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GENERALIZED STEFFENSEN MEANS

J. JAKŠETIĆ∗ AND J. PEČARIĆ

Communicated by Mohammad Sal Moslehian

Abstract. Using Steffensen’s inequality and log-convexity mean-
value theorem, we introduce new means and then we establish their
monotonicity properties. We also generalize some parts of theory
given in [J. Jakšetić, J.E. Pečarić, Steffensens means, J. Math. In-
equal. 2 (2008) 487- 498].

1. Introduction and preliminary

The well-known Steffensen inequality reads as follows

Theorem 1.1. Suppose that f is decreasing and g is integrable on [a, b]
with 0 ≤ g ≤ 1 and λ =

∫ b
a g(t)dt. Then,

(1.1)

b∫
b−λ

f(t)dt ≤
b∫

a

f(t)g(t)dt ≤
a+λ∫
a

f(t)dt.

The inequalities are reversed for an increasing function f.

In [2, p. 184] it is shown that condition 0 ≤ g ≤ 1 in Theorem 1.1 can
be replaced with a more general one as specified in the next theorem.
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Theorem 1.2. Assume that f and g are integrable functions on [a, b].
Then, the inequalities in (1.1) hold for every decreasing function f if
and only if

(1.2)

0 ≤
b∫

x

g(t)dt ≤ b− x and 0 ≤
x∫

a

g(t)dt ≤ x− a, for every x ∈ [a, b].

The following theorem represents a new generalization of mean-value
theorem given in [1].

Theorem 1.3. Let f ∈ C1([a, b]) be increasing and let g be integrable
function on [a, b] such that (1.2) is valid and λ =

∫ b
a g(t)dt. If h ∈

C1([f(a), f(b)]), then there exist η, ξ ∈ [f(a), f(b)] such that
(1.3)

b∫
a

h(f(t))g(t)dt−
a+λ∫
a

h(f(t))dt = h′(ξ)

 b∫
a

f(t)g(t)dt−
a+λ∫
a

f(t)dt


and
(1.4)

b∫
a

h(f(t))g(t)dt−
b∫

b−λ

h(f(t))dt = h′(η)

 b∫
a

f(t)g(t)dt−
b∫

b−λ

f(t)dt

 .
Proof. Since h′ is continuous on [f(a), f(b)], there exist m = minh′

and M = maxh′ both as real numbers. We first consider the function,
h̃(x) = Mx− h(x). Then, h̃′(x) = M − h′(x) ≥ 0, x ∈ [f(a), f(b)], and
so h̃ is an increasing function. Applying Steffensen’s inequality, from
Theorem 1.1 on increasing function h̃ ◦ f , we have

0 ≤
b∫

a

h̃(f(t))g(t)dt−
a+λ∫
a

h̃(t)dt = M

b∫
a

f(t)g(t)dt−
b∫

a

h(f(t))g(t)dt−

−M
a+λ∫
a

f(t)dt+

a+λ∫
a

h(f(t))dt,
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that is,
b∫

a

h(f(t))g(t)dt−
a+λ∫
a

h(f(t))dt ≤M

 b∫
a

f(t)g(t)dt−
a+λ∫
a

f(t)dt

 .
Similarly, since ĥ(x) = h(x)−mx is an increasing function we can apply
Steffensen’s inequality on increasing function ĥ ◦ f and get

m

 b∫
a

f(t)g(t)dt−
a+λ∫
a

f(t)dt

 ≤ b∫
a

h(f(t))g(t)dt−
a+λ∫
a

h(f(t))dt.

We now conclude that there exists ξ ∈ [f(a), f(b)] satisfying (1.3).
With the same technique one can prove existence of η in (1.4). �

Remark 1.4. It can be shown (see [1]) that if g is an integrable func-
tion that differs from the function x 7→ 1[a,a+λ](x) on a set of positive
measure, then the left hand side of (1.3) is different from 0. Similarly, if
g is an integrable function that differs from the function x 7→ 1[b−λ,b](x)
on a set of positive measure, then the left hand side of (1.4) is different
from 0.

Corollary 1.5. Let f ∈ C1([a, b]) be a strictly monotone function and
h1, h2 ∈ C1([f(a), f(b)]), g integrable on [a, b], with λ =

∫ b
a g(t)dt and

(1.5)

0 ≤
b∫

x

g(t)dt ≤ b− x and 0 ≤
x∫

a

g(t)dt ≤ x− a for every x ∈ [a, b].

Then, there exist ξ, η ∈ [f(a), f(b)] such that

(1.6)

∫ b
a h1(f(t))g(t)dt−

∫ a+λ
a h1(f(t))dt∫ b

a h2(f(t))g(t)dt−
∫ a+λ
a h2(f(t))dt

=
h′1(ξ)
h′2(ξ)

,

(1.7)

∫ b
a h1(f(t))g(t)dt−

∫ b
b−λ h1(f(t))dt∫ b

a h2(f(t))g(t)dt−
∫ b
b−λ h2(f(t))dt

=
h′1(η)
h′2(η)

.

Proof. We show (1.6) first. Define the linear functional L(h) =∫ b
a h(f(t))g(t)dt−

∫ a+λ
a h(f(t))dt.Next, define φ(t) = h1(t)L(h2)−h2(t)L(h1).
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By Theorem 1.3, there exists ξ ∈ [f(a), f(b)] such that

L(φ) = φ′(ξ)
[∫ b

a
f(t)g(t)dt−

∫ a+λ

a
f(t)dt

]
.

From L(φ) = 0, it follows that h′1(ξ)L(h2)− h′2(ξ)L(h1) = 0 and (1.6) is
proved. The proof of (1.7) is quite similar. �

In [1], we used Steffensen’s inequality to define Cauchy means of two
numbers. In the next section, we will generalize this result by defining
Cauchy means of general monotonic functions.

2. Main results

Let x, y be fixed, with 0 < x < y. Let f ∈ C1([x, y]) be strictly
increasing function and h1, h2 ∈ C1([f(x), f(y)]) monotonic functions,
and g integrable function on [x, y] such that λ =

∫ y
x g(t)dt and g satisfies

the corresponding condition (1.5).
Corollary 1.5 enables us to define various types of means, because if

h′1/h
′
2 has an inverse, then from (1.6) and (1.7) we have

(2.1) ξ =
(
h′1
h′2

)−1


y∫
x
h1(f(t))g(t)dt−

x+λ∫
x
h1(f(t))dt

y∫
x
h2(f(t))g(t)dt−

x+λ∫
x
h2(f(t))dt

 ,

and

(2.2) η =
(
h′1
h′2

)−1


y∫
x
h1(f(t))g(t)dt−

y∫
y−λ

h1(f(t))dt

y∫
x
h2(f(t))g(t)dt−

y∫
y−λ

h2(f(t))dt

 ,

which means that ξ and η are means of numbers x and y, for given
functions f and g. Specially, if we take substitutions h1(t) = tr, h2(t) =
ts in (2.1) and (2.2), we obtain the following expressions,
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(2.3) S1(f, g;x, y; r, s) =


s

(
y∫
x
f r(t)g(t)dt−

x+λ∫
x
f r(t)dt

)

r

(
y∫
x
fs(t)g(t)dt−

x+λ∫
x
fs(t)dt

)


1
r−s

and

(2.4) S2(f, g;x, y; r, s) =


s

(
y∫
x
f r(t)g(t)dt−

y∫
y−λ

f r(t)dt

)

r

(
y∫
x
fs(t)g(t)dt−

y∫
y−λ

fs(t)dt

)


1
r−s

,

where, (r − s)r · s 6= 0.

Continuous extensions of (2.3) are:

S1(f, g;x, y; s, 0) = S1(f, g;x, y; 0, s) =
y∫
x
fs(t)g(t)dt−

x+λ∫
x
fs(t)dt

s

(
y∫
x
g(t) ln f(t)dt−

x+λ∫
x

ln f(t)dt

)


1
s

, s 6= 0

S1(f, g;x, y; s, s) =

exp


y∫
x

g(t) ln f(t)dt−
x+λ∫
x

ln f(t)dt−1
s

y∫
x

fs(t)g(t)dt+
1
s

x+λ∫
x

fs(t)dt

s

(
y∫
x

fs(t)g(t)dt−
x+λ∫
x

fs(t)dt

)
 , s 6= 0

S1(f, g;x, y; 0, 0) = exp


y∫
x

g(t) ln2 f(t)dt−
x+λ∫
x

ln2 f(t)dt

2

(
y∫
x

g(t) ln f(t)dt−
x+λ∫
x

ln f(t)dt

)
 .

Continuous extensions of (2.4) are:
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S2(f, g;x, y; s, 0) = S1(f, g;x, y; 0, s) =
y∫
x
fs(t)g(t)dt−

y∫
y−λ

fs(t)dt

s

(
y∫
x
g(t) ln f(t)dt−

y∫
y−λ

ln f(t)dt

)


1
s

, s 6= 0

S2(f, g;x, y; s, s) =

exp


y∫
x

g(t) ln f(t)dt−
y∫

y−λ

ln f(t)dt−1
s

y∫
x

fs(t)g(t)dt+
1
s

y∫
y−λ

fs(t)dt

s

(
y∫
x

fs(t)g(t)dt−
y∫

y−λ

fs(t)dt

)
 , s 6= 0

S2(f, g;x, y; 0, 0) =

exp


y∫
x

g(t) ln2 f(t)dt−
y∫

y−λ

ln2 f(t)dt

2

(
y∫
x

g(t) ln f(t)dt−
y∫

y−λ

ln f(t)dt

)
 .

Now, we establish monotonicity properties of the new means.

Theorem 2.1. Let r ≤ u, s ≤ v. Then,

S1(f, g;x, y; r, s) ≤ S1(f, g;x, y;u, v)

and

S2(f, g;x, y; r, s) ≤ S2(f, g;x, y;u, v).

For the proof, we need the following two lemmas.

Lemma 2.2. Let f be a log-convex function. If x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality holds:

(2.5)
(
f(x2)
f(x1)

)1/(x2−x1)

≤
(
f(y2)
f(y1)

)1/(y2−y1)

.

Proof. This follows from Remark 1.2. in [2], �

Observe that

S1(f, g;x, y; r, s) =
(
φ(r)
φ(s)

) 1
r−s

,
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where,

(2.6) φ(r) =


1
r

(
y∫
x
f r(t)g(t)dt−

x+λ∫
x
f r(t)dt

)
, r 6= 0,

y∫
x
g(t) ln f(t)dt−

x+λ∫
x

ln f(t)dt, r = 0.

Similarly,

S2(f, g;x, y; r, s) =
(
ψ(r)
ψ(s)

) 1
r−s

,

where,

(2.7) ψ(r) =


1
r

(
y∫

y−λ

f r(t)dt−
y∫
x
f r(t)g(t)dt

)
, r 6= 0,

y∫
y−λ

ln f(t)dt−
y∫
x
g(t) ln f(t)dt, r = 0.

Let us observe that lim
r→0

φ(r) = φ(0) and lim
r→0

ψ(r) = ψ(0), meaning
that φ and ψ are continuous functions. �

Lemma 2.3. The functions φ and ψ defined by (2.6) and (2.7) are log-
convex functions.

Proof. Consider the following function,

h(x) = p2ϕr(x)+2pqϕz(x)+q2ϕs(x) where z =
r + s

2
and p, q ∈ R,

and

ϕu(x) =

{
xu

u , u 6= 0,
lnx, u = 0.

Now,

h′(x) = p2xr−1 + 2pqxz−1 + q2xs−1

=
(
px(r−1)/2 + qx(s−1)/2

)2
≥ 0.

This implies that h is monotonically increasing. Since f is an increas-
ing function, then h ◦ f is an increasing function. Then, the following
Steffensen’s inequalities from Theorem 1.2 are satisfied:
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(2.8)

y∫
x

h(f(t))g(t)dt−
x+λ∫
x

h(f(t))dt ≥ 0

and
y∫

y−λ

h(f(t))dt−
y∫

x

h(f(t))g(t)dt ≥ 0.

From (2.8) it then follows:

p2φ(r) + 2pqφ(z) + q2φ(s) ≥ 0 , where z =
r + s

2
and p, q ∈ R.

This implies:

φ2( r+s
2 ) ≤ φ(r)φ(s),

that is, φ is a log-convex function in the Jensen sense. Since we have
shown that φ is a continuous function, we conclude that φ is log-convex
function. The log-convexity of ψ can be deduced in a similar way. �

Proof. [Proof of Theorem 2.1] We now apply inequality (2.5) from
Lemma 2.2 for f = φ, r ≤ u, s ≤ v, r 6= s, u 6= v (r, t, u, v 6= 0) to
deduce: (

φ(r)
φ(s)

) 1
r−s

≤
(
φ(u)
φ(v)

) 1
u−v

.

Since (r, s) 7→ S1(f, g;x, y; r, s) is continuous, we have, for r ≤ u, s ≤ v,

S1(f, g;x, y; r, s) ≤ S1(f, g;x, y;u, v).

The same arguments stand for S2(f, g;x, y; r, s). �
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