound, unitarily invariant norm.
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1. Introduction

Let Cm×n and Cm×n
r be the set of all m×n complex matrices and its subset

with rank r, respectively. For a given matrix A ∈ Cm×n, the symbols A∗, A†,
∥A∥2, and ∥A∥, respectively, stand for the conjugate transpose, the Moore-
Penrose inverse, the spectral norm, and the unitarily invariant norm of A. By
Im we denote the identity matrix of order m. Moreover,

PA = AA†, P⊥
A = Im −AA†, PA∗ = A†A, and P⊥

A∗ = In −A†A

stand for four orthogonal projectors induced by A.
Recall that the Moore-Penrose inverse A† of a matrix A ∈ Cm×n is defined

to be the unique solution of the four Penrose equations [2]:

(1.1) (1) AGA = A, (2) GAG = G, (3) (AG)∗ = AG, (4) (GA)∗ = GA.

If G satisfies the first equation of (1.1), then G is called a g-inverse or a {1}-
inverse of A and is denoted by A(1). As is known, g-inverse is not unique in
general. The set of all g-inverses of A is denoted by A{1}. We refer the reader
to [2, 15] for basic results on the g-inverse.
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Perturbation bounds for g-inverses 2656

The perturbation theory of the Moore-Penrose inverse is a classical topic
in matrix analysis and numerical linear algebra. The additive perturbation
theory (when A is perturbed to B = A + E, where A,E ∈ Cm×n) of the
Moore-Penrose inverse was studied by many authors with respect to different
norms, see [1, 2, 5, 8, 12–14, 16] and the references therein. Lately, there has
been an increasing of interest in the multiplicative perturbation theory (A is
perturbed to B = D∗

1AD2, where D1 and D2 are, respectively, m × m and
n × n nonsingular matrices) of the Moore-Penrose inverse due, in part, to
its application to the error analysis of algorithms that solve structured least
squares problem with high relative accuracy, see [3–6,8, 9, 18].

As is known, the Moore-Penrose inverse, {1, 3}-inverses, {1, 2, 3}-inverses,
and the group inverse all belong to g-inverses. Owning to the extensive ap-
plications in matrix theory and computation [2], g-inverses receive lots of con-
sideration. Liu et al. [7] studied the continuity properties of g-inverse under
condition of rank invariant perturbations. Wei and Ling [17] obtained the addi-
tive perturbation bounds of g-inverse under the spectral and Frobenius norms.
Recently, Meng et al. [10] studied the multiplicative perturbation bounds of g-
inverses with respect to the spectral and Frobenius norms. The spectral norm
and the Frobenius norm are special instances of unitarily invariant norms, i.e.,
norms ∥ · ∥ that satisfy ∥UXV ∥ = ∥X∥ for all X ∈ Cm×n and unitary matri-
ces U ∈ Cm×m and V ∈ Cn×n; see [11] for a general background of unitarily
invariant norms. In this paper, we further undertake the perturbation analysis
for g-inverses with respect to the unitarily invariant norm.

Given A,B ∈ Cm×n and A(1) ∈ A{1}, we first specify formula of the g-
inverse B(1) ∈ B{1} singular value decomposition (SVD), such that B(1) is
closest to A(1) under the unitarily invariant norm. Then we present the additive
and multiplicative perturbation bounds for the nearest perturbed g-inverse with
respect to the unitarily invariant norm. To our knowledge, there is no article
yet discussing these problems in the literature.

Before starting our discussion, we list some lemmas which will be used in
the sequel.

Lemma 1.1 ([2]). Let A ∈ Cm×n
r , then the general expressions of g-inverses

of A can be written as:

A{1} = {A† +A†AZ(Im −AA†) + (In −A†A)Z : Z ∈ Cn×m}.

Furthermore, let A = U

[
Σ1 0
0 0

]
V ∗ be the singular value decomposition

(SVD) of A, where U ∈ Cm×m, V ∈ Cn×n are unitary matrices, and
Σ1 = diag(σ1, . . . , σr). Then the general g-inverse of A can be expressed as

A(1) = V

[
Σ−1

1 K
L M

]
U∗,(1.2)
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where K,L and M are arbitrary matrices of appropriate sizes. In particular,
the Moore-Penrose inverse is (1.2) with K = 0, L = 0 and M = 0.

Lemma 1.2 ([16]). Let A,B = A+ E ∈ Cm×n, then

B† −A† = −B†EA† +B†(Im −AA†)− (In −B†B)A†.

Lemma 1.3 ([10]). Let A,B ∈ Cm×n and B∗A = 0 or A∗B = 0. Then

∥A∥ ≤ ∥A+B∥.

2. The formula of the nearest g-inverse

Given A,B ∈ Cm×n and A(1) ∈ A{1}, Wei and Ling [17, Theorems 3.1 and
3.2] proved that

B(1)
m = B† +B†BA(1)(Im −BB†) + (In −B†B)A(1)

is the closest g-inverse of B to A(1) under the Frobenius norm and the spec-
tral norm. The following theorem shows that their results still hold when the
spectral norm or Frobenius norm is generalized to any unitarily invariant norm.

Theorem 2.1. Let A,B ∈ Cm×n. For any given A(1) ∈ A{1}, there exists a

matrix B
(1)
m ∈ B{1} of the form

B(1)
m = B† +B†BA(1)(Im −BB†) + (In −B†B)A(1)

such that

min
B(1)∈B{1}

∥∥∥B(1) −A(1)
∥∥∥ =

∥∥∥B(1)
m −A(1)

∥∥∥ =
∥∥∥B† −B†BA(1)BB†

∥∥∥ .(2.1)

Proof. Let A ∈ Cm×n
r , B ∈ Cm×n

s respectively have the following SVDs:

A = U

[
Σ1 0
0 0

]
V ∗ and B = Ũ

[
Σ̃1 0
0 0

]
Ṽ ∗,(2.2)

where U = [U1 U2], Ũ = [Ũ1 Ũ2] ∈ Cm×m and V = [V1 V2], Ṽ = [Ṽ1 Ṽ2] ∈
Cn×n are unitary matrices, U1 ∈ Cm×r, Ũ1 ∈ Cm×s, V1 ∈ Cn×r, Ṽ1 ∈ Cn×s,

Σ1 = diag(σ1, . . . , σr), Σ̃1 = diag(σ̃1, . . . , σ̃s), σ1 ≥ · · · ≥ σr > 0 and σ̃1 ≥
· · · ≥ σ̃s > 0. Let S = Ũ∗U and T = Ṽ ∗V have the block form

S =

[
S11 S12

S21 S22

]
∈ Cm×m and T =

[
T11 T12

T21 T22

]
∈ Cn×n(2.3)

with S11, T11 ∈ Cs×r, then S and T are unitary matrices.
For the given A(1), from Lemma 1.1 there exist matrices K ∈ C r×(m−r),

L ∈ C(n−r)×r and M ∈ C(n−r)×(m−r) such that A(1) = V

[
Σ−1

1 K
L M

]
U∗.

Since any B(1) ∈ B{1} has the form B(1) = Ṽ

[
Σ̃−1

1 K̃

L̃ M̃

]
Ũ∗, where K̃ ∈
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C s×(m−s), L̃ ∈ C(n−s)×s and M̃ ∈ C(n−s)×(m−s) are arbitrary matrices, we
have

∥B(1) −A(1)∥ =

∥∥∥∥∥
[

Σ̃−1
1 K̃

L̃ M̃

]
Ũ∗U − Ṽ ∗V

[
Σ−1

1 K
L M

]∥∥∥∥∥
=

∥∥∥∥∥
[

Σ̃−1
1 S11 + K̃S21 −H1 Σ̃−1

1 S12 + K̃S22 −H2

0 0

]
+

+

[
0 0

L̃S11 + M̃S21 −H3 L̃S12 + M̃S22 −H4

] ∥∥∥∥∥,(2.4)

where Sij and Tij are defined by (2.2) and

H1 = T11Σ
−1
1 + T12L, H2 = T11K + T12M,

H3 = T21Σ
−1
1 + T22L, H4 = T21K + T22M.

Applying Lemma 1.3 to (2.4), we obtain∥∥∥∥[ Σ̃−1
1 S11 + K̃S21 −H1 Σ̃−1

1 S12 + K̃S22 −H2

0 0

]∥∥∥∥
≤

∥∥∥B(1) −A(1)
∥∥∥ .(2.5)

Choosing

L̃m = H3S
∗
11 +H4S

∗
12 and M̃m = H3S

∗
21 +H4S

∗
22,

it is easy to check that

L̃mS11 + M̃mS21 −H3 = 0, L̃mS12 + M̃mS22 −H4 = 0.(2.6)

Combining (2.4)–(2.6), we get

min
B(1)∈B{1}

∥∥∥B(1) −A(1)
∥∥∥

= min
K̃∈Cs×(m−s)

∥∥∥[ Σ̃−1
1 S11 + K̃S21 −H1 Σ̃−1

1 S12 + K̃S22 −H2

]∥∥∥ .
Similarly, using the following equality[

Σ̃−1
1 S11 + K̃S21 −H1 Σ̃−1

1 S12 + K̃S22 −H2

]
=

[
Σ̃−1

1 S11 −H1 + K̃mS21 Σ̃−1
1 S12 −H2 + K̃mS22

]
+
[
(K̃ − K̃m)S21 (K̃ − K̃m)S22

]
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with K̃m = H1S
∗
21 +H2S

∗
22, we get

min
B(1)∈B{1}

∥∥∥B(1) −A(1)
∥∥∥ =

∥∥∥B(1)
m −A(1)

∥∥∥
=

∥∥∥[ Σ̃−1
1 S11 −H1 + K̃mS21 Σ̃−1

1 S12 −H2 + K̃mS22

]∥∥∥
=

∥∥∥[ Σ̃−1
1 S11 Σ̃−1

1 S12

]
− (H1S

∗
11 +H2S

∗
12)

[
S∗
11 S∗

12

]∥∥∥
=

∥∥∥∥[ Σ̃−1
1 0
0 0

]
Ũ∗U −

[
Is 0
0 0

]
Ṽ ∗V

[
Σ−1

1 K
L M

]
U∗Ũ

[
Is 0
0 0

]
Ũ∗U

∥∥∥∥
=

∥∥∥B† −B†BA(1)BB†
∥∥∥ ,

where

B(1)
m = Ṽ

[
Σ̃−1

1 K̃m

L̃m M̃m

]
Ũ∗

= Ṽ

[
Σ̃−1

1 0
0 0

]
Ũ∗ + Ṽ

[
Is 0
0 0

]
Ṽ ∗V

[
Σ−1

1 K
L M

]
U∗Ũ ×[

0 0
0 Im−s

]
Ũ∗ + Ṽ

[
0 0
0 In−s

]
Ṽ ∗V

[
Σ−1

1 K
L M

]
U∗Ũ Ũ∗

= B† +B†BA(1)(Im −BB†) + (In −B†B)A(1).

Here the last equality follows from the facts

B† = Ṽ

[
Σ̃−1

1 0
0 0

]
Ũ∗, B†B = Ṽ

[
Is 0
0 0

]
Ṽ ∗,

Im −BB† = Ũ

[
0 0
0 Im−s

]
Ũ∗ and In −B†B = Ṽ

[
0 0
0 In−s

]
Ṽ ∗.

The proof is completed. □

Remark 2.2. It is worthy to point out that, for any given A(1) ∈ A{1}, the
nearest g-inverse is unique under the Frobenius norm. However, the nearest
g-inverse may not be unique under the other unitarily invariant norms [17].

3. Perturbation bounds for the nearest g-inverse

By using the result obtained in the previous section, we can derive the
additive and multiplicative perturbation bounds for the nearest g-inverse under
the unitarily invariant norm. Notice that in the analysis of the previous section,
we do not enforce the condition rank(B) = rank(A). Liu et al. [7] proved that,
for stable perturbations the condition rank(B) = rank(A) is necessary. Hence,
in this section, we study the additive perturbation bounds for the nearest g-
inverse under the condition rank(B) = rank(A).
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Theorem 3.1. Let A,B = A + E ∈ Cm×n with rank(B) = rank(A) and
∥A†∥2∥E∥2 < 1. For any given A(1) ∈ A{1} of the form

A(1) = A† +A†AZ(Im −AA†) + (In −A†A)Z, Z ∈ Cn×m,

let B
(1)
m be as in Theorem 2.1. Then

∥B(1)
m −A(1)∥ ≤ ∥A†∥2

(
∥PBE∥2∥A† + (In −A†AZ)∥+

∥P⊥
A EPB∗∥2∥A†AZ(Im −AA†)∥

)
+O(∥E∥2∥E∥).(3.1)

Proof. It follows from Lemma 1.2, (2.1), B† = B†BB† and B = A+ E, that∥∥∥B(1)
m −A(1)

∥∥∥ =
∥∥∥B† −B†BA(1)BB†

∥∥∥ =
∥∥∥B†B

(
B† −A(1)

)
BB†

∥∥∥
=

∥∥∥B†B
(
−B†EA† +B†(Im −AA†)−A†AZ(Im −AA†)

−(In −A†A)Z
)
BB†

∥∥∥
≤ ∥B†EA† +B†E(In −A†A)Z∥+ ∥B†(Im −AA†)EB†∥

+∥A†AZ(Im −AA†)EB†∥

≤ ∥B†∥2
(
∥PBE∥2∥A† + (In −A†A)Z∥+ ∥P⊥

A EPB∗∥2∥A†AZ ×

(Im −AA†)∥
)
+ ∥B†∥32∥E∥2∥E∥.

Also from the conditions of this theorem, we observe

∥B†∥2 ≤ ∥A†∥2
1− ∥A†∥2∥E∥2

,

from which the inequality of (3.1) follows. □

Remark 3.2. The bound (3.1) in Theorem 3.1 is reduced to the bound (4.2) in
[17] when the applied unitarily invariant norm is the spectral norm or Frobenius
norm.

Theorem 3.3. Let A ∈ Cm×n and B = D∗
1AD2, where D1 and D2 are re-

spectively m×m and n× n nonsingular matrices. For any given A(1) ∈ A{1}
of the form

A(1) = A† +A†AZ(Im −AA†) + (In −A†A)Z, Z ∈ Cn×m,

let B
(1)
m be as in Theorem 2.1. If max{∥Im −D1∥2, ∥In −D2∥2} < 1, then we

have

∥B(1)
m −A(1)∥ ≤ ∥In − s1D

−1
2 ∥2∥A† + (In −A†A)Z∥

+∥Im − s3D
−1
1 ∥2∥A†AZ(Im −AA†)∥

+
∥Im − s1D1∥2 + ∥Im − s2D

−1
1 ∥2

Φ(D1, D2)
∥A†∥,



2661 Meng

where Φ(D1, D2) = (1−∥Im−D1∥2)(1−∥In−D2∥2) and s1, s2, s3 are arbitrary
complex numbers.

Proof. Since B = D∗
1AD2, we have

(3.2) BD−1
2 = D∗

1A and D−∗
1 B = AD2,

where D−∗
1 denotes the inverse of the conjugate transpose of D1. It follows

from Lemma 1.2 and (3.2) that for any complex numbers s1, s2 and s3

B† −B†BA(1)BB†

= B†B
(
B†AA† −B†BA† +B†(Im −AA†)−A†AZ(Im −AA†)

−(In −A†A)Z
)
BB†

= B†B
(
B†(Im − s1D

∗
1)AA

† −B†B(In − s1D
−1
2 )A† +B†(Im −AA†)×

(Im − s2D
−∗
1 )−A†AZ(Im −AA†)(Im − s3D

−∗
1 )− (In − s1D

−1
2 )×

(In −A†A)Z
)
BB†.

Now, combining the above equality with (2.1), we get

∥B(1)
m −A(1)∥ = ∥B† −B†BA(1)BB†∥

≤
(
∥Im − s1D

∗
1∥2 + ∥Im − s2D

−∗
1 ∥2

)
∥B†∥

+∥In − s1D
−1
2 ∥2∥A† + (I −A†A)Z∥(3.3)

+∥Im − s3D
−∗
1 ∥2∥A†AZ(I −AA†)∥.

Using (3.2), it is easy to verify that B† = B†BD−1
2 A†D−∗

1 BB†. If max{∥Im −
D1∥2, ∥In −D2∥2} < 1, then

∥B†∥ ≤ ∥D−1
2 ∥2∥D−1

1 ∥2∥A†∥
= ∥ (In − (In −D2))

−1 ∥2∥[Im − (Im −D1)]
−1∥2∥A†∥

≤ ∥A†∥
Φ(D1, D2)

,

which together with (3.3) complete the proof of this theorem. □

Remark 3.4. Choosing s1 = s2 = s3 = 1, Theorem 3.3 is reduced to [10,
Theorem 5.1] when the applied unitarily invariant norm is the spectral norm
or Frobenius norm.
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