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SUBORDINATION AND SUPERORDINATION RESULTS
INVOLVING CERTAIN CONVOLUTION OPERATORS

R. AGHALARY, A. EBADIAN AND Z.-G. WANG∗

Communicated by Fereidoun Ghahramani

Abstract. We introduce a new convolution operator Lλ
a(b, c; β).

Several subordination and superordination results involving this op-
erator are proved.

1. Introduction and Preliminaries

Let H(U) be the linear space of all analytic functions in the open unit
disk,

U := {z : z ∈ C and |z| < 1},
and

A := {f ∈ H(U) : f(0) = f ′(0)− 1 = 0}.
For a positive integer number n and a ∈ C, let

H[a, n] := {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + · · · }.

Furthermore, denote Q to be the set of all analytic and univalent func-
tions on the set U \ E(f), where,

E(f) := {ζ ∈ ∂U : lim
z→ζ

f(z) = ∞},
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and such that f ′(ζ) 6= 0 for ζ ∈ ∂U \E(f). The subclass of Q for which
f(0) = a is denoted by Q(a).

For two functions f and g, analytic in U, we say that the function f
is subordinate to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the fol-
lowing equivalence,

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For two functions fj(z) (j = 1, 2), given by

fj(z) = z +
∞∑

k=2

ak,jz
k (j = 1, 2),

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) := z +
∞∑

k=2

ak,1ak,2z
k =: (f2 ∗ f1)(z) (z ∈ U).

In terms of the Pochhammer symbol (or the shifted factorial), define
(κ)n by

(κ)0 = 1,
and

(κ)n = κ(κ+ 1)(κ+ 2) · · · (κ+ n− 1) (n ∈ N := {1, 2, 3, . . .}),
and then define a function φλ

a(b, c; z) by

(1.1) φλ
a(b, c; z) := 1 +

∞∑
n=1

(
a

a+ n

)λ (b)n

(c)n
zn (z ∈ U),

where

b ∈ R; c ∈ R \ Z−0 ; a ∈ C \ Z−0 (Z−0 := {0,−1,−2, ...}); λ ≥ 0.
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Corresponding to the function φλ
a(b, c; z), given by (1.1), we introduce

the following convolution operator,
(1.2)

Lλ
a(b, c;β)f(z) := φλ

a(b, c; z) ∗
(
f(z)
z

)β

(f ∈ A; β ∈ C \ {0}; z ∈ U).

It is easy to see that

(1.3) z
(
φλ+1

a (b, c; z)
)′

= aφλ
a(b, c; z)− aφλ+1

a (b, c; z),

and

(1.4) z
(
φλ

a(b, c; z)
)′

= bφλ
a(b+ 1, c; z)− bφλ

a(b, c; z).

Hence, from (1.3) and (1.4), we easily obtain:

(1.5) z
(
Lλ+1

a (b, c;β)f
)′

(z) = aLλ
a(b, c, β)f(z)− aLλ+1

a (b, c, β)f(z),

and

(1.6) z
(
Lλ

a(b, c;β)f
)′

(z) = bLλ
a(b+ 1, c;β)f(z)− bLλ

a(b, c;β)f(z).

The operator Lλ
a(b, c, β) includes, as its special cases, Komatu integral

operator (see [3, 4, 10]), some fractional calculus operators (see [2, 11,
12]) and Carlson-Shaffer operator (see [1]).

The following definition and lemmas play key roles in the proofs of
our main results.

Definition 1.1. A function P (z, t) (z ∈ U; t ≥ 0) is said to be a
subordination chain if P (., t) is analytic and univalent in U, for all t ≥
0, P (z, 0) is continuously differentiable on [0,∞), for all z ∈ U, and
P (z, t1) ≺ P (z, t2), for all 0 ≤ t1 ≤ t2.

Lemma 1.2. (See [9]) The function,

P (z, t) : U× [0,∞) → C

of the form

P (z, t) = a1(t)z + a2(t)z2 + · · · (a1(t) 6= 0; t ≥ 0) ,

and lim
t→∞

|a1(t)| = ∞, is a subordination chain if and only if

<
(
z ∂P/∂z

∂P/∂t

)
> 0 (z ∈ U; t ≥ 0).
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Lemma 1.3. (See [5]) Suppose that the function H : C2 → C for all
real s and for all

t ≤ −n(1 + s2)
2

(n ∈ N)

satisfies the condition <(H(is, t)) ≤ 0. If the function

p (z) = 1 + pnz
n + pn+1z

n+1 + · · ·
is analytic in U and

<
(
H(p (z), zp′(z))

)
> 0 (z ∈ U),

then
<(p (z)) > 0 (z ∈ U).

Lemma 1.4. (See [6]) Let κ, γ ∈ C with κ 6= 0 and let h ∈ H(U) with
h(0) = c. If

<(κh(z) + γ) > 0 (z ∈ U),
then the solution of the following differential equation,

q(z) +
zq′(z)

κq(z) + γ
= h(z) (z ∈ U; q(0) = c)

is analytic in U and satisfies the inequality given by

<(κq(z) + γ) > 0 (z ∈ U).

Lemma 1.5. (See [7]) Let p ∈ Q(a) and

q(z) = a+ anz
n + an+1z

n+1 + · · · (q 6= a; n ∈ N)

be analytic in U. If q is not subordinate to p, then there exist two points

z0 = r0e
iθ ∈ U and ξ0 ∈ ∂U\E(f)

such that

q(Ur0) ⊂ p (U), q(z0) = p (ξ0) and z0q
′(z0) = mξ0p

′(ξ0) (m ≥ n).

Lemma 1.6. (See [8]) Let q ∈ H[a, 1] and φ : C2 → C. Also, set

φ
(
q(z), zq′(z)

)
≡ h(z) (z ∈ U).

If P (z, t) := φ (q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩
Q(a), then

h(z) ≺ φ
(
p(z), zp′(z)

)
(z ∈ U)

implies that
q(z) ≺ p(z) (z ∈ U).

Furthermore, if φ (q(z), zq′(z)) = h(z) has a univalent solution q ∈ Q(a),
then q is the best subordination.
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2. Main results

We begin by presenting our first subordination property given by
Theorem 2.1 below. For convenience, let

A0 := {f ∈ A : Lλ
a(b, c;β)f(z) 6= 0 (z ∈ U)}.

Theorem 2.1. Let f, g ∈ A0, λ ≥ 0, a ∈ C, <(a) > 0 and β ∈ C\{0}.
If

(2.1) <
(

1 +
zψ′′(z)
ψ′(z)

)
> −δ

(
z ∈ U; ψ(z) := Lλ

a(b, c;β)g(z)
)
,

where,

(2.2) δ :=
1 + |a|2 − |1− a2|

4<(a)
,

then the following subordination relationship,

(2.3) Lλ
a(b, c;β)f(z) ≺ Lλ

a(b, c;β)g(z) (z ∈ U)

implies that

Lλ+1
a (b, c;β)f(z) ≺ Lλ+1

a (b, c;β)g(z) (z ∈ U).

Moreover, the function Lλ+1
a (b, c;β)g is the best dominant.

Proof. Let F, G and q be defined by

(2.4) F := Lλ+1
a (b, c;β)f, G := Lλ+1

a (b, c;β)g and q := 1 +
zG′′(z)
G′

.

We can assume, without loss of generality, that G is analytic and uni-
valent on U and that G′(ζ) 6= 0 (|ζ| = 1). If not, then we can replace F
and G by F (ρz) and G(ρz) with 0 < ρ < 1. These new functions have
the desired properties on U, and we can use them in the proof of our
result. Therefore, our result would follow by letting ρ→ 1.

We first show that

<(q(z)) > 0 (z ∈ U).

In view of (1.5) and the definitions of G and ψ, we know that

(2.5) ψ(z) = G(z) +
1
a
zG ′(z).

Differentiating both sides of (2.5), we get

(2.6) ψ′(z) =
(

1 +
1
a

)
G ′(z) +

1
a
zG ′′(z).
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After a simple manipulation, we obtain the following relation,

(2.7) 1 +
zψ′′(z)
ψ′(z)

= q(z) +
zq′(z)
a+ q(z)

:= h(z) (z ∈ U).

From (2.1), we deduce that

(2.8) < (h(z) + a) > 0 (z ∈ U).

Furthermore, by Lemma 1.4, we conclude that the differential equation
(2.7) has a solution q ∈ H(U) with h(0) = q(0) = 1. Let

H(u, v) = u+
v

u+ a
+ δ,

where δ is given by (2.2). From (2.7) and (2.8), we obtain

<
(
H(q(z), zq′(z))

)
> 0 (z ∈ U).

To verify the condition <(H(is, t)) ≤ 0, we proceed as follows:

<(H(is, t)) = <
(
is+

t

is+ a
+ δ

)
=

t<(a)
|a+ is|2

+ δ ≤ − k

2|a+ is|2
,

where,
k = |<(a)− 2δ|s2 − 4δ=(a)s− 2δ|a|2 + <(a).

But in view of the value of δ given by (2.2), we know that k is a perfect
square, which implies that

<(H(is, t)) ≤ 0
(
s ∈ R; t ≤ −1 + s2

2

)
.

Now, by Lemma 1.3, we conclude that

<(q(z)) > 0 (z ∈ U).

By the definition of q, we know that G is convex. To prove F ≺ G,
we let the function P (z, t) be defined by

P (z, t) := G(z) +
(

1 + t

a

)
zG′(z) (z ∈ U; 0 ≤ t <∞),

Since G is convex and <(a) > 0, we have

∂P (z, t)
∂z

|z=0 = G′(0)
(

1 +
1 + t

a

)
6= 0 (z ∈ U; 0 ≤ t <∞)

and

<
(
z ∂P (z, t)/∂z
∂P (z, t)/∂t

)
= <(a+ (1 + t)q(z)) > 0 (z ∈ U).



Subordination and superordination results involving certain convolution operator 143

Therefore, by Lemma 1.2, we obtain that P (z, t) is a subordination
chain. Now, from the definition of subordination chain, it follows that

ψ(z) = G(z) +
1
a
zG′(z) = P (z, 0),

and
P (z, 0) ≺ P (z, t) (z ∈ U; 0 ≤ t <∞),

which implies:

(2.9) P (ζ, t) /∈ P (U, 0) = ψ(U) (ζ ∈ ∂U; 0 ≤ t <∞).

If F is not subordinate to G, then by Lemma 1.5, there exist two points
z0 ∈ U and ζ0 ∈ ∂U such that

(2.10) F (z0) = G(ζ0) and z0F (z0) = (1 + t)ζ0G′(ζ0) (0 ≤ t <∞).

Hence, by virtue of (1.5) and (2.10), we have

P (ζ0, t) = G(ζ0) +
1 + t

a
ζ0G

′(ζ0)

= F (z0) +
1
a
z0F

′(z0)

= Lλ
a(b, c;β)f(z0) ∈ ψ(U).

But, this contradicts (2.9), and thus we deduce that F ≺ G. Considering
F = G, we see that the function G is the best dominant. The proof of
Theorem 2.1 is thus complete.

Suppose that γ ∈ C. By setting a = γ + β, λ = 0, b = c = 1 in
Theorem 2.1, we get the following result.

Corollary 2.2. Let f, g ∈ A0, and β ∈ C \ {0}. If

<
(

1 +
zψ′′(z)
ψ′(z)

)
> −1 + |γ + β|2 − |1− (γ + β)2|

4<(γ + β)(
z ∈ U; ψ(z) :=

(
f(z)
z

)β
)
,

then (
f(z)
z

)β

≺
(
g(z)
z

)β

implies:
γ + β

zγ+β

∫ z

0
uγ−1(f(u))βdu ≺ γ + β

zγ+β

∫ z

0
uγ−1(g(u))βdu.
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By using the relationship (1.6) and applying the similar method of
the Theorem 2.1, we easily get the following result.

Corollary 2.3. Let f, g ∈ A0, λ ≥ 0, β ∈ C \ {0} and b > 0. If

(2.11) <
(

1 +
zϕ′′(z)
ϕ′(z)

)
> −η (z ∈ U; ϕ(z) := Lλ

a(b+ 1, c;β)g(z)),

where,

(2.12) η :=
1 + |b|2 − |1− b2|

4b
,

then the following subordination relationship,

(2.13) Lλ
a(b+ 1, c;β)f(z) ≺ Lλ

a(b+ 1, c;β)g(z)

implies:

Lλ
a(b, c;β)f(z) ≺ Lλ

a(b, c;β)g(z) (z ∈ U).

Moreover, the function Lλ
a(b, c;β)g is the best dominant.

We note that η given by (2.12) satisfies the condition 0 < η ≤ 1
2 . By

setting a = 1, λ = 1, b = 2, c = 1 in Corollary 2.3, we get the following
result.

Corollary 2.4. Let f, g ∈ A0 and β ∈ C \ {0}. If

<
(

1 +
zϕ′′(z)
ϕ′(z)

)
> −3

8(
z ∈ U; ϕ(z) :=

β

2

((
f(z)
z

)β

+
(
f(z)
z

)β−1

f ′(z)

))
,

(2.14)

then the following subordination,(
f(z)
z

)β

+
(
f(z)
z

)β−1

f ′(z) ≺
(
g(z)
z

)β

+
(
g(z)
z

)β−1

f ′(z),

implies (
f(z)
z

)β

≺
(
g(z)
z

)β

(z ∈ U).

If f is subordinate to F , then F is superordinate to f . We now derive
the following superordination result.
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Theorem 2.5. Let f, g ∈ A0, β ∈ C \ {0} and <(a) > 0. If

<
(

1 +
zψ′′(z)
ψ′(z)

)
> −δ (z ∈ U; ψ(z) := Lλ

a(b, c;β)g(z)),

where δ is given by (2.2), and if the function Lλ
a(b, c;β)f is univalent in

U and Lλ+1
a (b, c;β)f ∈ Q, then the following subordination relationship

Lλ
a(b, c;β)g(z) ≺ Lλ

a(b, c;β)f(z) (z ∈ U)

implies:

Lλ+1
a (b, c;β)g(z) ≺ Lλ+1

a (b, c;β)f(z) (z ∈ U).

Moreover, the function Lλ+1
a (b, c;β)g is the best subordinant.

Proof. Let the functions F , G and q be defined by (2.4). By applying
the similar method as in the proof of Theorem 2.1, we get

<(q(z)) > 0 (z ∈ U).

Next, to arrive at our desired result, we show that G ≺ F . For this, let
the function P (z, t) be defined by

P (z, t) = G(z) +
1 + t

a
zG′(z) (z ∈ U).

Since <(a) > 0, and G is convex, we can prove as in Theorem 2.1 that
P (z, t) is a subordination chain. Therefore, by Lemma 1.6, we conclude
G ≺ F . Furthermore, since the differential equation,

(2.15) ψ(z) = G(z) +
1
a
zG′(z) := φ

(
G(z), zG′(z)

)
,

has a univalent solution G, it is the best subordination. The proof of
Theorem 2.5 is evidently complete. �

By using similar arguments as in the proof of Theorem 2.5, we get
the following superordination result.

Corollary 2.6. Let f, g ∈ A0, β ∈ C \ {0} and b > 0. If

<
(

1 +
zϕ′′(z)
ϕ′(z)

)
> −η

(
z ∈ U; ϕ(z) := Lλ

a(b+ 1, c;β)g(z)
)
,

where η is given by (2.12), and if Lλ
a(b+ 1, c;β)f is univalent in U and

Lλ
a(b, c;β)f ∈ Q, then the following subordination relationship,

Lλ
a(b+ 1, c;β)g(z) ≺ Lλ

a(b+ 1, c;β)f(z) (z ∈ U)
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implies that:

Lλ
a(b, c;β)g(z) ≺ Lλ

a(b, c;β)f(z) (z ∈ U).

Moreover, the function Lλ
a(b, c;β)g is the best subordinant.

Combining Theorems 2.1 and 2.5, we easily get the following sandwich-
type result.

Corollary 2.7. Let f, gk ∈ A0 (k = 1, 2), β ∈ C \ {0}, λ ≥ 0 and
<(a) > 0. If

<
(

1 +
zψ′′k(z)
ψ′k(z)

)
> −δ

(
z ∈ U; ψk(z) := Lλ

a(b, c;β)g(z) (k = 1, 2)
)
,

where δ is given by (2.2), and if let the function Lλ
a(b, c;β)f is univalent

in U and Lλ+1
a (b, c;β)f ∈ Q, then the following subordination relation-

ship,

Lλ
a(b, c;β)g1(z) ≺ Lλ

a(b, c;β)f(z) ≺ Lλ
a(b, c;β)g2(z) (z ∈ U)

implies:

Lλ+1
a (b, c;β)g1(z) ≺ Lλ+1

a (b, c;β)f(z) ≺ Lλ+1
a (b, c;β)g2(z) (z ∈ U).

Moreover, the functions Lλ+1
a (b, c;β)g1 and Lλ+1

a (b, c;β)g2 are, respec-
tively, the best subordinant and the best dominant.

Combining of Corollaries 2.3 and 2.6, we readily get the following
sandwich-type result.

Corollary 2.8. Let f, gk ∈ A0 (k = 1, 2), β ∈ C \ {0}, λ ≥ 0 and
b > 0. If

<
(
1 +

zϕ′′k(z)
ϕ′k(z)

)
>−η

(
z ∈ U; ϕk(z) := Lλ

a(b+ 1, c;β)gk(z) (k = 1, 2)
)
,

where η is given by (2.12), and if Lλ
a(b+ 1, c;β)f is univalent in U and

Lλ
a(b, c;β)f ∈ Q, then the following subordination relationship,

Lλ
a(b+1, c;β)g1(z) ≺ Lλ

a(b+1, c;β)f(z) ≺ Lλ
a(b+1, c;β)g2(z) (z ∈ U)

implies:

Lλ
a(b, c;β)g1(z) ≺ Lλ

a(b, c;β)f(z) ≺ Lλ
a(b, c;β)g2(z) (z ∈ U).

Moreover, the functions Lλ
a(b, c;β)g1 and Lλ

a(b, c;β)g2 are, respectively,
the best subordinant and the best dominant.
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