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SEQUENTIALLY COHEN-MACAULAY GRAPHS OF
FORM θn1 ,...,nk

F. MOHAMMADI* AND D. KIANI

Communicated by Siamak Yassemi

Abstract. Let k be an integer greater than 2 and n1, . . . , nk be
a sequence of positive integers with at most one of them being
equal to 1. Let θn1,...,nk be a graph consisting of k paths, having
only their endpoints in common. We characterize all sequentially
Cohen-Macaulay graphs of this type. We also show for these types
of graphs the notions of vertex decomposable, shellable and sequen-
tially Cohen-Macaulay are equivalent.

1. Introduction

Let G be a finite simple graph. To G with vertex set [n] = {1, . . . , n}
and edge set E(G), one can associate an ideal I(G) ⊂ R = K[x1, . . . , xn],
called the edge ideal of G, which is generated by all monomials xixj such
that {i, j} ∈ E(G). Here, K is an arbitrary field. The independence
complex ∆G of a graph G is defined by

∆G = {A ⊆ V | A is an independent set in G},
where, A is an independent set in G if none of its elements are adjacent.
Note that ∆G is precisely the simplicial complex associated with I(G).

It is a well-known consequence of Menger’s Theorem [5, Theorem
3.3.5] that each 3-connected graph has an induced subgraph of the form
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θp,q,r, for some natural numbers p, q and r. This was our motivation to
study sequentially Cohen-Macaulay graphs of the form θn1,...,nk

.
A graded R-module M is called sequentially Cohen-Macaulay (over

K) if there exists a finite filtration of graded R-modules,

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M,

such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions
of the quotients are increasing; that is,

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

A graph G is said to be sequentially Cohen-Macaulay, if R/I(G) is a
sequentially Cohen-Macaulay R-module.

On the other hand, a simplicial complex ∆ is called shellable, in the
sense of Björner and Wachs [1], if the facets (maximal faces) of ∆ can
be ordered as F1, . . . , Fs such that for all 1 6 i < j 6 s, there exists
some v ∈ Fj \Fi and some l ∈ {1, . . . , j−1} with Fj \Fl = {v}. A graph
G is called shellable, if ∆G is a shellable simplicial complex. In [12],
Stanley showed that every shellable simplicial complex was sequentially
Cohen-Macaulay, but the converse was not true.

Studying shellable or sequentially Cohen-Macaulay graphs has at-
tracted significant attentions of researchers working in the borderline
of combinatorial commutative algebra and algebraic combinatorics; see
[1, 6, 7, 8, 10, 14, 16]. In [8], Francisco and Van Tuyl characterized all
sequentially Cohen-Macaulay cycles. They showed that the n-cycle Cn

was sequentially Cohen-Macaulay if and only if n ∈ {3, 5} (see [8, Propo-
sition 4.1]). In [6], Faridi showed that simplicial trees were sequentially
Cohen-Macaulay. Moreover, in [10], sequentially Cohen-Macaulay cacti
graphs (a cactus is a connected graph in which each edge belongs to at
most one cycle) were characterized. In addition, in [14], Van Tuyl and
Villarreal showed that a bipartite graph G was shellable if and only if it
was sequentially Cohen-Macaulay (see [14, Theorem 3.8]).

Here, we determine all sequentially Cohen-Macaulay graphs of the
form θn1,...,nk

, where {n1, . . . , nk} 6= {2, 5}. For {n1, . . . , nk} 6= {2, 5}, we
show in Theorem 2.6 that θn1,...,nk

is sequentially Cohen-Macaulay if and
only if {1, 2} ⊆ {n1, . . . , nk} or {2, 3} ⊆ {n1, . . . , nk} or {n1, . . . , nk} =
{1, 4}. Moreover, as a result of this theorem, in Theorem 2.7 we show
those graphs of the form θn1,...,nk

, which satisfy each one of the latter re-
lations, are sequentially Cohen-Macaulay if and only if they are shellable
or vertex decomposable.
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Finally, in Proposition 2.8, we show that for {n1, . . . , nk} = {2, 5}, the
graph θn1,...,nk

is not vertex decomposable. Therefore, we characterize
all vertex decomposable graphs of the form θn1,...,nk

in Theorem 2.9. In
Proposition 2.10, by direct computation, we show that for k = 3 and
{n1, . . . , nk} = {2, 5}, the graph θn1,...,nk

is not even sequentially Cohen-
Macaulay. This result and computational evidences from some other
examples lead us to conjecture that all graphs of the form θn1,...,nk

, for
which {n1, . . . , nk} = {2, 5}, are not sequentially Cohen-Macaulay.

Characterizing vertex decomposable, shellable and sequentially Cohen-
Macaulay graphs of the form θn1,...,nk

with [13, Lemma 2.4] and [14,
Theorem 2.9] enable us to get more examples of vertex decomposable,
shellable and sequentially Cohen-Macaulay graphs.

2. Sequentially Cohen-Macaulay graphs of the form θn1,...,nk

Let k be an integer greater than 1 and n1, . . . , nk be a sequence of
positive integers. Let θn1,...,nk

be the graph constructed by k paths of
length n1, . . . , nk, with only their endpoints being in common. By length
of a path, we mean the number of edges in the path. Since the graphs
are assumed simple, at most one of the nis in θn1,...,nk

can be equal to
one. If k = 2, then θn1,...,nk

would be a cycle of length n1 + n2. The
vertex decomposable and sequentially Cohen-Macaulay graphs of these
types are completely studied in [8, 16]. Here, we assume k > 2 and
characterize all vertex decomposable, shellable and sequentially Cohen-
Macaulay graphs of the form θn1,...,nk

.
Given a simplicial complex ∆ on [n], the Alexander dual complex ∆∨

is defined by ∆∨ = {[n] \ F |F /∈ ∆}. Unless otherwise stated, when we
discuss the Alexander dual ∆∨ of a simplicial complex ∆, we assume
that [n] \ i /∈ ∆, for all i ∈ [n]. Thus, ∆∨ is again a simplicial complex
on [n].

Let I = (x1,1 · · ·x1,s1 , . . . , xt,1 · · ·xt,st) be a square-free monomial
ideal. The ideal

I∨ = (x1,1, . . . , x1,s1) ∩ . . . ∩ (xt,1, . . . , xt,st)

is called the Alexander dual of I. These two ideals are related in the
following way. If I is the Stanley-Reisner ideal of a simplicial complex
∆, then the Stanley-Reisner ideal of its Alexander dual ∆∨ is I∨.

Another related notion is componentwise linear ideals, introduced by
Herzog and Hibi, to characterize sequentially Cohen-Macaulay ideals.
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Let I be a graded ideal of R and let I<d> be the ideal generated by all
homogeneous polynomials of degree d of I. A graded ideal I of R is
called componentwise linear if I<d> has a linear resolution, for every d.
Let I be a square-free monomial ideal in a polynomial ring. The ideal
generated by the square-free monomials of degree d of I is denoted by
I[d]. Herzog and Hibi in [9, Proposition 1.5] showed that the square-free
ideal I was componentwise linear if and only if I[d] had a linear resolution
for every d.

Let G be a graph with vertex set V(G) and edge set E(G). A subset
C ⊆ V(G) is a minimal vertex cover of G if: (1) every edge of G is
incident with one vertex in C, and (2) there is no proper subset of C
with the first property. In [8], Francisco and Van Tuyl showed that if
I(G) was the ideal of a graph G, then

I(G)∨[d] = ({xi1 · · ·xid |{xi1 , . . . , xid} is a vertex cover of G of size d}).

In [9], Herzog and Hibi showed the following theorem to be used in the
proof of Proposition 2.4.

Theorem A. Let I be a square-free monomial ideal in a polynomial
ring. Then I∨ is componentwise linear if and only if R/I is sequentially
Cohen-Macaulay.

Let N(v) be the set of all adjacent vertices of v and let N [v] =
N(v) ∪ {v}. Vertex decomposability was introduced by Provan and
Billera [11] in the pure case, and extended to the non-pure case by
Björner and Wachs [2]. We will use the following definition of vertex
decomposable graphs which is an interpretation of the definition of ver-
tex decomposable for the independence complex of a graph, as stated in
[13, 16].

Definition 2.1. The independence complex of G is vertex decomposable
if G is a totally disconnected graph (with no edges), or if

• G \ v and G \N [v] are both vertex decomposable, and
• No independent set in G \N [v] is a maximal independent set in

G \ v.

A vertex v which satisfies in these conditions is called a shedding vertex.
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The graph G is called vertex decomposable if its independence com-
plex is vertex decomposable. It is known that the any vertex decom-
posable graph is shellable and so is sequentially Cohen-Macaulay (see
[16]).

For characterizing vertex decomposable, shellable and sequentially
Cohen-Macaulay graphs of the form θn1,...,nk

, we have to distinguish
among some cases, depending on n1, . . . , nk, as follows.

Proposition 2.2. If {1, 2} ⊆ {n1, . . . , nk}, then θn1,...,nk
is vertex de-

composable and so is shellable and sequentially Cohen-Macaulay.

Proof. Two paths of length one and two form a triangle. Let v, u
and w be its vertices such that deg(v) = 2. The graphs θn1,...,nk

\ {u}
and θn1,...,nk

\N [u] are chordal and so they are vertex decomposable, by
[16, Theorem 1]. For any independent set F in θn1,...,nk

\N [u], F ∪ {v}
is an independent set in θn1,...,nk

\ {u}. Therefore, θn1,...,nk
fulfills the

conditions of Definition 2.1, which completes the proof. �

Remark 2.3. If in the above proposition, one assumes {n1, . . . , nk} =
{1, 2}, then the associated graph, θn1,...,nk

, is chordal. These types of
graphs are known to be vertex decomposable, by [16, Theorem 1].

A chordless path in a graph G is a path v1, v2, . . . , vk in G with no
edge vivj with j 6= i + 1. A simplicial k-path in G is a chordless path
v1, v2, . . . , vk which cannot be extended on both endpoints to a chordless
path v0, v1, . . . , vk, vk+1 in G.

Proposition 2.4. Let {2, 3} ⊆ {n1, . . . , nk}. Then, θn1,...,nk
is ver-

tex decomposable and consequently shellable and sequentially Cohen-
Macaulay.

Proof. Let P1 : u, x, v and P2 : u, y, z, v be two paths of length two and
three in θn1,...,nk

. Since the path P : x, u, y is a simplicial 3-path, which
is not a subgraph of any chordless C4, by [16, Lemma 4.3] we deduce
that G is vertex decomposable. �

Proposition 2.5. Let {n1, . . . , nk} = {1, 4}. Then, θn1,...,nk
is ver-

tex decomposable and consequently shellable and sequentially Cohen-
Macaulay.
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Proof. Each cycle other than C5 in θn1,...,nk
has a chord and so, by [16,

Theorem 1], it is vertex decomposable. �

The following theorem is one of the main results of this paper which
characterizes all sequentially Cohen-Macaulay graphs of the form θn1,...,nk

,
where {n1, . . . , nk} 6= {2, 5}.

Theorem 2.6. Let n1, . . . , nk 6= {2, 5}. Then, θn1,...,nk
is sequentially

Cohen-Macaulay if and only if one of the following holds:

(1) {1, 2} ⊆ {n1, . . . , nk}.
(2) {2, 3} ⊆ {n1, . . . , nk}.
(3) {1, 4} = {n1, . . . , nk}.

Proof. “If”. Suppose that one of (1) to (3) holds. Then, by Proposi-
tion 2.2, Proposition 2.4 and Proposition 2.5, the result holds.

“Only if”. Let G = θn1,...,nk
be a sequentially Cohen-Macaulay

graph. The proof is by induction on k. If k = 2, then the graph is
a cycle and so the result holds by [8, Proposition 4.1]. Let k > 2,
n1 ≤ · · · ≤ nk and Pi : x, xi,1, . . . , xi,ni−1, y, for 1 ≤ i ≤ k, be the paths
which construct G. If nt > 6, for some t ≥ 3, then

H = G \
k⋃

i=t

(N [xi,2] ∪N [xi,ni−2])

has a component of the form θn1,...,nt−1 . So, by the induction hypoth-
esis, (1) or (2) or (3) holds, for θn1,...,nt−1 . If (1) or (2) holds for
θn1,...,nt−1 , then this holds, for θn1,...,nk

. Let (3) holds for θn1,...,nt−1 , but
{n1, . . . , nk} 6= {1, 4}. Let S = {j;nj = 4} and H ′ = G \

⋃
j∈S N [xj,2].

Since n2 = 4, then H ′ has no path of length two, three and four. By the
induction hypothesis, H ′ is not sequentially Cohen-Macaulay, which is
a contradiction by [14, Theorem 3.3].

So, we can assume that nk < 6. Since G has no vertex of degree one,
it is not a bipartite graph by [14, Lemma 2.8]. Therefore, for nk = 2,
we have n1 = 1 and so (1) holds. Similarly, If nk = 3, then ni = 2, for
some i, and so (2) holds. If nk = 4, then G \ N [xk,2] is θn1,...,nk−1

. If
(1), (2) or (3) holds, for θn1,...,nk−1

, then the similar statement holds for
G. So, assume that nk = 5. Since G is not bipartite, for some i we have
ni = 2 or 4. If ni = 4 for some i, then H = G \ N [xi,2] is sequentially
Cohen-Macaulay and so (1) or (2) holds, which completes the result.
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Otherwise, the assumption {n1, . . . , nk} 6= {2, 5} shows that nj = 1 or
3, for some j, and so (1) or (2) holds. �

Recently, Van Tuyl showed that in bipartite graphs, the three concepts
vertex decomposability, shellability and sequentially Cohen-Macaulayness
are equivalent; see [13, Theorem 2.10]. Using the proof of the above theo-
rem, we have the same property for θn1,...,nk

, where {n1, . . . , nk} 6= {2, 5}.

Theorem 2.7. Let n1, . . . , nk 6= {2, 5}. Then, the followings are equiv-
alent:

(i) θn1,...,nk
is sequentially Cohen-Macaulay.

(ii) θn1,...,nk
is shellable.

(iii) θn1,...,nk
is vertex decomposable.

Proof. Note that (iii) ⇒ (ii) ⇒ (i) always holds for any graph. It is
enough to show that for these type of graphs, (i) ⇒ (iii). Let θn1,...,nk

be a sequentially Cohen-Macaulay graph. Then, Theorem 2.6 shows
that θn1,...,nk

satisfies one of the relations of Theorem 2.6. Therefore,
by Proposition 2.2, Proposition 2.4 and Proposition 2.5, we deduce that
θn1,...,nk

is vertex decomposable. �

In the following, we consider the case {n1, . . . , nk} = {2, 5}.

Proposition 2.8. Let {n1, . . . , nk} = {2, 5}. Then, θn1,...,nk
is not ver-

tex decomposable.

Proof. Let P1, . . . , Ps be the paths of length two in G = θn1,...,nk
and

Ps+1, . . . , Pk be the paths of length five in G. Consider the labeling for
G such that Pj : u, αj , v, for 1 ≤ j ≤ s, and Pj : u, xj,1, xj,2, xj,3, xj,4, v,
for s + 1 ≤ j ≤ k. We claim that no vertex of G is a shedding vertex to
deduce that G is not vertex decomposable. For any s + 1 ≤ j ≤ k, the
independent set {u, xs+1,4, . . . , xk,4} is maximal in both graphs G \ xj,2

and G\N [xj,2]. For the other vertices of G, the similar arguments hold.
Therefore, G is not vertex decomposable. �

Proposition 2.8 and Theorem 2.6 imply the following characterization
of the vertex decomposable graphs of the form θn1,...,nk

.

Theorem 2.9. Let n1, . . . , nk be a sequence of positive integers. Then,
θn1,...,nk

is vertex decomposable if and only if one of the followings holds:
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(1) {1, 2} ⊆ {n1, . . . , nk}.
(2) {2, 3} ⊆ {n1, . . . , nk}.
(3) {1, 4} = {n1, . . . , nk}.

The next result extends Proposition 2.8 to show that for k = 3, those
graphs are not even sequentially Cohen-Macaulay.

Proposition 2.10. The graphs θ2,2,5 and θ2,5,5 are not sequentially
Cohen-Macaulay.

Proof. Consider the labeling for θ2,2,5 and θ2,5,5 as given in Figure 1 and
Figure 2. By [8, Lemma 2.3], the minimal generators of I(θ2,2,5)∨, cor-
respond to the minimal vertex covers of θ2,2,5 and these minimal vertex
covers correspond precisely to minimal prime ideals of I(θ2,2,5). There-
fore, by finding the minimal prime ideals of I(θ2,2,5), the monomials
x1x2x4x6, x1x3x4x6, x2x4x6x7x8, x1x3x5x6, x2x4x5x7x8, x2x3x5x7x8,
x1x3x5x7x8, generate the ideal I(θ2,2,5)∨. With computation by CoCoA,
we see that I(θ2,2,5)

∨
[5] has the minimal graded free resolution as

0 → R3(−8) → R12(−7)(+)R(−8) → R23(−6) → R14(−5) → R.

Thus, it does not have a linear resolution. Therefore, θ2,2,5 is not
sequentially Cohen-Macaulay, by Theorem A.

Similarly, the minimal prime ideals of I(θ2,5,5) generate the ideal
I(θ2,5,5)∨. By computation, we deduce that I(θ2,5,5)

∨
[7] has the mini-

mal graded free resolution as:

· · · → R55(−10)(+)R(−11) → R121(−9) → R124(−8) → R49(−7) → R.

Thus, I(θ2,5,5)
∨
[7] does not have a linear resolution and so I(θ2,5,5)

∨ is
not componentwise linear. Therefore, θ2,5,5 is not sequentially Cohen-
Macaulay by Theorem A.
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In view of Proposition 2.8 and Proposition 2.10, we conjecture that
the answer to the following questions is positive.

Question 2.11. Let K > 2 and {n1, . . . , nk} = {2, 5}. Is θn1,...,nk
not

shellable? Is θn1,...,nk
not sequentially Cohen-Macaulay?

Theorem 2.6 with [14, Theorem 2.9] enable us to get more examples
of shellable and sequentially Cohen-Macaulay graphs.
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