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RELATIVE COMPACTNESS AND PRODUCT STABLE
QUOTIENT MAPS

GH. MIRHOSSEINKHANI

Communicated by Gholamhossein Esslamzadeh

Abstract. It is well known that, for Hausdorff spaces, a quotient
map f : X → Y is product stable, in the sense that the product
map f × g is a quotient map, for every quotient map g, if and only
if Y is locally compact and f is biquotient. Here, we present a
generalization of those quotient maps which are product stable.

1. Introduction

Recall that, for arbitrary subsets A and B of a topological space X,
we say that A is compact relative to B, written A � B, if for every open
cover of B, there exist finitely many elements in the cover that cover A.
The extension of the notion of relative compactness to arbitrary subsets
generalizes the familiar concept of compact subset. Indeed, a subset A
is compact if and only if A � A; see [4].

The notion of relative compactness, restricted to open sets, plays an
important role in the study of core compact spaces. Indeed, the def-
inition of core compactness says that X is core compact if, for every
x ∈ X and every open neighborhood V of x, there exists an open neigh-
borhood U of x with U � V . For Hausdorff spaces, core compactness
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coincides with local compactness; see [3]. There exist many characteri-
zations of the core compact spaces. A useful characterizations is related
to the quotient maps, that is, a space X is core compact if and only
if q × iX : A × X → B × X is a quotient map for every quotient map
q : A → B, where iX is the identity map; see [4].

Here, we present the notion of f -relative compactness and we study a
few basic properties of continuous maps which reflect relative compact-
ness to f -relative compactness. Also, we investigate some properties of
these maps related to the proper, biquotient and product stable quotient
maps.

Lemma 1.1. [3] If X is a core compact space and U , V are open subsets
of X with U � V , then there exists an open subset W of X, such that
U � W � V .

Lemma 1.2. [4] Let X and Y be topological spaces.
(a) If f : X → Y is a continuous map and A � B in X, then

f(A) � f(B) in Y .
(b) If A′ � A in X and B′ � B in Y , then A′ × B′ � A × B in

X × Y .

Theorem 1.3. [1] A quotient map f : X → Y is product stable if and
only if Y is a core compact space and the product map f × iZ is quotient
for every space Z, where iZ is the identity map.

2. f-relative compactness

In this section, we give the notion of f -relative compactness and some
properties of it. Also, we present a necessary and sufficient condition for
f -relative compactness.

Definition 2.1. Let f : X → Y be a continuous map. For arbitrary
subsets A and B of Y and X, respectively, we say that A is f -relatively
compact in B, written A �f B, if for every open covering (Ui)i∈I of B,
there is some finite subset F of I such that A ⊆

⋃
i∈F

f(Ui).

The following lemma is an immediate consequence of the definition of
the relation �f .
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Lemma 2.2. Let f : X → Y be a continuous map.
(a) For open subsets U and V of Y and X, respectively, U �f V

implies U ⊆ f(V ).
(b) A′ ⊆ A �f B ⊆ B′ implies A′ �f B′.
(c) A �f B and A′ �f B together imply A ∪A′ �f B.

Lemma 2.3. Let f : X → Y be a continuous map.
(a) If A and B are subsets of Y and X, respectively, such that A �f

B, then A � f(B).
(b) If A and B are subsets of X such that A � B, then f(A) �f B.

Proof. (a): Let (Ui)i∈I be an open cover of f(B). Then, B ⊆
⋃
i∈I

f−1(Ui),

and hence there exists a finite subset F of I such that A ⊆
⋃
i∈F

ff−1(Ui).

Therefore, A ⊆
⋃
i∈F

Ui, as desired. The proof of (b) is similar to (a). �

The following example shows that if f : X → Y is a continuous map
and A � B in Y , then the relation A �f f−1(B) may be false.

Example 2.4. Let X = {a, b, c} and f : (X, τ) → (X, τ ′) be the identity
map such that τ ′ = {∅, X, {a}}, and τ be the discrete topology on X.
Then, {b} � {c} in (X, τ ′), but the relation {b} �f f−1({c}) is false.

Lemma 2.5. Let f : X → Y be a continuous map and A, B be subsets
of Y and X, respectively. Then, the following conditions are equivalent:

(a)A �f B.
(b) For every space Z, if z ∈ Z and W is an open subset of Z×X such

that {z} × B ⊆ W , then V × A ⊆ (iz × f)(W ), for some neighborhood
V of z.

Proof. Similar to the proof of the Theorem 6.2 in [2]. �

3. Product stable quotient maps

A quotient map f : X → Y is called product stable if the product
map f × g : X × Z → Y × W is a quotient for every quotient map
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g : Z → W . In [8], Michael showed that for locally compact Hausdorff
spaces, product stable quotient maps were precisely biquotient maps,
where a continuous surjective map f : X → Y is called biquotient, if
for each y ∈ Y and each open covering (Ui)i∈I of f−1(y), there is some
finite subset F of I, such that y ∈ int(

⋃
i∈F

f(Ui)). In [1], Day and Kelly

showed that biquotient maps were exactly universal quotient maps, or
pullback stable quotient maps, that is, quotient maps whose pullback
along any map is still a quotient.

Here, we present some properties of continuous maps which reflect
relative compactness to f -relative compactness. In particular, we show
that (main result) such maps are product stable quotient maps, for core
compact spaces, and are precisely the biquotient maps, for Hausdorff
spaces. The importance of the main theorem is in its usefulness to
be able to identify a quotient map as a product stable map, for non-
Hausdorff spaces.

For the proof of the main theorem, we use several concepts from
main stream general topology. In particular, the characterization of the
exponentiable spaces and the exponential topology has a long history,
which is discussed in detail by Isbell [6] and goes back to at least 1945
with the work of Fox [5]. The first general solution is implicit in the
work of Day and Kelly [1], who characterized the space X for which
the identity map iX : X → X is product stable if and only if X is a
core compact space. By virtue of the Adjoint Functor Theorem [7], such
spaces coincide with the exponentiable spaces; see [3] and [6] for details.
Day and Kelly’s characterization amounts to the fact that the open sets
of X(denoted by OX) form a continuous lattice in the sense of Scott [9],
but continuous lattices were introduced independent of the work of Day
and Kelly.

Definition 3.1. Let f : X → Y be a continuous map.
(a) We say that f reflects relative compactness between arbitrary

sets, if for arbitrary subsets A and B of Y such that A � B, then
f−1(A) � f−1(B).

(b) We say that f reflects relative compactness to f -relative com-
pactness, if for arbitrary subsets A and B of Y such that A � B, then
A �f f−1(B).
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Example 3.2. Let f : X → Y be a continuous surjective map and A �
B in Y . If f−1(A) � f−1(B), then by Lemma 2.3, ff−1(A) �f f−1(B),
and hence A �f f−1(B). Therefore, if f reflects relative compactness,
then f reflects relative compactness to f -relative compactness. Every
proper map reflects relative compactness between arbitrary sets; see
[2]. Therefore, proper maps reflect relative compactness to f -relative
compactness.

Proposition 3.3. Let f : X → Y and g : Y → Z be continuous maps.
(a) If g is surjective and reflects relative compactness and f reflects

relative compactness to f-relative compactness, then gf reflects relative
compactness to gf-relative compactness.

(b) If gf reflects relative compactness to gf-relative compactness and
g is injective, then f reflects relative compactness to f-relative compact-
ness.

(c) If gf reflects relative compactness to gf-relative compactness and
f is surjective, then g reflects relative compactness to g-relative com-
pactness.

Proof. (a): Let A � B in Z. Then, g−1(A) � g−1(B) in Y , and so
g−1(A) �f f−1g−1(B). Now, let (Ui)i∈I be an open cover of f−1g−1(B).
Then, there is some finite subset F of I such that g−1(A) ⊆

⋃
i∈F

f(Ui),

and hence A = gg−1(A) ⊆
⋃
i∈F

gf(Ui). Thus, A �gf f−1g−1(B).

(b): Let A � B in Y . By Lemma 1.2, g(A) � g(B) in Z. So,
g(A) �gf f−1g−1g(B), and hence g(A) �gf f−1(B). Now, let (Ui)i∈I

be an open cover of f−1(B). Then, there is some finite subset F of I

such that g(A) ⊆
⋃
i∈F

gf(Ui). Since g is injective, then A ⊆
⋃
i∈F

f(Ui),

and thus A �f f−1(B).
(c): Similar to the proof of (b). �

Proposition 3.4. Let f : X → Y and g : Z → W be continuous maps.
(a) If f×g reflects relative compactness to f×g-relative compactness,

then f reflects relative compactness to f-relative compactness.
(b) If f and g reflect relative compactness to f-relative compactness

and g-relative compactness, respectively, A × B � C × D in Y × W ,
then A×B �f×g (f × g)−1(C ×D).
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Proof. (a): Let A � B in Y and w be an arbitrary point in W .
Then, by Lemma 1.2, A × {w} � B × {w} in Y × W , and therefore
A× {w} �f×g f−1(B)× g−1{w}, and hence A �f f−1(B).

(b): Let A × B � C × D in Y × W . Then, by Lemma 1.2, A =
π(A × B) � C = π(C × D), where π : Y ×W → Y is the projection
map. So, A �f f−1(C), and similarly, we have that B �g g−1(D).
Thus, similar to the proof of Lemma 1.2, we have that A × B �f×g

f−1(C)× g−1(D) = (f × g)−1(C ×D). �

Lemma 3.5. Let f : X → Y be a biquotient map. Then, f reflects
relative compactness to f-relative compactness between arbitrary sets.

Proof. Let A � B in Y and (Ui)i∈I be an open cover of f−1(B).
Then, for every point y in B, there is a finite subset Fy of I and an
open neighborhood Uy of y such that y ∈ Uy ⊆

⋃
i∈Fy

f(Ui). Therefore,

there is a finite subset S of B such that A ⊆
⋃
y∈S

f(Uy), and hence

A ⊆
⋃
y∈S

⋃
i∈Fy

f(Ui), as desired. �

Remark 3.6. Let f : X → Y be a continuous map such that Y be a
Hausdorff space. Then, f is a biquotient map if and only if for each
y ∈ Y and each open covering (Ui)i∈I of X, there is some finite subset
F of I such that y ∈ int(

⋃
i∈F

f(Ui)); see proposition 2.1 in [8].

Lemma 3.7. Let f : X → Y be a continuous surjective map such that
reflects relative compactness to f-relative compactness between open sets,
and Y be a locally compact Hausdorff space. Then, f is a biquotient map.

Proof. Let y ∈ Y and (Ui)i∈I be an open cover of X. Since Y is a core
compact space, then there exists an open neighborhood U of y such that
U � Y . By assumption, U �f f−1(Y ) = X, and thus there is a finite
subset F of I such that y ∈ U ⊆

⋃
i∈F

f(Ui), and hence by Remark 3.6,

the result follows. �
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Proposition 3.8. Let f : X → Y be a continuous surjective map such
that Y be a locally compact Hausdorff space. Then, f is a biquotient map
if and only if f reflects relative compactness to f-relative compactness
between open sets.

Proof. The result follows by Lemmas 3.5 and 3.7.

Remark 3.9. Let X and Y be topological spaces and let C(X, Y ) de-
note the set of continuous maps from X to Y . Given any continuous
map f : A × X → Y , one has a function f̄ : A → C(X, Y ) defined
by f̄(a)(x) = f(a, x), called the exponential transpose of f . A topol-
ogy on C(X, Y ) is said to be exponential, if continuity of a function
f : A×X → Y is equivalent to that of its transpose f̄ : A → C(X, Y ).
A space X is said to be exponentiable, if for every space Y there is an
exponential topology on C(X, Y ). A space is exponentiable if and only
if it is core compact. Moreover, if X is a core compact space and Y is
any space, then the exponential topology on C(X, Y ) is generated by
the sets {f ∈ C(X, Y ) | U � f−1(V )}, where U and V range over open
sets of X and Y , respectively; see Theorem 5.3 in [3].

Theorem 3.10. (Main result) Let q : X → Y be a quotient map which
reflects relative compactness to q-relative compactness between open sets,
and let Y be a core compact space. Then, q is a product stable quotient
map.

Proof. By Theorem 1.3, it is enough to show that iA × q is a quotient
map, for every space A. Let g : A × Y → Z be an arbitrary function
such that h = g ◦ (iA × q) : A × X → A × Y → Z is a continuous
map. we show that g is a continuous map. Since Y is a core compact
space, then by Remark 3.9, C(Y, Z) has an exponential topology which
is generated by the sets N(U, V ) = {f ∈ C(Y, Z) | U � f−1(V )},
where U and V range over open sets of Y and Z, respectively. Let
C(X, Z) be endowed with a topology which is generated by the sets
N ′(U, V ) = {f ◦ q | f ∈ C(Y, Z), U � f−1(V )}. Then, the function
q̂ : C(Y, Z) → C(X, Z), defined by q̂(f) = f ◦ q, is continuous and
injective. Assume that ḡ and h̄ are the exponential transposes of g and
h, respectively. Then, we have q̂ ◦ ḡ(a)(x) = (ḡ(a) ◦ q)(x) = g(a, q(x)) =
g ◦ (i× q)(a, x) = h(a, x) = h̄(a)(x). Therefore, q̂ ◦ ḡ = h̄.
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Now, we show that h̄ is a continuous map. It is enough to show that
h̄−1(N ′(U, V )) is an open subset of A, where U and V range over open
sets of X and Z, respectively. Let W = h−1(V ).

First, we show that h̄−1(N ′(U, V )) = W̄−1(O), where O = {V ′ ∈
OX | U �q V ′} and the function W̄ : A → OX is defined by W̄ (a) =
{x ∈ X | (a, x) ∈ W}, and OX is the lattice of open sets of X. Suppose
that a ∈ h̄−1(N ′(U, V )). Then, h̄(a) = f ◦ q, for some f ∈ C(Y, Z),
such that U � f−1(V ). By assumption, U �q q−1f−1(V ). But, we
have x ∈ q−1f−1(V ) ⇔ f ◦ q(x) ∈ V ⇔ h̄(a)(x) ∈ V ⇔ h(a, x) ∈ V ⇔
(a, x) ∈ h−1(V ) ⇔ x ∈ W̄ (a). Thus, W̄ (a) = q−1f−1(V ), and hence
a ∈ W̄−1(O). Conversely, let a ∈ W̄−1(O) and f = g ◦ α, where the
map α : Y → A×Y is defined by α(y) = (a, y). Then, f ◦ q = h̄(a), and
since q is a quotient map, f is continuous. So W̄ (a) = q−1f−1(V ), and
thus we have q−1f−1(V ) ∈ O ⇒ U �q q−1f−1(V ) ⇒ U � f−1(V ) ⇒
f ◦ q ∈ N ′(U, V ) ⇒ h̄(a) ∈ N ′(U, V ) ⇒ a ∈ h̄−1(N ′(U, V )).

Next, we show that W̄−1(O) is an open subset of A. Let a ∈ W̄−1(O).
Similar to the above argument, we have W̄ (a) = q−1f−1(V ), for some
f ∈ C(Y, Z) and U � f−1(V ). By Lemma 1.1, there exists an open
subset V ′ of Y such that U � V ′ � f−1(V ), and hence U �q q−1(V ′)
and V ′ �q W̄ (a). Now, for every point x in W̄ (a), there exist open
neighborhoods Ux and Vx of a and x, respectively, such that (a, x) ∈
Ux × Vx ⊆ W . Thus, there is a finite set F such that V ′ ⊆

⋃
x∈F

q(Vx).

Let U0 =
⋂
x∈F

Ux and V0 =
⋃
x∈F

Vx. Then, we show that U0 ⊆ W̄−1(O).

Let b ∈ Uo. It is enough to show that V0 ⊆ W̄ (b). Suppose that x ∈ V0.
Then, x ∈ Vx′ , for some x′ ∈ F . Therefore, (b, x) ∈ Ux′ × Vx′ ⊆ W ,
and hence x ∈ W̄ (b). But similar to the above argument, W̄ (b) =
q−1f−1(V ), for some f ∈ C(Y, Z). Thus, we have U �q q−1(V ′) ⊆
q−1q(V0) ⊆ q−1q(W̄ (b)) = W̄ (b), and hence b ∈ W̄−1(O). Therefore,
a ∈ U0 ⊆ W̄−1(O), which shows that W̄−1(O) is an open subset of A.

Finally, since q̂ is an injective map, q̂ ◦ ḡ = h̄ and N ′(U, V ) =
q̂(N(U, V )), then we have h̄−1(N ′(U, V )) = ḡ−1q̂−1(q̂(N(U, V )))
= ḡ−1(N(U, V )), which shows that ḡ is a continuous map, and hence g
is a continuous map because Y is a core compact space, as desired. �

By Theorem 1.3, the core compactness is a necessary condition for
the product stability of the quotient maps.
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Question. Does the converse of Theorem 3.10 hold?
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