A NOTE ON FINSLER MODULES

M. AMYARI AND A. NIKNAM

ABSTRACT. Let *E* be a full Finsler *B*-module, $\phi : A \longrightarrow B$ a *-isomorphism of *C**-algebras. Define the module action by $ax = \phi(a)x$ and the map $x \mapsto \rho_A(x)$ by $\rho_A(x) = \phi^{-1}(\rho_B(x))$. Then it is straightforward to show that *E* is a full Finsler *A*module. In this paper we shall establish a converse statement to the above.

1. Introduction

Hilbert C^* -modules are significant keys in theory of operator algebras, operator K-theory, group representation theory (via strong Morita equivalence), theory of operator spaces and so on (see [1] and [2]).

Recall that a pre-Hilbert module over a C^* -algebra A is a complex linear space E which is a left A-module (and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C, a \in A$ and $x \in E$) equipped with an A-valued inner product $\langle ., . \rangle : E \times E \longrightarrow A$ satisfying :

 $(i) < x, x \ge 0$, and $< x, x \ge 0$ iff x = 0;

 $(ii) < \lambda x + y, z \ge \lambda < x, z \ge + < y, z \ge;$

(iii) < ax, y >= a < x, y >;

 $(iv) < y, x > = < x, y >^*$.

A pre-Hilbert A-module is called a Hilbert A-module or Hilbert C^* module over A, if it is complete with respect to the norm ||x|| =

MSC(2000): 46L08

Keywords: Full Finsler module, Hilbert C^* -module, *-isomorphism of C^* -algebras Received: 23 December 2002, Accepted: 27 September 2003

^{© 2003} Iranian Mathematical Society.

⁷⁷

 $\| < x, x > \|^{\frac{1}{2}}.$

If the linear span of the set $\{\langle x, y \rangle; x, y \in E\}$ is dense in A then E is called full. For example every C^* -algebra A is a full Hilbert A-module whenever we define $\langle x, y \rangle = xy^*$.

Finsler modules over C^* -algebras are generalization of Hilbert C^* -modules. Let A_+ be the positive cone of a C^* -algebra A. Suppose that E is a complex linear space which is a left A-module (and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C, a \in A$ and $x \in E$) equipped with a map $\rho_A : E \to A_+$ such that

(i) The map $\|.\|_E : x \mapsto \|\rho_A(x)\|^{\frac{1}{2}}$ is a norm on E, and

(ii) $\rho_A(ax) = a\rho_A(x)a^*$ for each $a \in A$ and $x \in E$.

Then E is called a pre-Finsler A-module. If $(E, \|.\|_E)$ is complete then E is called a Finsler A-module. This definition is a modification of one introduced by N.C. Phillips and N. Weaver [3]. Indeed it is routine by using an interesting theorem of C. Akemann [3, Theorem 4] to show that the norm completion of a pre-Finsler A-module is a Finsler A-module.

A Finsler A-module is said to be full if the linear span of $\{\rho_A(x); x \in E\}$, denoted by $\langle \rho_A(E) \rangle$, is dense in A.

For example, if E is a (full) Hilbert C^* -module over A then E together with $\rho_A(x) = \langle x, x \rangle$ is a (full) Finsler module because of $\rho_A(ax) = \langle ax, ax \rangle = a \langle x, x \rangle a^* = a\rho_A(x)a^*$. If A has a nontrivial commutative ideal, then there exists a Finsler A-module which can not be regard as a Hilbert A-module, It follows from [3, corollary 18] that if A is a C^* -algebra, then the class of Finsler A-modules equals the class of Hilbert A-modules if and only if A has no nonzero commutative ideals. In particular, this holds if A is simple with dim(A) > 1, approximately divisible, or a von Neumann algebra with no abelian summand.

The following lemmas which are interesting in its own right, will be used in our main result.

Lemma 1.1. Every Finsler A-module is a Banach A-module.

Proof. Suppose *E* is a Finsler *A*-module. *E* is a Banach space by the definition of Finsler module. It remains to show that $||ax||_E \leq$

A Note on Finsler Modules

 $||a|| ||x||_E$ for all $a \in A, x \in E$. For this, note that $||ax||_E^2 = ||\rho_A(ax)|| = ||a\rho_A(x)a^*|| \le ||a||^2 ||\rho_A(x)|| = ||a||^2 ||x||_E^2.\square$

Lemma 1.2. Let E be a full Finsler module over a C^{*}-algebra A and $a \in A$. Then ax = 0 for all $x \in E$ iff a = 0.

Proof. Let $b \in A$ be arbitrary. Since E is full, there exists $\{u_n\}$ in $\langle \rho_A(E) \rangle$ such that $b = \lim_n u_n$. Each u_n is of the form $u_n = \sum_{i=1}^{k_n} \lambda_{i,n} \rho_A(x_{i,n})$ in which $x_{i,n} \in E$ and $\lambda_{i,n} \in C$. Hence

$$aba^* = \lim_{n} au_n a^* = \lim_{n} (a \sum_{i=1}^{k_n} \lambda_{i,n} \rho_A(x_{i,n}) a^*) = \lim_{n} \sum_{i=1}^{k_n} \lambda_{i,n} \rho_A(a x_{i,n}) = 0.$$

Hence for $b = a^*a$, we have $||a||^4 = ||aa^*||^2 = ||aa^*(aa^*)^*|| = 0$. We conclude that $a = 0.\square$

2. Main Theorem

Let E be a (full) Finsler B-module, $\phi : A \longrightarrow B$ is a *-isomorphism of C^* -algebras. Define the module action by $ax = \phi(a)x$ and the map $x \mapsto \rho_A(x)$ by $\rho_A(x) = \phi^{-1}(\rho_B(x))$. Then it is straightforward to show that E is a (full) Finsler A-module. We shall establish a converse statement to the above.

Theorem. Let E be both a full Finsler A-module and a full Finsler B-module such that $\|\rho_A(x)\| = \|\rho_B(x)\|$ for each $x \in E$, and let $\phi : A \to B$ be a map such that $ax = \phi(a)x$ and $\phi(\rho_A(x)) = \rho_B(x)$, where $x \in E, a \in A$. Then ϕ is an *-isomorphism of C*algebras.

Proof. Assume $\{a_n\}$ is a sequence in A such that $a_n \to 0$ and $\phi(a_n) \to b$. By lemma 1.1 $a_n x \to 0$ and $\phi(a_n) x \to b x$. By the definition of module action, $\phi(a_n) x \to 0$. Hence bx = 0. Applying the lemma 1.2, b = 0. It follows from closed graph theorem that ϕ is continuous.

Since $(\phi(a+b) - \phi(a) - \phi(b))x = ((a+b)x - ax - bx) = 0$, by

lemma 1.2 $\phi(a + b) = \phi(a) + \phi(b)$. Similarly, $\phi(\lambda a) = \lambda \phi(a)$ and $\phi(ab) = \phi(a)\phi(b)$. Therefore ϕ is a homomorphism.

If $a \in A$, then we may assume that $a = \lim_{n} u_n$, Each u_n is of the

form $u_n = \sum_{i=1}^{k_n} \lambda_{i,n} \rho_A(x_{i,n})$ where $x_{i,n} \in E$ and $\lambda_{i,n} \in \mathcal{C}$. Hence

$$\phi(a^*) = \lim_{n} \phi(u_n^*) = \lim_{n} \sum_{i=1}^{k} \lambda_{i,n} \phi(\rho_A(x_{i,n})) = \lim_{n} \sum_{i=1}^{k} \lambda_{i,n} \rho_B(x_{i,n}) = \sum_{i=1}^{k} \lambda_{i,n} \rho_B(x_{i,n})$$

 $(\lim_{n}\sum_{i=1}\lambda_{i,n}\rho_B(x_{i,n}))^* = (\phi(a))^*$. Then ϕ is a *-homomorphism. If $\phi(a) = 0$, then $ax = \phi(a)x = 0$ for all $x \in E$. Hence a = 0. ϕ is therefore one to one.

Given $b \in B$ and $\epsilon > 0$. Since E is a full Finsler B-module, there is $\{x_i\}_{1 \le i \le n}$ in E such that $\|b - \sum_{i=1}^n \lambda_i \rho_B(x_i)\| < \epsilon$, hence $\|b - \phi(\sum_{i=1}^n \lambda_i \rho_A(x_i))\| < \epsilon$.

Therefore ϕ has a dense range. But ϕ is a *-homomorphism from A into B, so that its range is closed. ϕ is therefore surjective. Thus ϕ is a *-isomorphism. \Box

Remark. We could not drop the condition of fullness. For instance, let B = C([0, 1]) and $A = E = \{f \in B; f(0) = 0\}$. Then Eis a full Finsler A-module with respect to $\rho_A(f) = |f|^2$, and E is a Finsler B-module with respect to $\rho_B(f) = |f|^2$. It is clear that E is not a full Finsler B-module. In addition the inclusion map $\phi: A \longrightarrow B$ satisfies $a.f = \phi(a).f$ and $\phi(\rho_A(f)) = \rho_B(f)$, whereas ϕ is not surjective.(thus is not isomorphism).

Acknowledgment

The authors would like to thank the referees for their useful comments.

References

- E. C. Lance, *Hilbert C^{*}-modules*, LMS Lecture Note Series 210, Cambridge University Press, 1995.
- [2] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182 (1973), 443-468.
- [3] N. C. Phillips and N. Weaver, Modules with norms which take values in a C*-algebra, Pacific J. of Maths vol. 185, no. 1(1998), 163-181.
- [4] N. E. Wegge-Olsen, K-theory and C^{*}-algebras, OUP, 1993.

M. Amyari

Department of Mathematics Is. Azad Univ. Rahnamaei Ave. Mashhad 91735 Iran e-mail:amyari@mshdiau.ac.ir

A. Niknam Department of Mathematics Ferdowsi Univ. P. O. Box 1159 Mashhad 91775 e-mail:niknam@math.um.ac.ir