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APPROXIMATING INITIAL-VALUE PROBLEMS WITH
TWO-POINT BOUNDARY-VALUE PROBLEMS:

BBM-EQUATION

J. L. BONA, H. CHEN*, S.-M. SUN AND B.-Y. ZHANG

Communicated by Samad Hedayat

Abstract. The focus of the present study is the BBM equation
which models unidirectional propagation of small amplitude, long
waves in dispersive media. This evolution equation has been used
in both laboratory and field studies of water waves. The princi-
pal new result is an exact theory of convergence of the two-point
boundary-value problem to the initial-value problem posed on an
infinite stretch of the medium of propagation. In addition to their
intrinsic interest, our results provide justification for the use of
the two-point boundary-value problem in numerical studies of the
initial-value problem posed on the entire line.

1. Introduction

Considered here are small amplitude, long waves on the surface of an
ideal fluid of finite depth over a featureless, horizontal bottom under the
force of gravity. When such wave motion is long crested, it may propa-
gate essentially in, say, the x-direction and without significant variation
in the y-direction of a standard xyz-Cartesian frame in which gravity
acts in the negative z-direction. Waves approaching a beach and in
canals often have this long-crested structure. For such waves, the full
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three-dimensional Euler equations can be reduced to approximate mod-
els featuring only one independent spatial variable. Such models go back
to at least the early part of the 19th century and are included in works
by Airy (1845) and Stokes (1847) in the first half of the century. The
model featured in the present study has its roots in the work of Boussi-
nesq (1871, 1872 and 1877) and later, Korteweg and de Vries (1895).
More detailed historical accounts and derivations can be found in recent
modern works (see e.g., the references in Bona et al., 2002 and 2004) and
the wide-ranging historical discussions of Craik (2003, 2004 and 2005).

It seems worthwhile to embark on a slightly extended discussion of
the context before entering exact theory. For describing the issue at
hand, it sufficeis to remind the reader that if x denotes the coordinate
in the direction of propagation and h0 the undisturbed depth, assumed
constant in the present study, then the crucial dependent variable is
η(x, t) = h(x, t)−h0, where t is proportional to elapsed time and h(x, t)
is the depth of the water column over the spatial point x at time t.
It is assumed that the waves propagate in the direction of increasing
values of x, that the amplitude a of the waves is small compared to the
undisturbed depth h0, that typical wavelengths λ of the motion are long
compared to h0, so that

α =
a

h0
<< 1 and β =

h0

λ
<< 1,

and that the Stokes number

(1.1) S =
α

β2
=

aλ2

h3
0

is of order one. The latter presumption implies a balance is struck
between nonlinear and dispersive effects. Under these assumptions, the
evolution equations

(1.2) ηt +
√

gh0

(
ηx +

3
2h0

ηηx +
h2

0

6
ηxxx

)
= 0

and

(1.3) ηt +
√

gh0

(
ηx +

3
2h0

ηηx −
h2

0

6
ηxxt

)
= 0

are formal reductions of the two-dimensional Euler equations. Here, g is
the gravity constant and subscripts connote partial differentiations. If x
is scaled by λ, η by a and time by

√
h0/g, these take the non-dimensional
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forms

(1.4) ηt + ηx +
3
2
αηηx +

1
6
β2ηxxx = 0

and

(1.5) ηt + ηx +
3
2
αηηx −

1
6
β2ηxxt = 0.

In these variables, η, x and t are non-dimensional, but scaled so that η
and its first few partial derivatives are of order one. A further numerical
rescaling yields the familiar equations

(1.6) ηt + ηx + ηηx + ηxxx = 0

and

(1.7) ηt + ηx + ηηx − ηxxt = 0.

Equations (1.2) and (1.6) are the classical Korteweg-de Vries (1895)
equation first derived by Boussinesq (1877), while (1.3) and (1.7) are
the regularized long wave or BBM equation written by Peregrine (1967)
in his study of bore propagation and first analyzed by Benjamin et al.
(1972). In (1.6) and (1.7), up to numerical factors, all lengths are scaled
by h0. This amounts to taking h0 = 1 in (1.2) and (1.3) and scaling
time appropriately. Thus, equations (1.6) and (1.7) are nondimensional,
but the small amplitude, long wavelength assumptions reside implicitly
in η, and hence should be explicit in the auxiliary data attached to the
evolution equation if physically relevant solutions are to be considered.
Once η = η(x, t) is determined from equation (1.4) or (1.5), say, then
the horizontal velocity u(x, y, t) in the x-direction at height y above the
bottom is determined, at this level of approximation, by the formulas

u(x, y, t) = η(x, t)− 1
4
αη2(x, t) +

1
3
β2

(
1− 3

2
y2

)
ηxx(x, t),

(see the derivation in Bona and Chen’s unpublished lecture note, or the
formulas in Bona et al., 2002 and 2004, and Bona et al., 2005). The
vertical velocity field is of order O(β4), of course.

Attention is turned to the just mentioned auxiliary data. It is stan-
dard in mathematical studies of these equations to focus upon the pure
initial-value problem in which η is specified for all the relevant values of
x at a given instant of time t, normally taken to be t = 0. That is, the
wave profile

(1.8) η(x, 0) = f(x) for x ∈ R



4 Bona, Chen, Sun and Zhang

is specified for all values of x. Thus, values of t > 0 represent time
elapsed since the inception of the motion as described by (1.8). Of
course, if one wishes to be more explicit about the small amplitude, long
wavelength assumption, then f can be taken in the form f(x) = αF (βx),
where F is independent of α and β. The formulations (1.6)-(1.8) and
(1.7)-(1.8) do not inquire as to how the motion was truly initiated, but
imagine a snapshot taken of a disturbance already generated and then
uses (1.6) or (1.7) to predict the further evolution of the waves. The
initial-value problems (1.6)-(1.8) and (1.7)-(1.8) have a distinguished
history both analytically and in experimental studies and applications,
some of which will be discussed presently. It deserves remark that while
19th century derivations of equations like (1.2) and (1.3) were purely
formal, exact theory has recently appeared showing that, in fact, these
equations provide faithful approximations of both Boussinesq systems,
which allow for two-way propagation of the disturbances (see Alazman
et al., 2006) and of the full, two-dimensional Euler equations for free
surface flow (see Bona et al., 2005) on the relevant time scales.

Another natural formulation for both (1.6) and (1.7) is the quarter-
plane or half-line problem. This problem, first put forward by Bona and
Bryant (1973), is concerned with waves propagating into an undisturbed
stretch of the medium of propagation. One imagines measuring the
waves as they come into the relevant portion of the medium at some
fixed spatial point, say x = 0, as was done in the experimental study of
Bona et al. (1981 and 1985). This leads to the boundary condition

(1.9) η(0, t) = g(t) for t ≥ 0.

As in (1.8), if one wishes to make the small amplitude, long wavelength
presumption apparent, one might take g(t) = αG(βt), where G is inde-
pendent of α and β. Since both (1.6) and (1.7) are written to describe
waves propagating in the positive direction along the x-axis, it is not
particularly desirable to impose a boundary condition at a finite point
to the right of x = 0. To do so can lead to reflected waves which nei-
ther (1.6) nor (1.7) is capable of approximating accurately. This point
leads one to pose the problem for all x ≥ 0, and thus placing the is-
sue of a boundary condition at the right-hand end-point at +∞. The
equations (1.6) or (1.7) along with the boundary condition (1.9) must
be supplemented by an initial condition as in (1.8), viz.

(1.10) η(x, 0) = f(x) for x ≥ 0.
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In practice, it is often the case that f ≡ 0, corresponding to an initially
undisturbed medium, but the mathematical theory does not require this.
Function class restrictions on f which imply at least a weak form of
boundedness as x → +∞ suffice to guarantee that (1.6)-(1.9)-(1.10) and
(1.7)-(1.9)-(1.10) constitute well-posed problems (see Bona et al., 2005
and 2007 and Bona et al., 2003, 2006 and the references therein).

The initial-boundary-value problems (1.6)-(1.9)-(1.10) and (1.7)-(1.9)-
(1.10), sometimes in a modified form that includes some kind of dissi-
pation, have been used to test the predictive power of (1.6) and (1.7) in
laboratory settings (see, for example, Hammack, 1973, Hammack and
Segur, 1974 and Bona et al., 1981). However, when comparison between
experimentally produced waves are made with model predictions, one
often has to resort to numerical approximation of its solution. For this,
a bounded domain is normally used, though there is theory for numerical
schemes approximating the initial-boundary-value problem (1.7)-(1.9)-
(1.10) set on the half line (see e.g., Guo and Shen, 2000). There is also
available analytical theory for the two-point boundary value problem
wherein (1.6) or (1.7) is posed on a finite spatial interval with an initial
condition and suitable boundary conditions. In the case of (1.7), this
was first developed by Bona and Dougalis (1980) who showed that (1.7)
is globally well posed with the auxiliary specifications

η(x, 0) = f(x), for 0 ≤ x ≤ L,

η(0, t) = g(t), η(L, t) = h(t), for t ≥ 0,(1.11)

when f , g and h are suitably restricted. In the comparisons with ex-
periments mentioned above, f and h are taken to be zero and both the
experiments and the numerical simulations are only carried out on a time
interval during which there is no appreciable motion at the right-hand
end of the domain of propagation. (In the experiments, the waves were
generated by a flap-type wavemaker and the boundary data g in (1.9)
was determined by measurement.) Numerical schemes for this problem
were put forward and tested in Bona, Pritchard and Scott (1985). More
recent work appears in Bona and Chen (1998). Theory based directly
on the motion of the wavemaker rather than on an auxiliary measure-
ment has recently been developed by Rosier (2004) and by Bona and
Varlamov (2005).

Study of the KdV-equation posed on a finite interval began with the
work of Bubnov (1979). A review may be found in the recent paper of
Bona, Sun and Zhang (2003). For the Korteweg-de Vries equation (1.6),
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well-posdness holds for the auxiliary specifications

η(x, 0) = f(x), for 0 ≤ x ≤ L,

η(0, t) = g(t), η(L, t) = h(t), ηx(L, t) = r(t), for t ≥ 0,
(1.12)

where f , g, h and r are drawn from reasonable function classes. It is
also the case that the problem (1.6) posed with

η(x, 0) = f(x), for 0 ≤ x ≤ L,

η(0, t) = g(t), ηx(L, t) = h(t), ηxx(L, t) = r(t), for t ≥ 0
(1.13)

is well posed in Sobolev classes as Colin and Ghidaglia (2001) showed.
A natural question arises within the circle of ideas just reviewed.

What is the relationship between the two-point boundary value problems
for (1.6) or (1.7) and the quarter-plane problem for the same equations?
It has been assumed, in using a finite interval for numerical simulations,
that these problems yield essentially the same answer in the appropriate
part of space-time, if h ≡ 0 (and r ≡ 0 in the case of (1.6)). Bona et al.
(2005 and 2007) recently have answered this question. For the reader’s
convenience, their results are stated here in a rough form.

Theorem 1.1. Let u∞ = u∞(x, t) be the solution of the BBM-equation
(1.7) posed for x, t ≥ 0 with zero initial condition and the boundary
condition described in (1.9) and let uL = uL(x, t) be the solution of the
two-point boundary-value problem for the BBM-equation (1.7) posed for
0 ≤ x ≤ L and t ≥ 0 with zero initial condition and the boundary
condition described in (1.11) with h ≡ 0 and g a continuous function
satisfying the compatibility condition g(0) = 0. Then, for any λ ∈ (0, 1),
there is a positive increasing function c(t) dependent on λ which is of
the order of

∫ t
0 |g(s)| ds,

∫ t
0 g2(s) ds, g(t) and h(t) such that

‖u∞(·, t)− uL(·, t)‖H1[0,L] ≤ e−λL+c(t).

Theorem 1.2. Let u∞ = u∞(x, t) be the solution of the KdV equation
(1.6) posed for x, t ≥ 0 with zero initial condition and the boundary
condition u∞(0, t) = g(t) ∈ Hs[0, T ] for any s > 2

3 . Let uL(x, t) be the
solution of the KdV-equation (1.6) posed for 0 ≤ x ≤ L and t ≥ 0 with
the initial condition and boundary condition described in (1.12), where
f = h = r ≡ 0. Assume that the compatibility condition g(0) = f(0) = 0
is satisfied. Then, u∞(x, t) and uL(x, t) exist for t ∈ [0, T ], and for any
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b > 0, the inequality

sup
t∈[0,T ]

‖u∞(·, t)− uL(·, t)‖H1[0,L] ≤ Ce−bL ,

holds, where C only depends on the norm of the boundary data g and on
T in the form eγT . The constant γ, which is dependent on b, the norm
of g, is of order one.

Following the same perspective, our purpose here is to bring forward
exact theory comparing the pure initial-value problem with the two-
point boundary-value problems in view. While this problem is not rele-
vant to experiments as described above, it is directly applicable to many
numerical simulations of initial-value problems posed on all of the real
line R. Such simulations invariably rely upon computations made on
a bounded interval with either homogeneous Dirichlet boundary condi-
tions or periodic boundary conditions. The present paper deals with the
BBM-equation (1.7), as the title suggests.

The plan of the paper is as follows. In Section 2, existing theory is
briefly reviewed and then extended in a way that is useful for the present
goals. Similar theory is worked out for the two-point boundary value
problem in Section 3, while the main comparison results are derived in
Section 4.

To give the study focus, the main result is here stated informally.
Detailed assumptions can be found spelled out in Section 4.

Theorem 1.3. Let u∞ = u∞(x, t) be the solution of the BBM-equation
(1.7) posed for x ∈ R and t ≥ 0 with initial condition (1.8) which lies in
H1(R) and decays to zero exponentially as x → ±∞. Let uL = uL(x, t)
be the solution of the two-point boundary-value problem for the BBM-
equation (1.7) posed for −L ≤ x ≤ R and t ≥ 0 with the same initial
data f, but restricted to [−L,R], and with the boundary specifications
v(−L, t) = g(t) and v(R, t) = h(t), where g and h are required to be
sufficiently small (for details, see Corollary 4.2). Then, for some λ ∈
(0, 1) there is a positive increasing function c1(t) dependent on the values
of λ, ‖f‖H1(R), and

∫ t
0 (|g(s)|+ |h(s)|+ g2(s) + h2(s)) ds such that

‖u∞(·, t)− uL(·, t)‖H1
LR
≤ c1(t)e−λ min{L,R}+c2t,
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where the constant c2 is of order (4 +
√

2‖f‖H1(R))/(4(1− λ2)) and

H1
LR = {f, f ′ ∈ L2(−L,R)} with the norm ‖f‖H1

LR
=

{∫ R
−L

(
f2(x) +

(f ′(x))2
)

dx
} 1

2
.

2. The pure initial-value problem

Notation
For the reader’s convenience, we commence by collecting together the

main notation to be used throughout. The positive real axis [0,∞) is de-
noted by R+. Through this paper, I is used to denote the interval [0, T ]
if T is finite and [0,∞) if T = ∞. The class C(I) is the continuous func-
tions defined on I, Cb(I) is the subset of C(I) consisting of all bounded
continuous functions on I, while C0(R+) is the subset of bounded and
continuous functions that vanish at +∞. For p ≥ 1, Lp = Lp(R) is the
Lebesgue space with its usual norm; the notation | · |p = ‖ · ‖Lp will
be followed throughout. The norm on Cb(R+) and C0(R) is | · |∞. For
any real number s, Hs = Hs(R) is the usual L2–based Sobolev space
with its norm abbreviated by ‖f‖s = ‖f‖Hs and Hs

Ω = Hs(Ω), where
Ω is a subset of R, with its usual quotient norm denoted by ‖f‖Hs

Ω
. If

L,R > 0 and Ω is the interval [−L,R], and Hs
Ω is also denoted by Hs

LR.
If J is an interval in R and is X a Banach space, then C(J ;X) consists
of all continuous functions defined on J with images in X and Cb(J ;X)
is the subspace of functions f ∈ C(J ;X) such that supt∈J ‖f(t)‖X < ∞.
If j ≥ 1 is an integer, then Cj(J ;X) is the subset of C(J ;X) whose
functions are j-times differentiable with respect to the variable t. These
spaces carry their usual norms.

Considered now is the pure initial-value problem

(2.1)
ut + ux + uux − uxxt = 0, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R,

}
for the BBM-equation. Write the BBM-equation as

ut − uxxt = −ux − uux,

and formally solve for ut (see Benjamin et al., 1972) to obtain:

(2.2) ut(x, t) = −
∫ ∞

−∞
P (x, y)

(
uy(y, t) + u(y, t)uy(y, t)

)
dy,
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where,

(2.3) P (x, y) =
1
2
e−|x−y|.

Since limy→±∞ P (x, y) = 0, a formal integration by parts on the right-
hand side of (2.2) yields

(2.4) ut(x, t) =
∫ ∞

−∞
K(x, y)

(
u(y, t) +

1
2
u2(y, t)

)
dy

where,

(2.5) K(x, y) =
1
2

sgn(x− y)e−|x−y|.

Integrating with respect to the temporal variable over [0, t], one thus
obtains the integral equation

(2.6) u(x, t) = ϕ(x) +
∫ t

0

∫ ∞

−∞
K(x, y)

(
u(y, s) +

1
2
u2(y, s)

)
dy ds.

Theorem 2.1. (Benjamin et al., 1972, and Bona and Tzvetkov, 2008)
If the initial data ϕ lies in Hk for some k ≥ 0, then the Cauchy problem
(2.1) for the BBM-equation is globally well-posed in Hk in the sense
that there is a unique solution u in C(R+,S ′) that necessarily lies in
C(R+;Hk), and which depends continuously in C(R+;Hk) on ϕ ∈ Hk.
If ϕ also lies in Cm(R) for some m ≥ 1, then the solution u is a classical
solution. Moreover, ∂i

tu ∈ C(R+;Hk+1) for i ≥ 1.

Remark: If u ∈ C(R+;H1) solves (2.1), then its H1-norm is indepen-
dent of time t ≥ 0. That is,

‖u(·, t)‖2
1 = ‖ϕ‖2

1 =
∫

R

(
ϕ2(x) + (ϕ′(x))2

)
dx.

This implies that u is bounded and continuous; in fact,

|u(·, t)|∞ ≤ 1√
2
‖ϕ‖1.

Theorem 2.2. Suppose ϕ ∈ H1 and there is λ ∈ (0, 1) such that
eλ|x|ϕ(x) is uniformly bounded on R. Then, the solution u of (2.1) sat-
isfies

(2.7) |u(x, t)| ≤ γ exp
{
−λ|x|+ 4 +

√
2‖ϕ‖1

4(1− λ2)
t
}
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and

(2.8) |ut(x, t)| ≤ 4 +
√

2‖ϕ‖1

4(1− λ2)
γ exp

{
−λ|x|+ 4 +

√
2‖ϕ‖1

4(1− λ2)
t
}

for all (x, t) ∈ R× R+, where,

(2.9) γ = sup
x∈R

{eλ|x||ϕ(x)|}.

Proof. Write u(x, t) = e−λ|x|U(x, t), so that u2(x, t) = e−λ|x|u(x, t)U(x, t).
The integral equation (2.6) is equivalent to

U(x, t)=eλ|x|ϕ(x)+
∫ t

0

∫ ∞

−∞
eλ|x|−λ|y|K(x, y)

(
U(y, s)+

1
2
u(y, s)U(y, s)

)
dyds.

For x > 0, divide R into three subintervals, (−∞, 0], (0, x] and (x,∞),
and make estimates as follows:∣∣∣U(x, t)

∣∣∣ ≤ eλx|ϕ(x)|

+
1
2

∫ t

0

∫ 0

−∞
e−(x−y)+λ(x+y)

∣∣∣U(y, s) +
1
2
u(y, s)U(y, s)

∣∣∣ dy ds

+
1
2

∫ t

0

∫ x

0
e−(x−y)+λ(x−y)

∣∣∣U(y, s) +
1
2
u(y, s)U(y, s)

∣∣∣ dy ds

+
1
2

∫ t

0

∫ ∞

x
ex−y+λ(x−y)

∣∣∣U(y, s) +
1
2
u(y, s)U(y, s)

∣∣∣ dy ds

≤ eλx|ϕ(x)|

+
1
2

∫ t

0

∫ 0

−∞
e−(x−y)+λ(x+y) dy

∣∣∣U(·, s) +
1
2
u(·, s)U(·, s)

∣∣∣
∞

ds

+
1
2

∫ t

0

∫ x

0
e−(x−y)+λ(x−y) dy

∣∣∣U(·, s) +
1
2
u(·, s)U(·, s)

∣∣∣
∞

ds

+
1
2

∫ t

0

∫ ∞

x
ex−y+λ(x−y) dy

∣∣∣U(·, s) +
1
2
u(·, s)U(·, s)

∣∣∣
∞

ds.
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Direct calculation reveals:∣∣∣U(x, t)
∣∣∣ ≤ eλx|ϕ(x)|

+
∫ t

0

( 1
1− λ2

− λe−(1−λ)x

1− λ2

)∣∣∣U(·, s) +
1
2
u(·, s)U(·, s)

∣∣∣
∞

ds

≤ eλx|ϕ(x)|+ 1
1− λ2

∫ t

0

∣∣∣U(·, s) +
1
2
u(·, s)U(·, s)

∣∣∣
∞

ds.

Since the H1-norm of the solution u of (2.1) is constant and |u(·, t)|∞ ≤√
2

2 ‖ϕ(·, t)‖1, it transpires that for x ≥ 0,∣∣∣U(x, t)
∣∣∣ ≤ eλx|ϕ(x)|+ 4 +

√
2‖ϕ‖1

4(1− λ2)

∫ t

0

∣∣∣U(·, s)
∣∣∣
∞

ds.

Similarly, it can be shown that for x < 0,∣∣∣U(x, t)
∣∣∣ ≤ e−λx|ϕ(x)|+ 4 +

√
2‖ϕ‖1

4(1− λ2)

∫ t

0

∣∣∣U(·, s)
∣∣∣
∞

ds.

In consequence, for all x ∈ R and t ≥ 0,∣∣∣U(x, t)
∣∣∣ ≤ eλ|x||ϕ(x)|+ 4 +

√
2‖ϕ‖1

4(1− λ2)

∫ t

0

∣∣∣U(·, s)
∣∣∣
∞

ds.

Taking the supremum with respect to x over R of both sides of this
latter inequality yields:∣∣∣U(·, t)

∣∣∣
∞
≤ γ +

4 +
√

2‖ϕ‖1

4(1− λ2)

∫ t

0

∣∣∣U(·, s)
∣∣∣
∞

ds.

Applying Gronwall’s Lemma to the last inequality leads to the estimate

(2.10)
∣∣∣U(·, t)

∣∣∣
∞
≤ γ exp

{4 +
√

2‖ϕ‖1

4(1− λ2)
t
}

.

Because U(x, t) = eλ|x|u(x, t), it follows that

|u(x, t)| ≤ e−λ|x||U(·, t)
∣∣∣
∞
≤ γ exp

{
− λ|x|+ 4 +

√
2‖ϕ‖1

4(1− λ2)
t
}

.

Since

Ut(x, t) =
∫ ∞

−∞
eλ|x|−λ|y|K(x, y)

(
U(y, t) +

1
2
u(y, t)U(y, t)

)
dy,
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the bound (2.10) implies that

|Ut(x, t)| ≤ 4 +
√

2‖ϕ‖1

4(1− λ2)
γ exp

{4 +
√

2‖ϕ‖1

4(1− λ2)
t
}

,

and thus

|ut(x, t)| ≤ 4 +
√

2‖ϕ‖1

4(1− λ2)
γ exp

{
− λ|x|+ 4 +

√
2‖ϕ‖1

4(1− λ2)
t
}

.

Hence, the theorem is established.

Corollary 2.3. If ϕ ∈ Hk
⋂

Ck for some k ≥ 1 and there is a λ ∈ (0, 1)
such that eλ|x|ϕ(j)(x) is uniformly bounded for j = 1, · · · , k, then

eλ|x|∂j
xu(x, t) and eλ|x|∂j

xut(x, t)

are bounded uniformly for x ∈ R and t in any compact subset of R+

Proof. Taking the derivative with respect to x on both sides of (2.6),
there appears the formula

ux(x, t) = ϕ′(x)+
∫ t

0

(
u(x, s) +

1
2
u2(x, s)

)
ds

− 1
2

∫ t

0

∫ ∞

−∞
e−|x−y|

(
u(y, s) +

1
2
u2(y, s)

)
dy ds.

(2.11)

Taking the t-derivative of (2.11) gives

utx(x, t) =u(x, t) +
1
2
u2(x, t)

− 1
2

∫ ∞

−∞
e−|x−y|

(
u(y, t) +

1
2
u2(y, t)

)
dy.

(2.12)
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Inequality (2.7) then yields:

eλ|x||ux(x, t)| ≤eλ|x||ϕ′(x)|+
∫ t

0
γ(s)

(
1 +

1
2
|u(·, s)|∞

)
ds

+
1
2
eλ|x|

∫ t

0
γ(s)

∫ ∞

−∞
e−|x−y|e−λ|y|

(
1 +

1
2
|u(·, s)|∞

)
dy ds

≤eλ|x||ϕ′(x)|+
∫ t

0
γ(s) ds

(
1 +

√
2

4
‖ϕ‖1

)
+

1
2

∫ ∞

−∞
e−|x−y|eλ|x|−λ|y| dy

∫ t

0
γ(s) ds

(
1 +

√
2

4
‖ϕ‖1

)
,

where γ(t) = γ exp{(4+
√

2‖ϕ‖1)/(4(1−λ2)) t}. Elementary calculations
reveal:∫ ∞

−∞
e−|x−y|eλ|x|−λ|y| dy =

2
1− λ2

− 2λ

1− λ2
e−(1−λ|x|) ≤ 2

1− λ2
.

In consequence,

eλ|x||ux(x, t)| ≤eλ|x||ϕ′(x)|+ γ(2− λ2) exp
{4 +

√
2‖ϕ‖1

4(1− λ2)
t
}

,

and so eλ|x||ux(x, t)| is uniformly bounded on R× [0, T ] for any T finite.
Similarly, one sees that

eλ|x|utx(x, t)

is uniformly bounded on R× [0, T ] for any T < +∞. Note that

uxx(x, t) = ϕ′′(x) + u(x, t)− ϕ(x) +
∫ t

0
(ux(x, t) + u(x, t)ux(x, s)) ds

and

uxxt(x, t) = ut(x, t) + ux(x, t) + u(x, t)ux(x, t).

It immediately follows that

eλ|x|uxx(x, t) and eλ|x|uxxt(x, t)

are bounded uniformly on x ∈ R and t on a compact subset of R+. The
proof of the corollary finishes with a straightforward induction.
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3. The two-point boundary-value problem

Considered in this section is the two-point boundary-value problem

(3.1)

vt + vx + vvx − vxxt = 0, −L ≤ x ≤ R, t > 0,

v(−L, t) = g(t), v(R, t) = h(t), t ≥ 0,

v(x, 0) = ϕ(x), −L ≤ x ≤ R,


where L,R > 0, together with the compatibility conditions

(3.2) g(0) = ϕ(−L), h(0) = ϕ(R).

The main result is the following.

Theorem 3.1. If ϕ ∈ H1
LR and g, h ∈ C(I) satisfy the compatibility

condition (3.2), then there is a unique distributional solution v of (3.1)
which lies in the space C(I;H1

LR). The solution v depends continuously
on ϕ, g and h. If ϕ ∈ H1

LR

⋂
C1([−L,R]) and g, h ∈ Ck(I) for some

k ≥ 1, then v satisfies (3.1) in the classical sense on [−L,R]× I.

This theorem is a consequence of the last corollary in this section. Its
proof is the object of the rest of the section.

Solving for vt in (3.1), as in Bona and Dougalis (1980), leads to:
(3.3)

vt(x, t)=g′(t)φ1(x)+h′(t)φ2(x)−
∫ R

−L
PLR(x, y)

(
vy(y, t)+v(y, t)vy(y, t)

)
dy,

where,

(3.4) φ1(x) =
eR−x − e−R+x

eL+R − e−(R+L)
, φ2(x) =

eL+x − e−L−x

eL+R − e−(L+R)

and
(3.5)

PLR(x, y)=
1

2(e2(R+L)− 1)

(
−e2L+x+y+e|x−y|−e2R−(x+y)+e2(L+R)−|x−y|

)
.

Since PLR(x,−L) = PLR(x,R) = 0, integrating by parts on the right-
hand side of (3.3) yields:
(3.6)

vt(x, t)=g′(t)φ1(x) + h′(t)φ2(x)+
∫ R

−L
KLR(x, y)

(
v(y, t) +

1
2
v2(y, t)

)
dy
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where,

KLR(x, y) =
1

2(e2(L+R) − 1)

(
− e2L+x+y − sgn(x− y)e|x−y| + e2R−(x+y)

+ sgn(x− y)e2(L+R)−|x−y|
)
.

(3.7)

Integrate both sides of (3.6) with respect to the temporal variable t and
use the facts that g(0) = ϕ(−L) and h(0) = ϕ(R) to determine that

v(x, t) =ϕ(x) +
(
g(t)− ϕ(−L)

)
φ1(x) +

(
h(t)− ϕ(R)

)
φ2(x)

+
∫ t

0

∫ R

−L
KLR(x, y)

(
v(y, τ) +

1
2
v2(y, τ)

)
dy dτ.

(3.8)

The following two results are found in Bona and Dougalis (1980).

Theorem 3.2. (Local Existence) If ϕ ∈ C([−L,R]), g, h ∈ C(I) satisfy
the compatibility condition (3.2), then there exists I0 = [0, T0] ⊂ I such
that the integral equation (3.8) has a unique solution v, say, lying in
C([−L,R]× I0). Moreover,

lim
t→0+

v(x, t) = ϕ(x)

in C([−L,R]) and

lim
x→−L+

v(x, t) = g(t) and lim
x→R−

v(x, t) = h(t)

in C(I0). The solution depends continuously in C([−L,R]× I0) on ϕ ∈
C([−L,R]) and g, h ∈ C(I0).

Theorem 3.3. (Regularity) If v ∈ C([−L,R] × I0) is the solution of
the integral equation (3.8), where g, h ∈ C(I0), then the function v is
a distributional solution of the BBM-equation on [−L,R] × I0. If ϕ ∈
Cm([−L,R]) and g, h ∈ Ck(I0) for some m, k ≥ 1, then u comprises a
classical solution of the BBM-equation (3.1) on [−L,R]×I0 and ∂i

t∂
j
xv ∈

C([−L,R]× I0) for 0 ≤ i ≤ k and 0 ≤ j ≤ m.

Introduce an intermediate variable V defined by the formula

(3.9) V (x, t) = v(x, t)−
[
g(t)φ1(x) + h(t)φ2(x)

]
= v(x, t)− µ(x, t)

where,

(3.10) µ(x, t) = g(t)φ1(x) + h(t)φ2(x)
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and φ1 and φ2 are defined in (3.4). Then, V (−L, t) = V (R, t) = 0 for
all t ∈ I and V satisfies the equations
(3.11)

Vt + Vx + V Vx − Vxxt = −
(
µ + µV +

1
2
µ2

)
x
, −L < x < R, t ∈ I0,

V (−L, t) = V (R, t) = 0, t ∈ I0,

V (x, 0) = ϕ(x)− ϕ(−L)φ1(x)− ϕ(R)φ2(x), −L ≤ x ≤ R, t ∈ I0.


To extend the existence time interval from I0 = [0, T0] to I, a standard
energy method is used. Multiply both sides of (3.11) by 2V and integrate
over [−L,R] with respect to x to obtain:

d

dt

∫ R

−L

(
V 2(x, t) + V 2

x (x, t)
)

dx

= −
∫ R

−L
2V (x, t)

(
µ + µV +

1
2
µ2

)
x
dx

≤ |µ(·, t)|∞‖V (·, t)‖2
H1

LR
+ 2‖µ(·, t)‖L2(−L,R)‖V (·, t)|L2(−L,R)

+ |µ(·, t)|∞‖µ(·, t)‖L2(−L,R) ‖Vx(·, t)‖L2(−L,R).

(3.12)

Elementary considerations reveal that

|µ(·, t)|∞ ≤ |g(t)|+ |h(t)|,

‖µ(·, t)‖L2(−L,R) ≤
√

2
2

(|g(t)|+ |h(t)|)

provided that L + R ≥ 1. For t ≥ 0, let c(t) denote the quantity

(3.13) c(t) = |g(t)|+ |h(t)| ≥ |µ(t)|.

Then, (3.12) reduces to:

(3.14)
d

dt
‖V (·, t)‖H1

LR
≤ 1

2
c(t)‖V (·, t)‖H1

LR
+ c(t) + c2(t).

Solving this inequality yields the upper bound

‖V (·, t)‖H1
LR
≤ ‖V (·, 0)‖1 e

1
2

∫ t
0 c(τ) dτ +

∫ t

0

(
c(s) + c2(s)

)
e

1
2

∫ t
s (c(τ) dτ ds

≤ ‖V (·, 0)‖1 e
1
2

∫ t
0 c(τ) dτ +

∫ t

0

(
c(s) + c2(s)

)
ds e

1
2

∫ t
0 c(τ) dτ ,

(3.15)
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where V (x, 0) = ϕ(x)−ϕ(−L)φ1(x)−ϕ(R)φ2(x). Multiply (3.11) by Vt

and integrate over [−L,R] with respect to x to reach the inequality

‖Vt(·, t)‖2
H1

LR
− Vt(−L, t)Vxt(−L, t) + Vt(R, t)Vxt(R, t)

= −
∫ R

−L
Vt

(
V +

1
2
V 2 + µ + µV +

1
2
µ2

)
x
dx

≤ ‖Vxt‖L2(−L,R)‖V +
1
2
V 2 + µ + µV +

1
2
µ2‖L2(−L,R)

≤ ‖Vt(·, t)‖H1
LR
‖V +

1
2
V 2 + µ + µV +

1
2
µ2‖L2(−L,R),

where µ = µ(x, t) is as in (3.10). Note that on [−L,R], µ(x, t) ≤ c(t).
Since KLR(−L, y) = KLR(R, y) = 0 for every y ∈ (−L,R), Vt(−L, t) =
Vt(R, t) = 0 for all t ∈ I, it follows that
(3.16)

‖Vt(·, t)‖H1
LR( ≤

(
1 + c(t)

)
‖V (·, t)‖H1

LR
+

1
2
‖V (·, t)‖2

H1
LR

+ c(t) +
1
2
c2(t).

Applying (3.15) in (3.16) yields an a priori bound on ‖Vt(·, t)‖H1
LR

. The
associated a priori bounds in C(I;H1

LR) allow iteration of the local the-
ory to obtain a solution defined on all of I. The regularity Theorem 3.3
then immediately allows inference of the following result.

Theorem 3.4. The initial-boundary-value problem (3.11) is globally
well-posed in H1

LR if the boundary data g, h lie in C(I) and satisfy the
compatibility condition (3.2). That is, corresponding to such g, h, there
is a unique solution V ∈ C(I;H1

LR). The solution V respects the bounds
in (3.15) and (3.16) and depends continuously on variations of ϕ, g and
h within their function classes. In addition, if g, h ∈ Cb(I)∩L1(I), then
the H1

LR-norm of V is uniformly bounded, viz.

‖V (·, t)‖H1
LR
≤

(
‖V (·, 0)‖H1

LR
+ |g|1 + |h|1 + 2|g|22 + 2|h|22

)
e

1
2
(|g|1+|h|1),

for all t ∈ I.

Corollary 3.5. (Global Well-posedness) The initial-boundary-value prob-
lem (3.8) is globally well-posed if ϕ ∈ H1

LR and g, h ∈ C(I) satisfy the
compatibility condition (3.2). That is, there is a unique solution v of
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(3.8) in C(I;H1
LR) which depends continuously in this class upon varia-

tions of ϕ ∈ H1
LR and g, h in C(I) and respects the inequality

‖v(·, t)‖H1
LR
≤(‖ϕ‖1 + 2|ϕ(−L)|+ 2|ϕ(R)|)e

1
2

∫ t
0 c(τ) dτ

+
∫ t

0

(
c(s) + c2(s)

)
ds e

1
2

∫ t
0 c(τ) dτ

provided L+R is sufficiently large, where c(t) = |g(t)|+|h(t)|. Moreover,
if g, h ∈ Cb(I) ∩ L1(I), then v satisfies the time-independent bound

‖v(·, t)‖H1
LR
≤(

‖ϕ‖1 + 2|ϕ(−L)|+ 2|ϕ(R)|+ |g|1 + |h|1 + 2|g|22 + 2|h|22
)

e
1
2
(|g|1+|h|1).

Theorem 3.1 now follows.

4. Comparison results

Let u be the solution of the pure initial-value problem for the BBM-
equation (2.1). Then, both the traces u(−L, t) and u(R, t) are well de-
fined for any L,R > 0. Let v be the solution of the two-point boundary-
value problem (3.1), where the initial data ϕ is understood as the initial
data in (2.1) restricted to the interval [−L,R] and the boundary data
is, in the first instance, g(t) = u(−L, t) and h(t) = u(R, t). The goal of
this section is to develop estimates of the difference between u and v on
the spatial interval [−L,R].

To begin, introduce a new dependent variable
(4.1)
U(x, t) = u(x, t)− u(−L, t)φ1(x)− u(R, t)φ2(x) = u(x, t)− µLR(x, t)

where,

(4.2) µLR(x, t) = u(−L, t)φ1(x) + u(R, t)φ2(x)

and φ1 and φ2 are defined in (3.4). A simple calculation shows that U
satisfies the initial-boundary-value problem
(4.3)

Ut +Ux +UUx−Uxxt =−
(
µLR+µLRU+

1
2
µ2

LR

)
x
, −L < x < R, t > 0,

U(−L, t) = U(R, t) = 0, t > 0,

U(x, 0) = ϕ(x)− ϕ(−L)φ1(x)− ϕ(R)φ2(x), −L < x < R.


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Because of the theory developed for u, there is a unique classical solution
U of (4.3). The difference between U and V , where V is defined in (3.9)
and is the solution of (3.12), is a useful quantity to understand. Once
this is appropriately bounded, the identity v − u = V − U − (µLR − µ)
allows one to make a further estimate of the desired sort. Denote by W
the difference

(4.4) W = V − U = (v − u) + (µLR − µ).

Then, W is differentiable in both t ∈ I and x ∈ [−L,R] provided that
g, h ∈ C(I) satisfy (3.2). Moreover, W satisfies the initial-boundary-
value problem

(4.5)

Wt+ Wx+ WWx−Wxxt =
(
µLR+µLRU +

1
2
µ2

LR

)
x
−

(
µ+µU+

1
2
µ2

)
x

−
(
(U + µ)W

)
x
, −L < x < R, t > 0,

W (−L, t) = W (R, t) = 0, t ≥ 0,

W (x, 0) = 0, −L ≤ x ≤ R.


Multiply (4.5) by 2W and integrate over [−L,R]; after integrations by
parts, there appears

d

dt

∫ R

−L

(
W 2(x, t) + W 2

x (x, t)
)

dx

= 2
∫ R

−L
(U + µ)WWx dx

+ 2
∫ R

−L
W

(
(µLR − µ) + (µLR − µ)U +

1
2
(µ2

LR − µ2)
)

x
dx,

(4.6)

implying that

d

dt

∫ R

−L

(
W 2(x, t) + W 2

x (x, t)
)

dx ≤ |U(·, t) + µ(·, t)|∞‖W (·, t)‖2
H1

LR

+ 2
∣∣∣1 + U(·, t) +

1
2

(
µLR(·, t) + µ(·, t)

)∣∣∣
∞

∣∣µLR(·, t)− µ(·, t)
∣∣
2

∣∣Wx(·, t)
∣∣
2
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where,

U(x, t)+ µ(x, t) = u(x, t)− µLR(x, t) + µ(x, t)

= u(x, t) +
(
g(t)− u(−L, t)

)
φ1(x) +

(
h(t)− u(R, t)

)
φ2(x).

Notice that
|U(·, t) + µ(·, t)|∞ ≤ 3|u(·, t)|∞ + |g(t)|+ |h(t)|

≤ 3
√

2
2

‖ϕ‖1 + |g(t)|+ |h(t)|,

1+U(x, t) +
1
2

(
µLR(x, t) + µ(x, t)

)
=1 + u(x, t)− µLR(x, t) +

1
2

(
µLR(x, t) + µ(x, t)

)
=1 + u(x, t) +

1
2
[
g(t)− u(−L, t)

]
φ1(x) +

1
2
[
h(t)− u(R, t)

]
φ2(x),

whence, ∣∣∣1 + U(·, t) +
1
2

(
µLR(·, t) + µ(·, t)

)∣∣∣
∞

≤ 1 + 2|u(·, t)|∞ +
1
2
|g(t)|+ 1

2
|h(t)|

≤ 1 +
√

2‖ϕ‖1 +
1
2
|g(t)|+ 1

2
|h(t)|

and

µLR(·, t)− µ(·, t) =
[
u(−L, t)− g(t)

]
φ1(x) +

[
u(R, t)− h(t)

]
φ2(x).

In consequence, assuming that L + R ≥ 1
2 , say, it follows that

‖µLR(·, t)− µ(·, t)‖ ≤
√

2
2

∣∣u(−L, t)− g(t)
∣∣ +

√
2

2

∣∣U(R, t)− h(t)
∣∣.

Define the quantities

(4.7) C(t) =
3
√

2
4
‖ϕ‖1 +

1
2
|g(t)|+ 1

2
|h(t)|,

(4.8) D(t) = 2 + 2
√

2‖ϕ‖1 + |g(t)|+ |h(t)|

and

(4.9) E(t) =
√

2
4

∣∣u(−L, t)− g(t)
∣∣ +

√
2

4

∣∣u(R, t)− h(t)
∣∣.
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With these definitions, the preceding ruminations can be combined to
yield the differential inequality

d

dt
‖W (·, t)‖H1

LR
≤ C(t)‖W (·, t)‖H1

LR
+ D(t)E(t).

Solving this inequality gives:

‖W (·, t)‖H1
LR
≤

∫ t

0
D(s)E(s)e

∫ t
s C(τ) dτ ds

≤
∫ t

0
D(s)E(s) ds exp

{∫ t

0
C(τ) dτ

}
,

(4.10)

and so

‖u(·, t)− v(·, t)‖H1
LR
≤ ‖W (·, t)‖H1

LR
+ ‖µ− µLR‖H1

LR
.

Straightforward calculation reveals:

‖φ1‖2
H1

LR
= ‖φ2‖2

H1
LR

=
eL+R + e−(L+R)

eL+R − e−(L+R)
.

These considerations are used to establish the following result.

Theorem 4.1. Let u be the solution of (2.1) corresponding to a given
ϕ ∈ H1(R). Let v be the solution of (3.1) assuming that g, h ∈ C(I) and
that they satisfy the compatibility condition (3.2). Then, for any t ∈ I,
the difference between u and v satisfies the inequality

‖u(·, t)− v(·, t)‖H1
LR

≤ ‖W (·, t)‖H1
LR

+ ‖µ− µLR‖H1
LR

≤
∫ t

0
D(s)E(s) ds exp

{∫ t

0
C(τ) dτ

}
+

(
|u(−L, t)− g(t)|+ |u(R, t)− h(t)|

){eL+R + e−(L+R)

eL+R − e−(L+R)

} 1
2
,

(4.11)

where C(t), D(t) and E(t) are given in (4.7), (4.8) and (4.9), respec-
tively.

Corollary 4.2. In (2.1), suppose the initial data ϕ ∈ H1(R) and that
for some λ ∈ (0, 1), eλ|x|ϕ(x) is uniformly bounded on R. Consider (3.1),
where the initial data is understood as the restriction of ϕ to [−L,R], and
where it is assumed that L,R > 1

2 . Choose boundary data g(t) ≡ ϕ(−L)
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and h(t) ≡ ϕ(R). Then, there is a constant c1 dependent only on λ, ‖ϕ‖1

and γ = supx∈R eλ|x||ϕ(x)| such that

‖u(·, t)− v(·, t)‖H1
LR
≤ c1e

−λ min{L,R}+c2t

where,

c2 =
4 +

√
2‖ϕ‖1

4(1− λ2)
+ 2‖ϕ‖1.

Corollary 4.3. In the last corollary, if the initial data ϕ has a compact
support and L,R > 0 are chosen sufficiently large so that support of ϕ
is enclosed in (−L,R), then the estimate of the difference between u and
v holds with g(t) ≡ h(t) ≡ 0.

Corollary 4.4. Let ϕ = ϕ(x) ∈ H1(R) decay exponentially as x →
±∞. Suppose g, h ∈ C(I) satisfy the compatibility condition (3.2). View
v(x, t) = vLR(x, t) as function of L and R as well. Then, for any fixed
point (x, t) ∈ R+ × I,

lim
L,R→+∞

vL(x, t) = u(x, t)

where u is the solution of initial value problem (2.1).

The latter convergence is uniform on compact sets. More precisely,
we have the following.

Corollary 4.5. Let ϕ ∈ H1(R) be of order e−λ|x| as x → ±∞, for some
λ ∈ (0, 1). Suppose g, h ∈ C(I) satisfy (3.2). Then, for any ε > 0 and
any finite time interval [0, T0] ⊂ I, if both LandR are chosen greater
than 1

λ ln γ(T0)
ε , then

|u(x, t)− v(x, t)| ≤ ε

uniformly on [−L,R]× [0, T0].
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