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A REPRESENTATION FOR CHARACTERISTIC
FUNCTIONALS OF STABLE RANDOM MEASURES

WITH VALUES IN SAZONOV SPACES

S. MAHMOODI∗ AND A. R. SOLTANI

Communicated by Fraydoun Rezakhanlou

Abstract. We deal with a Sazonov space (X : real separable) val-
ued symmetric α stable random measure Φ with independent in-
crements on the measurable space (Rk,B(Rk)). A pair (k, µ), called
here a control pair, for which k : X × Rk → R+, µ a positive mea-
sure on (Rk,B(Rk)), is introduced. It is proved that the law of Φ is
governed by a control pair; and every control pair will induce such
Φ. Moreover, k is unique for a given µ. Our derivations are based
on the Generalized Bochner Theorem and the Radon- Nikodym
Theorem for vector measures.

1. Introduction

Let X be a real separable Banach space equipped with the norm ‖.‖X ,
on occasion ‖.‖, whenever there is no ambiguity. Also, let (Ω,Σ, P ) be
a probability space. An X -valued random vector X is a measurable
mapping from the probability space (Ω,Σ, P ) into the Banach space X
equipped with its Borel σ-field B(X ) generated by the open subsets in X .
Let X ′ be the topological dual of X ; i.e., the space of all bounded linear
functionals on X . For two Banach spaces X and K, B(X ,K) denotes
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the class of all bounded linear operators on X into K. For any X -valued
random vector X, we denote the characteristic functional of X by

φX(t) =
∫
Ω

eit(X(ω))dP (ω) = EeitX , t ∈ X ′.

An X -valued random vector X is said to be α-stable, 0 < α ≤ 2, if
for any positive number n there exists a vector x in X such that

[φ(t)]n = eit(x)φ(n1/αt), t ∈ X ′,

and X is symmetric if X d= −X. For more on Banach valued stable
random vectors, see Ledoux and Talagrand (1991).

The Levy-Khinchin Spectral Representation Theorem states that an
X -valued random vector X is α-stable, 0 < α ≤ 2, if and only if there
exists a finite measure Γ on S, the unit sphere of X , and an element
µ ∈ X such that the characteristic functional of X can be written as:

φX(t) = exp{−
∫
S

|t(s)|α dΓ(s)− ϕα(Γ, t) + it(µ)}, t ∈ X ′,

where,

ϕα(Γ, t) =


tan(πα/2)

∫
S

|t(s)|α sign(t(s))dΓ(s) α 6= 1,

(2/π)
∫
S

t(s) ln |t(s)| dΓ(s) α = 1.

For 0 < α < 2, this representation is unique and Γ is called the spectral
measure of X [Linde (1983), Theorem 6.3.6].

An X -valued random vector X is symmetric α-stable (SαS), if and
only if for each t ∈ X ′, t(X) is SαS, random variable. If X is SαS then
φX will be real and Γ will be a symmetric measure; moreover,

(1.1) φX(t) = exp{−
∫
S

|t(s)|α Γ(ds)}, t ∈ X ′.

This characterization, on any real separable Hilbert space, was first ob-
tained by Kulbes (1973). Two X -valued α-stable random vectors X
and Y are jointly SαS if and only if every linear combination aX + bY,
a, b ∈ R, is X -valued SαS.

Let L0
X (Ω) denote the set of all X -valued random vectors on the prob-

ability space (Ω,Σ, P ). Also, let (F,F) be a measurable space. A set
function Φ on F into L0

X (Ω) is a stable random measure if
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(I) Φ(Ø) = 0 with probability 1.
(II) For every choice of A1, · · · , An ∈ F , (Φ(A1), ...,Φ(An)) is jointly

α-stable random vector on (Ω,Σ, P ).
(III) Φ is σ-additive, in the sense that for disjoint F-sets A1, A2, · · · ,∑n
j=1 Φ(Aj) converges to Φ

(⋃∞
j=1Aj

)
in probability.

The X -valued α-stable random measure Φ is said to have independent
increments if for every disjoint F-sets A1, A2, ..., An, Φ(A1), ...,Φ(An) are
independent, and is said to be symmetric if for every A ∈ F , Φ(A) is
symmetric.

Let Φ be an X -valued SαS random measure on the measurable space
(Rk,B(Rk)) with independent increments. It follows from (1.1) that the
characteristic functional of Φ(A) is given by

(1.2) φΦ(A)(t) = exp{−
∫

S
|t(s)|αΓΦ(A)(ds)}, t ∈ X ′.

Note that the spectral measure ΓΦ(A) depends on set A. According to
(1.2), the law of Φ is specified by {ΓΦ(A), A ∈ B(Rk)}. This will make
(1.2) less helpful. As the latter class cannot be identified easily, our aim
is to provide a spectral type characterization for Φ. A characterization
for multivariate SαS random measures is given in Soltani and Mahmoodi
(2004).

A Banach space X is said to be a Sazonov space provided that there
exists a vector topology τ on X ′

such that a function φ which maps X ′

into the set of complex numbers is characteristic functional of a Radon
probability measure on X if and only if (1) φ(0) = 1, (2) φ is positive
definite and (3) φ is continuous in the τ topology (Generalized Bochner
Theorem). Such a topology τ is called a Sazonov-topology.

In Section 2, we provide some lemmas and propositions to be used to
prove the main result. A complete metric space γ of symmetric finite
measures is constructed and employed to characterize the law of Φ. In
Section 3, the Radon Nikodym property for the space γ is investigated.
Our representation for characteristic functionals of stable random mea-
sures is given in Section 4.

2. Symmetric measures on the unit spheres

Let us begin with the following propositions which will be needed
through out the article.



30 Mahmoodi and Soltani

Proposition 2.1. Let X and K be two real separable Banach spaces
with norms ‖.‖X and ‖.‖K, respectively. Also, let X be an X -valued
SαS random vector (0 < α < 2), and C be a bounded linear operator
from X into K (C ∈B(X ,K)). Then, CX is a K-valued SαS random
vector with the spectral measure,

(2.1) ΓCX(A) =
∫

T−1(A)
‖Cs‖α

K ΓX(ds),

where, T (s) =
Cs

‖Cs‖K
and A ∈ B(X ).

Proof. The proposition follows by an argument similar to the one given
in Mohammadpour and Soltani (2000) and the uniqueness of spectral
measures on Banach spaces. �

The next proposition follows from Proposition 6.6.2 and Proposition
6.6.5 of Linde (1983).

Proposition 2.2. Let a sequence of X -valued SαS random vectors
{Xn} converges weakly to X. Then, X is also an X -valued SαS random
vector. Also, if {ΓXn} is the sequence of the spectral measures of {Xn},
then {ΓXn} converges weakly to ΓX .

Let Φ be an X -valued SαS random measure with independent incre-
ments on the measurable space (Rk,B(Rk)). Also, let

(2.2) M = sp{Φ(A);A ∈ B(Rk)},
where the closure is in the sense of convergence in probability. The spec-
tral measure of each X ∈ M is denoted by ΓX . Each spectral measure
is symmetric finite measure on the surface of the unit ball S. Let us
define,

(2.3) γ = {ΓX , X ∈M}.
Equip γ with a vector addition ⊕ and a multiplication ⊗ defined by

ΓX ⊕ ΓY = ΓX+Y , a⊗ ΓX = ΓaX ,

where a is a scalar. The space γ is a vector space whose scalar field is the
set of real numbers. The vector addition ⊕ is commutative, associative
and has inverse 	ΓX = Γ−X ; therefore, ΓX 	 ΓX = 0 and ΓX 	 ΓY =
ΓX−Y , X,Y ∈M.
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For each Γ ∈ γ, define,

‖Γ‖
α

= (Γ(S))min{1,1/α}.

Lemma 2.3. For 0 < α < 1, (γ, ‖.‖α) is a metric space; and for 1 ≤
α < 2 it is a normed space.

Proof. Let ΓX ,ΓY ∈ γ. Note that X and Y are jointly X -valued α-
stable random vectors. If S′ is the unit sphere of a Banach space X ×X ,
then by (2.1),

(2.4) (ΓX+Y (S))1/α = (
∫
S′

‖s1 + s2‖α ΓX,Y (ds))1/α,

where s ∈ S′ has the representation s = s1 × s2, such that s1, s2 ∈ X .
By the Minkowski’s inequality, for 1 ≤ α < 2, (2.4) is less than

(
∫

S′
‖s1‖α ΓX,Y (ds))1/α + (

∫
S′
‖s2‖α ΓX,Y (ds))1/α = ‖ΓX‖α + ‖ΓY ‖α .

For 0 < α < 1 use the inequality ‖s1 + s2‖α ≤ ‖s1‖α+‖s2‖α . Therefore,

‖ΓX ⊕ ΓY ‖α ≤ ‖ΓX‖α + ‖ΓY ‖α .

Clearly, d(ΓX ,ΓY ) = ‖ΓX 	 ΓY ‖α = d(ΓY ,ΓX) and d(ΓX ,ΓY ) = 0
imply X = Y with probability 1. Also, we note that ‖c⊗ ΓX‖α =
(
∫
S

|c|α ‖s‖α ΓX(ds))1/α = |c| ‖ΓX‖α for any real number c. The proof is

now complete. �

Proposition 2.4. Let X1, X2, ... and X be X -valued SαS random vec-
tors in M. Then, ΓXn converges to ΓX in γ if and only if Xn converges
to X in probability.

Proof. Let ΓXn converge to ΓX in γ. Then, ΓXn is a Cauchy sequence
in γ. Therefore, ΓXn−Xm(S) tends to 0 as m,n → ∞ and then Xn is
a Cauchy sequence in probability. For the converse, if Xn − X con-
verges to 0 in probability, then ΓXn−X converges weakly to Γ0 and then
ΓXn−X(S) → 0. Therefore, ‖ΓXn 	 ΓX‖α → 0. �

Lemma 2.5. The linear space (γ, ρ) is complete.
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Proof. Let {ΓXn} be a Cauchy sequence in γ. So, ‖ΓXn 	 ΓXm‖α =
‖ΓXn−Xm‖α → 0 as n,m→∞. Then, by Proposition 2.4, Xn is Cauchy
in probability and then there exists an X -valued random vector X such
that Xn converges to X in probability. Proposition 2.2 implies that X
is SαS random vector in M. By using Proposition 2.4, ΓXn converges
to ΓX in γ and ΓX ∈ γ. �

3. The Radon Nikodym property for γ

As observed in Section 2, (γ, ‖.‖α), 1 < α < 2, is a Banach space.
Here, we will prove that it is isometrically isomorphic to a certain Lα

space, and consequently apply Radon Nikodym Theorem to certain vec-
tor measures with values in γ.

By using Proposition 2.2 and an argument similar to the one given
in Soltani (1994) [Theorems 3.1 and 3.2], the following theorem can be
proved.

Theorem 3.1. Let Φ be an X -valued SαS random measure with inde-
pendent increments on measurable space (Rk,B(Rk)) and the class M
be as in (2.2). Then, there is a unique bimeasure π on B(Rk)× B(S)
such that

(3.1) π(A, .) = ΓΦ(A)(.), for every A ∈ B(Rk),

where ΓΦ(A) is the spectral measure of Φ(A). Moreover,

(i) For every Y ∈ M, there is a real valued function g ∈ Lα(π(., S))
such that the spectral measure of Y is given by

(3.2) ΓY (B) =
∫
Rk

|g(t)|α π(dt,B),

for every B ∈ B(S).

(ii) If g is a real valued Borel function in Lα(π(., S)), then there is
a unique X -valued SαS random vector Y in M for which its spectral
measure is given by (3.2).
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Let us apply Theorem 3.1 to establish an isomorphism between the
space (γ, ‖.‖α) and Lα(π(., S)). According to parts 1 and 2 of this theo-
rem, for every g ∈ Lα(π(., S)), the stochastic integral Y =

∫
Rk

g(x)dΦ(x)

is well defined, in the weak sense, and defines an X -valued SαS random
vector. Clearly, Y ∈ M and then ΓY ∈ γ. Now, let us set T (ΓY ) = g.
We have,

(
∫
Rk

|g(t)|α π(dt, S))1/α = (ΓY (S))1/α

= ‖ΓY ‖α .

Hence, T is an isometric isomorphism of γ into Lα(π(., S)).

Theorem 3.2. For 1 < α < 2, let Φ be an X−valued SαS random
measure on (Rk,B(Rk)) with independent increments and also let γ be
the space as in (2.3). Then, γ has the Radon Nikodym property.

Proof. If π(., .) is defined as in (3.1), then π(Rk, S) = ΓΦ(Rk)(S) < ∞.
Now, since for 1 < α, Lα(π(., S)) has the Radon Nikodym property
[Diestel and Uhl(1977), page 140, Theorem 1], and Lα(π(., S)) and γ
are isometrically isomorphic, then γ has the Radon Nikodym property.

4. The main result

Let ψ(A) = ΓΦ(A), A ∈ B(Rk). Since (Φ(
∞
∪

j=1
Aj) −

n∑
j=1

Φ(Aj)) → 0 in

probability for any given sequence of disjoint sets A1, A2, . . .,∥∥∥ΓΦ(∪∞j=1Aj)−
∑n

j=1 Φ(Aj)

∥∥∥
α
→ 0 as n→∞,

giving that

ψ(∪∞j=1Aj) = ΓΦ(∪∞j=1Aj) = Γ∑∞
j=1 Φ(Aj) = ⊕jψ(Aj),

in (γ, ‖.‖α). Therefore, ψ is a vector measure on B(Rk) with values in
γ.

Lemma 4.1. The vector measure ψ possesses the following properties:
(I) There is a finite positive measure µ on B(Rk) such that ψ is µ-

continuous (i.e., ‖ψ(An)‖α → 0 as µ(An) → 0).
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(II) ψ is of bounded variation.

Proof. For (I), when 1 ≤ α < 2, let µ(A) = ‖ψ(A)‖α
α , (A ∈ B(Rk)).

Note that if X and Y are independent, then ΓX+Y = ΓX +ΓY ; therefore,
since Φ is independently scattered, it follows that for disjoint sets A1, A2,

µ(A1 ∪A2) =
∥∥ΓΦ(A1∪A2)

∥∥α

α
=

∥∥ΓΦ(A1) + ΓΦ(A2)

∥∥α

α

=
∥∥ΓΦ(A1)

∥∥α

α
+

∥∥ΓΦ(A2)

∥∥α

α
,

and thus µ is finitely additive and µ(∪∞i=n+1Ai) =
∥∥∥ΓΦ(∪∞i=n+1Ai)

∥∥∥
α
→ 0

as n→∞. Therefore, µ(∪∞i=1Ai) =
n∑

i=1
µ(Ai)+µ(∪∞i=n+1Ai) =

∞∑
i=1

µ(Ai).

The same reasoning also applies to 0 < α < 1, with µ(A) = ‖ψ(A)‖α. It
also easily follows that Ψ is µ-continuous. Part (II) follows from the fact
that µ is a finite measure, [Proposition 11 in Diestel and Uhl(1977)]. �

Our main result is the following theorem.

Theorem 4.2. Let X be a real separable Sazonov space with Sazonov
topology τ and Φ be an X -valued SαS random measure, 1 < α < 2, with
independent increments on (Rk,B(Rk)). Then, the law of Φ is uniquely
specified by a control pair (µ, k), through

(4.1) − log φ∑n
i=1 aiΦ(Ai)(t) =

n∑
i=1

|ai|α
∫

Ai

k(t, y)µ(dy),

t ∈ X ′, y ∈ Rk, Ai ∈ B(Rk), ai ∈ R, where µ is a positive measure on
(Rk,B(Rk)) and k : X ′ × Rk 7−→ R+ is a measurable mapping with the
following properties:

(I) For every t ∈ X ′, k(t, .) is integrable with respect to µ.
(II) For y, µ a.e., k(., y) is of negative type and homogeneous, that

is,
N∑

i,j=1

cicjk(ti − tj , y) ≤ 0,

for every integer N and every choice of real numbers c1, . . . , cN subject
to

∑N
j=1 cj = 0, and t1, . . . , tN ∈ X ′. Moreover,

k(ct, y) = |c|α k(t, y),
for every scalar c and every t ∈ X ′.
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(III) For y, µ a.e. , k(., y) is τ -continuous.
Conversely for a measurable mapping k : X ′ × Rk 7−→ R+ having the
properties (I), (II) and (III), there is an X -valued SαS random measure
Φ with independent increments on a measurable space (Rk,B(Rk)) which
satisfies (4.1).

Proof. The Radon Nikodym Theorem for the vector measure ψ with
respect to µ implies that there is a unique γ-valued µ Bochner integrable
function p(y) =: p(y, ds) on Rk, for which ψ(dy) = p(y)µ(dy), [Diestel
(1977), pages 47 and 59]. This will allow approximating ψ(A) by a

sequence ψN =
N∑

j=1
1Ej (y)p(yj)µ(Ej) in (γ, ‖.‖α), where E1, ..., EN is a

finite partition of B(Rk)-sets for A. But if a sequence {ΓXn} converges
to Γ in (γ, ‖.‖α), then Xn will converge weakly to X. Consequently, for
each bounded function q,∫

S
q(s)ψ(A)(ds) = lim

N→∞

∫
S

q(s)ψN (ds)

= lim
N→∞

N∑
j=1

{
∫
S

q(s)p(yj , ds)}1Ej (y)µ(Ej)

=
∫
A

{
∫
S

q(s)p(y, ds)}µ(dy).

Now, since

− log φΦ(A)(t) =
∫

S
|t(s)|αΓΦ(A)(ds)

=
∫

S
|t(s)|αψ(A)(ds),

we obtain:

− log φΦ(A)(t) =
∫
A

{
∫
S

|t(s)|αp(y, ds)}µ(dy).

Let

k(t, y) =
∫
S

|t(s)|αp(y, ds).
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Then, (4.1) will evidently be satisfied. What remains to prove is that
k(., .) possesses the properties (I), (II) and (III). The property (I) follows
from the fact that Φ is defined on B(Rk). Indeed, Φ(Rk) is an X -valued
SαS random vector. For the property (II), the function f(x) = |x|α
is of negative type on (−∞,+∞) [Schoenberg (1938)]. Therefore, for

t1, t2, ..., tN ∈ X ′ and c1, c2, ..., cN , given real numbers, such that
N∑

j=1
cj =

0, and every s ∈ S, giving that
N∑

i,j=1

cicj |ti(s)− tj(s)|α ≤ 0,

it follows that,
N∑

i,j=1

cicjk(ti − tj , y) ≤ 0.

Also,

k(ct, y) =
∫
|ct(s)|α p(y, ds) = |c|α k(t, y).

For (III), we note that it will be sufficient to show k(., y) is τ -continuous
at zero. But since p(y, S) < ∞, for every y ∈ Rk, it follows from the
Lyapounov′s inequality that

k(t, y) = (p(y, S)
∫
S

|t(s)|α p(y, ds)
p(y, S)

≤ (p(y, S)[
∫
S

(t(s))2
p(y, ds)
p(y, S)

]α/2.

According to the Levy-Khinchin Spectral Representation Theorem,
exp{

∫
S

(t(s))2p(y, ds)} is a Gaussian characteristic functional. Therefore,

it is τ−continuous and consequently k(., y) is τ -continuous everywhere
on X ′.

For the converse, assume (k, µ) is given and k satisfies properties (I),
(II) and (III). Since k(0, y) = 0, and k(., y) is τ -continuous on X ′, it
follows that

∫
A k(0, y)µ(dy) = 0 and

∫
A k(., y)µ(dy) is τ -continuous on

X ′ for every A ∈ B(Rk). However, the fact that
∫
A k(., y)µ(dy) is positive

definite on X ′ follows immediately from [Gelefand, page 279, Theorem 4].
Therefore, φA(.) = exp{−

∫
A k(., y)µ(dy)} is a characteristic functional.

Let Φ(A) be an X -valued random vector with characteristic functional
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φA(.). It follows by a classical argument that {Φ(A), A ∈ B(Rk)} induces
an X - valued random measure on B(Rk). It is plain to verify that Φ(A)
is SαS. Indeed, φA(t) is real and for n > 0,

[φA(t)]n = exp{−n
∫

A
k(t, y)µ(dy)} = φ(n1/αt).

The proof is now complete. �

Remark 4.3. Each Hilbert space with inner-product < ., . > is a
Sazonov space and the Sazonov topology on H′(= H) is the locally con-
vex topology generated by the semi-norms p with p(x) =< Sx, x >1/2,
where S : H → H varies over the symmetric positive trace class opera-
tors on H. Therefore, the theorem is true in this case.

Example 1. For real separable Banach space X , let xi ∈ X , i = 1, 2, . . .

and
∞∑
i=1

‖xi‖α < ∞. For 0 < α < 2, let {θ(α)
i } denote a sequence of

independent SαS random variables such that for every x ∈ R,

φ
θ
(α)
i

(x) = e−|x|
α

.

Assume
∞∑
i=1

θ
(α)
i xi exists almost everywhere. Define Φ(A) :=∑

i∈A

θ
(α)
i xi. Then, Φ is an SαS random measure and

φΦ(A)(t) = e
−

∑
i∈A

|t(xi)|α
t ∈ X ′,

and

ΓΦ(A)(ds) = 1/2
∑
i∈A

‖xi‖α (δxi/‖xi‖(ds) + δ−xi/‖xi‖(ds)).

It follows that µ(A) =
∑
i∈A

‖xi‖α and p(i, ds) = 1/2(δxi/‖xi‖(ds)

+δ−xi/‖xi‖(ds)), where δa is the direct measure concentrated on a. There-
fore,

k(t, i) =
∫
S

|t(s)|α p(i, ds) = |t(xi)/ ‖xi‖|α , t ∈ X ′.

With the assumption an this Banach space, it will become a Sazanov
space and its topology is a topology by the following neighborhood basis
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of zero:

{{t ∈ X ′;− log φX(t) ≤ 1}; for each X -valued α stable random vector X}.

[Linde (1983), page 176].

Example 2. Let Φ be a Levy SαS random measure. Then, ΓΦ(A)(ds) =
λ(A)υ(ds), where λ is the Lebesgue measure and υ is a symmetric
probability measure on S, which is not supported by any subspace,
υ{s ∈ S;β(s) = 0} < 1 for all β ∈ S′. Therefore,

φΦ(A)(t) = exp{−λ(A)
∫
S

|t(s)|α dυ(s)}, t ∈ X ′, A ∈ B(R).

Thus, in Theorem 4.2, µ is the Lebesgue measure and

k(t, y) =
∫
S

|t(s)|α dυ(s) t ∈ X ′, y ∈ R.

Acknowledgments
The authors thank the referee for the valuable suggestions which im-

proved the presentation of the paper.

References

[1] J. Diestel and Jr. J. J. Uhl, Vector Measure, American Mathematical Society,
mathematical surveys and monographs 15, 1977.

[2] I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions, Applications of Har-
monic Analysis 4, Translated by Amiel Feinstein, 1964.

[3] J. Kuelbs, A representation theorem for symmertic stable processes and stable
measures on H, Z. Wahr. verw. Geb. 26 (1973) 259-271.

[4] M. Ledoux, and M. Talagrand, Probability in Banach spaces, Berlin- Heidelberg-
New York, 1991.

[5] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner-
Texte zur Mathematik, Band 58, DDR, 1983.

[6] A. Mohammadpour and A. R. Soltani, Exchangeable stable random vectors and
their simulations, Comp. Statist. 9 (2000) 11-19.

[7] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance, Chapman & Hall, New York, London,
1994.

[8] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer.
Math. Soc. 44 (1938) 522-536.



A representation for characteristic functionals of stable random measures 39

[9] A. R. Soltani and S. Mahmoodi, Characterization of multidimensional stable
random measures by means of vector measures, Stoch. Anal. App. 22(2), (2004)
449-457.

[10] A. R. Soltani, On spectral representation of multivariate stable processes, Theo.
Prob. App. 39(3) (1994) 464-495.

Ahmad Reza Soltani
Department of Statistics & Operations Research, Faculty of Science, Kuwait Univer-
sity, P.O.Box 5969 Safat-13060, State of Kuwait.
Email: soltani@kuc01.kuniv.edu.kw

Safieh Mahmoodi
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box
8415683111, Isfahan, Iran.
Email: mahmoodi@cc.iut.ac.ir


