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APPROXIMATE CONVEXITY AND
SUBMONOTONICITY IN LOCALLY CONVEX SPACES

A. AMINI-HARANDI∗ AND A. P. FARAJZADEH

Communicated by Mohammad Sal Moslehian

Abstract. We introduce some new concepts of locally Lipschitz
mappings, Clarke subdifferential, approximate convexity and sub-
monotonocity in locally convex spaces. We show that, if f is ap-
proximately convex and bounded above, then f is locally Lipschitz.
We also prove that a Lipschitz function is approximately convex
if and only if its Clarke subdifferential is a submonotone operator.
Several properties of approximate convexity are discussed. Our re-
sults can be viewed as extensions and refinements of the previously
known results from Banach spaces to locally convex spaces.

1. Introduction

It is well known that the convexity plays a fundamental and crucial
role in several aspects of optimization and other related fields. This
serves as a motivation for relaxing convexity assumptions imposed on
the functions arising in optimality and duality. Here, we introduce the
concept of locally Lipschitz mapping, approximate convexity and other
related results in locally convex spaces. Under suitable conditions, we
show that one can extend and generalize the results from Banach spaces
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to locally convex spaces. Our results are more general, flexible and
unifying.

A locally Lipschitz function f : U → R, where U is an open subset of
Rn, is called lower-C1, if for every x0 ∈ U , there exists a neighborhood V
of x0, a compact set S and a jointly continuous function g : V ×S → R,
such that for all x ∈ V we have f(x) = maxs∈S g(x, s) and derivative
Dxg exists and is jointly continuous.
The above class of functions has been introduced by Spingarn [8]. It has
been shown [8] that a locally lipschitz function f : U → R is lower-C1 if
and only if its Clarke subdifferential ∂f is submonotone at every x ∈ U.
A multivalued operator T : Rn → 2Rn

is called submonotone at x0 ∈ X,
if for every ε > 0 there exists δ > 0 such that

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖,

for all xi ∈ B(x0, δ) and all x∗i ∈ T (xi), i = 1, 2.
Ngai et al. [6] introduced and studied the class of approximately con-

vex functions defined in a Banach space X.

Definition 1.1. function f : X → R ∪ {∞} is called approximately
convex at x0 ∈ X, if for every ε > 0 there exists δ > 0 such that the
following implication for all x, y ∈ B(x0, δ) and t ∈ (0, 1) holds,

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖.

Our aim here is to generalize some basic notions of convex analysis as
locally Lipschitz mappings, Clarke subdifferential, approximate convex-
ity and submonotonocity from Banach spaces to locally convex spaces.
We first define a locally Lipschitz functions f defined on a locally con-
vex space and introduce its generalized Clarke subdifferential. Then, we
deduce a Lebourge’s type mean value theorem in the setting of locally
convex spaces. In section 3, we extend the concept of approximate con-
vexity to locally convex spaces and prove that each proper approximate
convex function f , which is bounded above, is locally Lipschitz. Using
the ideas and technique of Daniilidis and Georgiev [4], we introduce sub-
monotone operators in locally convex spaces and give a characterization
of approximate convexity via submonotonocity of ∂f. These results can
be viewed as an extension and refinement of the results of Daniilidis and
Georgiev [4].
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Throughout the paper, let X denote a Hausdorff locally convex space
whose topology is generated by a family of seminorms {pi, i ∈ I} and

x0 + B(δ, p1, ..., pn) = x0 + {x ∈ X| max
1≤i≤n

pi(x) < δ}.

Let X∗ be dual space of X and 〈., .〉 denotes duality pair of X and X∗.

2. Locally Lipschitz function in locally convex spaces

Let f : X → R ∪ {+∞}. We denote by dom f = {x ∈ X : f(x) 6=
+∞}, the effective domain of f . The function f is proper if it has a
nonempty domain.

Definition 2.1. A function f : X → R is said to be locally Lips-
chitz near x0 ∈ X of rank K, if there exists a neighborhood V =
B(δ, p1, p2, ..., pn) of 0 such that

| f(x)− f(y) |≤ K max
1≤i≤n

pi(x− y), ∀ x, y ∈ x0 + V.

For Y ⊆ X, we say that f is Lipschitz on Y, if f is Lipschitz near each
x ∈ Y .

Remark 2.2. Obviously, if f is Lipschitz near x0, then it is continuous
at x0. In Section 3, as a consequence of Theorem 3.5, we show that each
convex function which is locally bounded at x0, is Lipschitz near x0.

Definition 2.3. If f : X → R ∪ {+∞} is a function, then the general-
ized Clarke-Rockafellar directional derivative of f at x0 ∈ domf in the
direction v denoted by f↑(x; v), is defined to be

f↑(x; v) = sup
U

lim sup
y→f x, t→0+

inf
u∈U

f(y + tu)− f(y)
t

,

where U is an arbitrary neighborhood of v, y →f x means that both
y → x and f(y) → f(x). Let f◦(x; v) denote the generalized Clarke
derivative of f at x in direction v, defined as

f◦(x; v) = lim sup
y→x, t→0+

f(y + tv)− f(y)
t

.
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Remark 2.4. If f is locally Lipschitz near x, then by the definition
of the generalized Clarke-Rockafellar directional derivative and Remark
2.2, we obtain f↑(x; v) ≤ f◦(x; v). For the converse of the inequality,
since f is locally Lipschitz near x, we deduce

f(y + tv)− f(y)
t

≤ f(y + tu)− f(y)
t

+ K max
1≤i≤n

pi(u− v),

for t > 0 small enough, and y, u sufficiently near x, v, respectively. This
inequality, and continuity of semi-norms pi give

f◦(x; v) ≤ f↑(x; v).

In the following theorem we give some properties of f◦(x; v), where
f is a locally Lipschitz mapping, the proof of which is similar to the
Banach space case.

Theorem 2.5. Let f be Lipschitz of rank K near x. Then
(i) The function v → f◦(x; v) is finite, positively homogeneous, sub-

additive on X and there are semi-norms p1, p2, ..., pn such that
| f◦(x; v) |≤ K max pi(v), for all i = 1, 2, ..., n.

(ii) f◦(x;−v) = (−f)◦(x; v).
(iii) f◦(x; v) as a function of v alone is Lipschitz of rank K on X.

The following theorem shows that a function such as v → f◦(x; v)
which is positively homogeneous and subadditive on X is the support
function of a uniquely determined closed convex set in X∗, extending
proposition 1.3 in [2].

Definition 2.6. Given a nonempty subset Σ of X∗, its support function
is the function HΣ : X → R ∪ {+∞}, defined as

HΣ(v) = sup{〈ζ, v〉 : ζ ∈ Σ}.

Theorem 2.7. (i) Let Σ be a nonempty subset of X∗. Then, HΣ is
positively homogeneous, subadditive, and lower semicontinuous.

(ii) If Σ is convex and w∗-closed, then a point ζ ∈ X∗ belongs to Σ
if and only if we have HΣ(v) ≥ 〈ζ, v〉, for all v in X.

(iii) More generally, if Σ and Λ are two nonempty, convex and w∗−
closed subsets of X∗, then Σ ⊇ Λ if and only if HΣ(v) ≥ HΛ(v),
for all v in X.
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(iv) If P : X → R is positively homogeneous and subadditive and
bounded on a neighborhood W of 0, then there is a uniquely de-
fined nonempty, convex and w∗-compact subset Σ of X∗ such
that P = HΣ.

Proof. The proofs of (i),(ii) and (iii) are similar to the Banach space
case (Proposition 3.1 in [1]). There remains (iv). By our assumption,
P is bounded on neighborhood W of 0, which we may assume it is
absorbing and balanced. Then, we can assume that

|P (v)| ≤ M, for each v ∈ W.(2.1)

Let
Σ = {ζ ∈ X∗ : P (v) ≥ 〈ζ, v〉 ∀v ∈ X}.

Since W is an absorbing and balanced neighborhood of 0 and P is pos-
itively homogeneous, we have

Σ = {ζ ∈ X∗ : P (v) ≥ 〈ζ, v〉 ∀v ∈ W}.

Now, by Banach- Alaoglu-Bourbaki’s theorem, Σ is w∗-compact. Clearly,
we have P ≥ HΣ. For the equality, let v ∈ X and suppose that M =
{tv : t ∈ R}, and define linear functional f on M as

f(tv) = tP (v), for every t ∈ R.(2.2)

By Hahn-Banach theorem, we can extend f to X with property

f(x) ≤ P (x), for all x ∈ X.(2.3)

From (2.1) and (2.3), we get

M ≥ P (x) ≥ f(x) ≥ −P (−x) ≥ −M, ∀v ∈ W.

Thus,

|f(x)| ≤ M, ∀v ∈ W.(2.4)

If V be a neighborhood of 0, in R, then by (2.4) there exists positive
integer n such that f(W ) ⊂ nV . The last inclusion implies that f is
continuous in 0. Hence, f ∈ X∗. Consequently, by (2.2), P (x) = f(x)
and hence P ≤ HΣ. �

We define the generalized Clarke subdifferential of f at x ∈ X, de-
noted by ∂f(x), to be the w∗-compact subset of X∗ whose support
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function is f◦(x; .). In other words,

∂f(x) = {x∗ ∈ X∗ : 〈x∗, u〉 ≤ f◦(x;u),∀u ∈ X}.

In the following, we establish a basic calculus about subdifferential of
two functions. The proofs similar to the ones for Propositions 2.1 and
2.2 in [2].

Remark 2.8. If f is locally Lipschitz near x and also it attains a local
minimum or maximum at x, then 0 ∈ ∂f(x). Indeed, let v ∈ X. Then,
by definition of the generalized directional derivative of f at x, we have

f◦(x; v) ≥ lim sup
t→0+

f(x + tv)− f(x)
t

≥ 0 = 〈0, v〉, ∀v ∈ X.

Hence, 0 ∈ ∂f(x).

Proposition 2.9.
(i) For any scalar λ, ∂λf(x) = λ∂f(x)
(ii) Let fi (i = 1, 2, ..., n) be Lipschitz near x, and let

λi, (i = 1, 2, ..., n) be scalars. Then,

∂(
n∑

i=1

λifi)(x) ⊂
n∑

i=1

λi∂fi(x).

In the following, we obtain a Lebourg’s type mean value theorem in
locally convex spaces, the proof of which follows along the lines of the
Banach space case and thus is omitted (see Theorem 2.4 in [2]).

Theorem 2.10. Let x, y belong to X, and suppose that f is Lipschitz
on an open set containing the line segment [x, y]. Then, there exists a
point u ∈ (x, y) such that

f(y)− f(x) ∈ 〈∂f(u), y − x〉.

3. Characterization of approximate convexity

The notion of an approximate convex function in a Banach space was
first introduced by Ngai et al. [6].
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Definition 3.1. Let f : X → R∪{+∞}. We say that f is approximately
convex at x0 ∈ X if for every ε > 0 there exists an open neighborhood
V = B(δ, p1, p2, ..., pn) of 0 such that

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t) max
1≤i≤n

pi(x− y),

for all x, y ∈ x0 + V, t ∈ (0, 1). The function f is called approximately
convex on Y ⊆ X if f is approximately convex at every point of Y .

Definition 3.2. A function f : X → R is strictly differentiable at
x0 ∈ X if there exists Df(x0) ∈ X∗ such that for each ε > 0, there
exists V = B(δ, p1, p2, ..., pn) together with the following implication for
every x, y ∈ x0 + V,

|f(x)− f(y)−Df(x0)(x− y)| ≤ ε max pi(x− y).

The following proposition, which is easy to prove, gives some sufficient
conditions for f to be approximate convex and is similar to Proposition
3.1 in [6].

Proposition 3.3. Let f : X → R. Each of the following conditions is
sufficient for f to be approximate convex at x0 ∈ X:

(i) f is strictly differentiable at x0;
(ii) f = f1+f2 or f = max(f1, f2) where f1 and f2 are approximately

convex at x0;
(iii) f = g ◦ A where A is a continuous affine from X to a locally

convex space Y and g is a function from Y to R∪ {∞} which is
approximate convex at Ax0 ∈ Y .

In the next theorem, we establish a Lipschitz property of approxi-
mate convex functions which generalizes a result in [6]. The following
definition is necessary for obtaining our result.

Definition 3.4. The function f is called bounded above near x, if there
exist an open neighborhood U of x and real number r such that

f(y) ≤ r, ∀y ∈ U.
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Theorem 3.5. Suppose that f : X → R ∪ {∞} is a proper function. If
f is approximate convex at x0 ∈ Int(dom f) and bounded above near x0,
then f is locally Lipschitz at x0.

Proof. By our assumption, there exists a neighborhood

V = B(δ, p1, p2, p3, ..., pn)

of 0 and positive number r such that

f(y) ≤ r, ∀y ∈ x0 + V,

(3.1) f(tx+(1−t)y) ≤

tf(x) + (1− t)f(y) + t(1− t) max pi(x− y), ∀x, y ∈ x0 + V.

If x ∈ x0 + V , then there exists y ∈ x0 + V such that x+y
2 = x0. Then,

by (2.1), we deduce that

f(x0) ≤
1
2
f(x) +

1
2
f(y) + max pi(x− y) ≤

1
2
(f(x) + f(y)) + 2δ ≤ 1

2
f(x) +

r

2
+ 2δ.

Thus,
2f(x0)− r − 4δ ≤ f(x) ∀x ∈ x0 + V.

So, f is bounded below. Consequently, f is locally bounded, say by M ;

i.e.,
|f(x)| ≤ M, ∀x ∈ x0 + V.

If x, y ∈ x0 +B( δ
2 , p1, p2, ..., pn), then z = x+ δ

2η+θ (x− y) ∈ x0 +V with
η = max pi(x− y). Hence, for each positive number θ,

f(x) = f(
2η + θ

δ + 2η + θ
z +

δ

δ + 2η + θ
y) ≤

2η + θ

δ + 2η + θ
f(z) +

δ

δ + 2η + θ
f(y) +

ε(2η + θ)δ
(δ + 2η + θ)2

max pi(z − y).
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It follows that

f(x)− f(y) ≤ 2η + θ

δ + 2η + θ
(f(z)− f(y)) +

εδ

δ + 2η + θ
max pi(x− y) ≤

(
4M

δ
+ ε) max pi(x− y) +

2Mθ

δ
.

By interchanging the roles of x and y, we have

|f(x)− f(y)| ≤ (
4M

δ
+ ε) max pi(x− y) +

2Mθ

δ
.

Since θ is an arbitrary positive number, we obtain the required result.
�

Remark 3.6. Let X be complete metrizable l.c.s. and f : X → R∪{∞}
be proper and lower semicontinuous. Using Baire category theorem,
one can show that f is bounded above near x0 ∈ Int(dom f) if f is
approximately convex at x0 (see proof of Proposition 3.2 in [6]).

Definition 3.7. The set-valued map T : X → 2X∗
is called submono-

tone at x0 ∈ X, if for every ε > 0 there exists an open neighborhood
V = B(δ, p1, p2, ..., pn) of 0 such that

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε max pi(x1 − x2),

for all x1, x2 ∈ x0 + V and all x∗i ∈ T (xi), i = 1, 2.

The following theorem extends Theorem 2 in [4] which is a charac-
terization of approximate convexity. In order to obtain our theorem, we
need the following definition and lemma.

Definition 3.8. The function f is said to be regular at x provided that
f is locally Lipschitz near x and admits directional derivatives f

′
(x; v)

at x for all v, with f
′
(x; v) = f◦(x; v), where f

′
(x; v) is defined to be

f
′
(x; v) = limt↘0+

f(x + tv)− f(x)
t

,

when the limit exists.

The following lemma states that under suitable conditions the func-
tion f is regular, extending Proposition 4.1 in [2] to l.c.s..
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Lemma 3.9. If f is approximately convex and locally Lipschitz near x,
then f is regular at x.

Proof. Let ε > 0 be sufficiently small. By our assumptions, there exists
an open neighborhood V = B(δ, p1, p2, ..., pn) of 0 such that f admits
definitions 2.1 and 3.1 on x+V . Suppose 0 < h1 ≤ h2, sufficiently small,
and u ∈ X. From approximate convexity, we have,

f(
h1

h2
(x + h2u) + (1− h1

h2
)x) ≤

h1

h2
f(x + h2u) + 1− h1

h2
f(x) + ε

h1

h2
(1− h1

h2
) max

1≤i≤n
pi(u).

Then,

f(x + h1u)− f(x)
h1

≤ f(x + h2u)− f(x)
h2

+ ε(1− h1

h2
) max

1≤i≤n
pi(u)

Now, for fixed h2 and h1 tending to 0, we have

lim sup
h1→0

f(x + h1u)− f(x)
h1

≤ f(x + h2u)− f(x)
h2

+ ε max
1≤i≤n

pi(u).

Hence, by the last inequality, we have

lim sup
h1→0

f(x + h1u)− f(x)
h1

≤ inf
h2>0

f(x + h2u)− f(x)
h2

+ ε max
1≤i≤n

pi(u)

≤ lim inf
h2→0

f(x + h2u)− f(x)
h2

+ ε max
1≤i≤n

pi(u).

Since ε is arbitrary, the above inequality implies that

f
′
(x;u) = lim

t→0+

f(x + tu)− f(x)
t

= inf
t>0

f(x + tu)− f(x)
t

.

Using the locally Lipschitz property, for t, ε (sufficiently small) and x′ ∈
x + B(εδ), we have

| f(x′ + εu)− f(x)
ε

− f(x + εu)− f(x)
ε

|≤ 2K max
1≤i≤n

pi(x′ − x).
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Thus,

f◦(x;u) = lim sup
x′→x,ε→0

f(x′ + εu)− f(x)
ε

≤

lim sup
x′→x,ε→0

f(x + εu)− f(x)
ε

+ 2K max
1≤i≤n

pi(x′ − x)

≤ lim sup
ε→0

f(x + εu)− f(x)
ε

+ lim sup
x′→x

2K max
1≤i≤n

pi(x′ − x).

The last inequality completes the proof. �

Theorem 3.10. Assume that f is locally Lipschitz at x0 ∈ X. The
followings are equivalent:

(i) f is approximately convex at x0.
(ii) For every ε > 0, there exists an open neighborhood V = B(δ, p1

, p2, ..., pn) of 0 such that for each x ∈ x0 + V and x∗ ∈ ∂f(x),

f(x + u)− f(x) ≥ 〈x∗, u〉 − ε max
1≤i≤n

pi(u),

whenever u ∈ V is such that x + u ∈ x0 + V .
(iii) ∂f is submonotone at x0.

Proof. (i) ⇒ (ii). Let ε > 0 be given. By (i) there exists V =
B(δ, p1, p2, ..., pn) of 0 such that for each x, x+tu ∈ x0+V and t ∈ (0, 1),
we have

f(x + tu)− f(x) = f(t(x + u) + (1− t)x)− f(x) ≤

tf(x + u) + (1− t)f(x)− f(x) + εt(1− t) max
1≤i≤n

pi(u).

Then,

f(x + tu)− f(x)
t

≤ f(x + u)− f(x) + ε(1− t) max
1≤i≤n

pi(u),

Since f is locally Lipshcitz and approximately convex at x0, then f is
regular at x0, and so

〈x∗, u〉 ≤ f0(x;u) = lim sup
t→0+

f(x + tu)− f(x)
t

≤ f(x + u)− f(x) + ε max
1≤i≤n

pi(u), ∀x∗ ∈ ∂f(x), u ∈ X.
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(ii) ⇒ (iii). Let ε > 0 and take V = B(δ, p1, p2, ..., pn) as given in (ii).
Now, for all x, y ∈ x0 + B( δ

2 , p1, p2, ..., pn) and x∗ ∈ ∂f(x), y∗ ∈ ∂f(y),
by (ii), we have

f(y)− f(x) ≥ 〈x∗, y − x〉 − ε

2
max
1≤i≤n

pi(y − x),

and
f(x)− f(y) ≥ 〈y∗, x− y〉 − ε

2
max
1≤i≤n

Pi(x− y).

By adding the above inequalities, the result follows.

(iii) ⇒ (i). Let ε > 0. By (iii), there exists an open neighborhood
V = x0 + B(δ, p1, p2, ..., pn) such that the relation in (iii) holds. Let
x, y ∈ x0 + B(δ, p1, p2, ..., pn) and t ∈ (0, 1) and set xt = tx + (1 − t)y.
By Theorem 2.10, there exist a point z1 ∈ [x, xt[ and z∗1 ∈ ∂f(x1) such
that

〈z∗1 , xt − x〉 = f(xt)− f(x).(3.1)

Similarly, there exists a point z2 ∈ [xt, y[ and z∗2 ∈ ∂f(z2) such that

〈z∗2 , xt − y〉 = f(xt)− f(y).(3.2)

By multiplying the relations (3.1) and (3.2), by t and (1−t), respectively,
and adding the resulting equations, we obtain

tf(x) + (1− t)f(y)− f(xt) = t(1− t)〈z∗1 − z∗2 , x− y〉.(3.3)

Now, from the fact that z1 and z2 are distinct points of the line segment
[x, y], there exists a positive number c such that z1−z2 = c(x−y). Then,
by (3.3) and submonotonicity of ∂f , we obtain

tf(x) + (1− t)f(y)− f(xt) = t(1− t)〈z∗1 − z∗2 ,
z1 − z2

c
〉 ≥

−ε

c
t(1− t) max

1≤i≤n
pi(z1 − z2) = −εt(1− t) max

1≤i≤n
pi(x− y),

Thus,

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t) max
1≤i≤n

pi(x− y).

�

The following theorem is obtained by using the fact that a Hausdorff
vector topology on a finite dimensional vector space is unique.
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Theorem 3.11. Let X be a finite dimensional Hausdorff locally convex
space. Then, a real-valued, locally Lipschitz function f on X is approx-
imately convex if and only if it is lower-C1.

Proof. Since X is finite dimensional, then X is normable. Let ‖.‖
denote the norm of X. We first show that f is locally Lipschitz with
respect to the norm of X. To see this, let x0 ∈ X. Then, there exists a
neighborhood V = B(δ, p1, p2, ..., pn) of 0 such that

| f(x)− f(y) |≤ K max
1≤i≤n

pi(x− y), ∀ x, y ∈ x0 + V.

Let P (x) = max pi(x) and S be the unit ball of X. Since P (x) is
continuous and S is compact, then P is bounded on S, say by M . Then,
for each nonzero element x ∈ X we have P ( x

‖x‖) ≤ M. Consequently,

max
1≤i≤n

pi(x) ≤ M ‖ x ‖ ∀x ∈ X,

which shows that

| f(x)− f(y) |≤ K max pi(x− y) ≤ KM ‖ x− y ‖, ∀ x, y ∈ x0 + V.

Therefore f is locally Lipschitz at x0 and so locally Lipschitz on X
(note that x0 is an arbitrary element of X). Now, the result follows by
Corollary 3 in [4]. �
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