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CONSTRUCTION OF COMPACTLY SUPPORTED
NONSEPARABLE ORTHOGONAL WAVELETS OF L2(Rn)

Y. SHOUZHI∗ AND X. YANMEI

Communicated by Fereidoun Ghahramani

Abstract. We present a method for the construction of nonsepa-
rable and compactly supported orthogonal wavelet bases of L2(Rn),
n ≥ 2. The orthogonal wavelets are associated with dilation ma-
trix 3In, where In is the identity matrix of order n. An example is
given to illustrate how to use our method to construct nonseparable
orthogonal wavelet bases.

1. Introduction

In recent years, multivariate nonseparable wavelets have attracted the
interest of many mathematicians. The details can be seen in [1]-[3] and
[9]-[11]. Although separable wavelet bases have a lot of advantages, they
have a number of drawbacks. They are so special that they have very
little design freedom, and separability imposes an unnecessary product
structure on the plane which is artificial for natural images. One way to
avoid this is through the construction of nonseparable wavelets.

Nonseparable wavelet bases have enough degrees of freedom to con-
struct bases having several properties simultaneously such as orthogonal-
ity, symmetry and compact support. The theory and the design of 1-D
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compactly supported wavelet bases are well understood. Although the
theory and analysis of multivariate wavelet bases have been extensively
studied, the design of n-D compactly supported nonseparable orthogonal
wavelet basis is still a challenging problem. As we know, the construction
of nonseparable wavelets with dilation matrix 2In is possible (see [5]-[8]).
In [5], the author has given a brief description of a fairly general method
for constructing compactly nonseparable and orthonormal wavelet bases
of L2(Rn). In [6] and [7], the author has studied the construction of non-
separable biorthogonal and orthogonal wavelets of L2(Rn) respectively,
for n ≥ 2. Currently, it also turns out that many researchers proceed to
study the nonseparable wavelets with dilation matrix M , specially the
matrix M satisfying M2 = 2I (see [2], [10]-[11]). Such dilation matrices
make the MRA involve a unique wavelet which is easy to construct from
the scaling function.

Here, based on [6] and [7], we use a set of matrices Di, i = 1, · · · , n−1,
satisfying some conditions to give the construction of n-D nonseparable
orthogonal wavelets, and give a proof that the constructed orthogonal
wavelets are nonseparable. Finally, we give an example.

2. Design of n-D low-pass orthogonal wavelet filters

In this section, we first provide the reader with some definitions to
be used frequently in our work. In the following, we denote the point
(ω1, ω2, · · · , ωk) ∈ Rk, πk = (π, π, · · · , π) ∈ Rk, and D0 by the identity
matrix In. Finally, if D ∈ Zn×n is a square matrix, then D(ω) denotes
the product D · ωT .

Definition 2.1. A ladder of closed subspaces {Vj}j∈Z of L2(Rn) is called
a multiresolution analysis (MRA) if the following conditions hold:

(i)Vj ⊂ Vj+1 for j ∈ Z;
(ii)

⋂
j∈Z Vj = {0},

⋃
j∈Z Vj = L2(Rn);

(iii) f(x) ∈ Vj ⇐⇒ f(3x) ∈ Vj+1;
(iv) there exists a function φ(x) in V0 such that the set {φ(x−k)}k∈Zn

is a Riesz basis for V0.

Definition 2.2. A matrix D ∈ Zn×n is said to be a dilation matrix if
all its singular values σi, i = 1, · · · , n, are larger than 1 in modulus.
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Definition 2.3. Define a set En = {0, 2
3π, 4

3π}n and let ηi be an element
of En; if η1

i = 2
3πn − ηi and η2

i = 4
3πn − ηi, then η1

i and η2
i are said to

be symmetric of ηi in En. A subset A of En is said to be symmetric if
∀ ηi ∈ A, ∃ η1

i ∈ A mod (2πZn), and η2
i ∈ A mod (2πZn), where η1

i and
η2

i are symmetric of ηi in A.

Definition 2.4. An n-D wavelet filter Hn(ω1, · · · , ωn) is said to be
separable if Hn(·) can be written in the following form:

Hn(ω1, · · · , ωn) =
k∏

i=1

mi(ai1ω1 + · · ·+ ainωn),

for some integer 1 ≤ k ≤ n. Here, mi(·) are some 1-D wavelet filters and
(ai1, · · · , ain) ∈ Zn.

Using the properties of MRA, we conclude that the scaling function
Φ(x) has to satisfy the following dilation equation,

(2.1) Φ(x) =
∑

k∈Zn

αkΦ(3x− k).

By taking the Fourier transform on both sides of (2.1), we get

(2.2) Φ̂(ω) =
∞∏

j=1

H0(
ω

3j
),

where H0(ω) = 3−n
∑

k∈Zn

αke
−ik·ω. To construct compactly supported n-

D orthogonal scaling functions, we need to construct n-D trigonometric
polynomials Hn(ω) satisfying the following condition,

(2.3) |Hn(ω)|2+|Hn(ω+
2
3
πn)|2+|Hn(ω+

4
3
πn)|2 = 1, ∀ω ∈ Rn.

The construction is given by the following lemma.

Lemma 2.5. Let H1(ω) and G1(ω), G
′
1(ω) be a 1-D low-pass and two

high-pass orthogonal filters. Define the n-D filter Hn(ω1, · · · , ωn) by the
following iterative process: ∀2 ≤ k ≤ n, choose an integer 1 ≤ `k ≤ k−1
such that
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Pk−1(ω1, · · · , ωk−1) = Hk−1(3ω1, · · · , 3ωk−1)

Qk−1(ω1, · · · , ωk−1) = Hk−1(3ω1 +
2
3
π, · · · , 3ωk−1 +

2
3
π)

Rk−1(ω1, · · · , ωk−1) = Hk−1(3ω1 +
4
3
π, · · · , 3ωk−1 +

4
3
π)

Hk(ω1, · · · , ωk) = Pk−1(ω1, · · · , ωk−1)H`k
(ωk−`k+1, · · · , ωk)

+Qk−1(ω1, · · · , ωk−1)G`k
(ωk−`k+1, · · · , ωk)

+Rk−1(ω1, · · · , ωk−1)G
′
`k

(ωk−`k+1, · · · , ωk),

where G`(ω1, · · · , ω`) and G
′
`(ω1, · · · , ω`) satisfy the following equation,

(2.4) MM∗ = I3,

M =

 H`(ω) H`(ω + 2
3π`) H`(ω + 4

3π`)
G`(ω) G`(ω + 2

3π`) G`(ω + 4
3π`)

G
′
`(ω) G

′
`(ω + 2

3π`) G
′
`(ω + 4

3π`)

 , ∀ω ∈ R`. Then,

Hn(0, · · · , 0) = 1. Moreover, Hn(ω1, · · · , ωn) satisfies the condition
(2.3).

Proof. The proof is carried out by induction. First, we check the re-
sult for k = 2. In this case, `2 = 1, P1(ω1) = H1(3ω1), Q1(ω1) =
H1(3ω1 + 2

3π), and R1(ω1) = H1(3ω1 + 4
3π). Since H1(0) = 1, and

H1(ω), G1(ω), G
′
1(ω) satisfy the orthogonal condition (2.4), then G1(0) =

G
′
1(0) = 0. Hence, H2(0, 0) = 1. Since P1(ω1) = P1(ω1 + 2

3π) = P1(ω1 +
4
3π), Q1(ω1) = Q1(ω1 + 2

3π) = Q1(ω1 + 4
3π), R1(ω1) = R1(ω1 + 2

3π) =
R1(ω1 + 4

3π), we get

|H2(ω1, ω2)|2 + |H2(ω1 +
2
3
π, ω2 +

2
3
π)|2 + |H2(ω1 +

4
3
π, ω2 +

4
3
π)|2

= |P1(ω1)|2[|H1(ω2)|2 + |H1(ω2 +
2
3
π)|2 + |H1(ω2 +

4
3
π)|2]

+|Q1(ω1)|2[|G1(ω2)|2 + |G1(ω2 +
2
3
π)|2 + |G1(ω2 +

4
3
π)|2]

+|R1(ω1)|2[|G
′
1(ω2)|2 + |G′

1(ω2 +
2
3
π)|2 + |G′

1(ω2 +
4
3
π)|2]
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+P1(ω1)Q1(ω1)[H1(ω2)G1(ω2) + H1(ω2 +
2
3
π)G1(ω2 +

2
3
π)

+H1(ω2 +
4
3
π)G1(ω2 +

4
3
π)] + P1(ω1)R1(ω1)[H1(ω2)G

′
1(ω2)

+H1(ω2 +
2
3
π)G′

1(ω2 +
2
3
π) + H1(ω2 +

4
3
π)G′

1(ω2 +
4
3
π)]

+Q1(ω1)P1(ω1)[G1(ω2)H1(ω2) + G1(ω2 +
2
3
π)H1(ω2 +

2
3
π)

+G1(ω2 +
4
3
π)H1(ω2 +

4
3
π)] + Q1(ω1)R1(ω1)[G1(ω2)G

′
1(ω2)

+G1(ω2 +
2
3
π)G′

1(ω2 +
2
3
π) + G1(ω2 +

4
3
π)G′

1(ω2 +
4
3
π)]

+R1(ω1)P1(ω1)[G
′
1(ω2)H1(ω2) + G

′
1(ω2 +

2
3
π)H1(ω2 +

2
3
π)

+G
′
1(ω2 +

4
3
π)H1(ω2 +

4
3
π)] + R1(ω1)Q1(ω1)[G

′
1(ω2)G1(ω2)

+G
′
1(ω2 +

2
3
π)G1(ω2 +

2
3
π) + G

′
1(ω2 +

4
3
π)G1(ω2 +

4
3
π)]

= |P1(ω1)|2 + |Q1(ω1)|2 + |R1(ω1)|2 + P1(ω1)Q1(ω1) · 0
+P1(ω1)R1(ω1) · 0 + Q1(ω1)P1(ω1) · 0 + Q1(ω1)R1(ω1) · 0
+R1(ω1)P1(ω1) · 0 + R1(ω1)Q1(ω1) · 0

= |H1(3ω1)|2 + |H1(3ω1 +
2
3
π)|2 + |H1(3ω1 +

4
3
π)|2 = 1.

Next, we assume that the lemma holds for all 2 ≤ ` ≤ k < n. For 2 ≤
` ≤ k, we have H`(0, · · · , 0) = 1, and G`(0, · · · , 0) = G

′
`(0, · · · , 0) = 0.

Since `k+1 ≤ k, then

Hk+1(0, · · · , 0)
= Pk(0, · · · , 0)H`k+1

(0, · · · , 0) + Qk(0, · · · , 0)G`k+1
(0, · · · , 0)

+Rk(0, · · · , 0)G
′
`k+1

(0, · · · , 0) = 1.

The induction hypothesis also implies that for 2 ≤ ` ≤ k, H`, G`, G
′
`

satisfy the equation (2.4). Next, we check the result for k + 1. For the
sake of simplicity, we let Pk(·) denote Pk(ω1, · · · , ωk), Pk(·+ 2

3πk) denote
Pk(ω1 + 2

3π, · · · , ωk + 2
3π), and Pk(·+ 4

3πk) denote Pk(ω1 + 4
3π, · · · , ωk +

4
3π). Similarly, Qk, Rk,Hk+1 and G`k+1

, G
′
`k+1

will be denoted as follows.
Since Pk(·) = Pk(·+ 2

3πk) = Pk(·+ 4
3πk), Qk(·) = Qk(·+ 2

3πk) = Qk(·+
4
3πk), Rk(·) = Rk(· + 2

3πk) = Rk(· + 4
3πk), then by using the induction
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hypothesis, we get

|Hk+1(·)|2 + |Hk+1(·+
2
3
πk+1)|2 + |Hk+1(·+

4
3
πk+1)|2

= |Pk(·)|2
[
|H`k+1

(·)|2 + |H`k+1
(·+ 2

3
π`k+1

)|2 + |H`k+1
(·+ 4

3
π`k+1

)|2
]

+|Qk(·)|2
[
|G`k+1

(·)|2 + |G`k+1
(·+ 2

3
π`k+1

)|2 + |G`k+1
(·+ 4

3
π`k+1

)|2
]

+|Rk(·)|2
[
|G′

`k+1
(·)|2 + |G′

`k+1
(·+ 2

3
π`k+1

)|2 + |G′
`k+1

(·+ 4
3
π`k+1

)|2
]

+PkQk(·)
[
H`k+1

G`k+1
(·) + H`k+1

G`k+1
(·+ 2

3
π`k+1

)

+H`k+1
G`k+1

(·+ 4
3
π`k+1

)] + PkRk(·)
[
H`k+1

G
′
`k+1

(·)

+H`k+1
G

′
`k+1

(·+ 2
3
π`k+1

) + H`k+1
G

′
`k+1

(·+ 4
3
π`k+1

)
]

+QkPk(·)
[
G`k+1

H`k+1
(·) + G`k+1

H`k+1
(·+ 2

3
π`k+1

)

+G`k+1
H`k+1

(·+ 4
3
π`k+1

)
]

+ QkRk(·)
[
G`k+1

G
′
`k+1

(·)

+G`k+1
G

′
`k+1

(·+ 2
3
π`k+1

) + G`k+1
G

′
`k+1

(·+ 4
3
π`k+1

)
]

+RkPk(·)
[
G

′
`k+1

H`k+1
(·) + G

′
`k+1

H`k+1
(·+ 2

3
π`k+1

)

+G
′
`k+1

H`k+1
(·+ 4

3
π`k+1

)
]

+ RkQk(·)
[
G

′
`k+1

G`k+1
(·)

+G
′
`k+1

G`k+1
(·+ 2

3
π`k+1

) + G
′
`k+1

G`k+1
(·+ 4

3
π`k+1

)
]

= |Pk(·)|2 + |Qk(·)|2 + |Rk(·)|2

= |Hk(3·)|2 + |Hk(3 ·+
2
3
πk)|2 + |Hk(3 ·+

4
3
πk)|2 = 1.

Then, the induction hypothesis holds for k +1. Hence, we get |Hn(·)|2 +
|Hn(·+ 2

3πn)|2 + |Hn(·+ 4
3πn)|2 = 1. �

It is well known that to design a compactly supported orthogonal wavelet
basis of L2(Rn), it is necessary to construct one low-pass filter H0 and
3n − 1 high-pass filters Hi, i = 1, · · · , 3n − 1. Consequently, a set of
special matrices is required for the design of H0.
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For i = 1, · · · , n − 1, we consider a set of n − 1 matrices Di ∈ Zn×n

satisfying the following three conditions:
(c1) ∀ ηj ∈ En,∃ η1

j ∈ En and η2
j ∈ En such that Di(ηj) = Di(η1

j )
mod (2πZn), and Di(ηj) = Di(η2

j ) mod (2πZn), where η1
j = 2

3πn −
ηj , η2

j = 4
3πn − ηj .

(c2) If ηj′ 6= ηj , ηj′ 6= η1
j and ηj′ 6= η2

j , then Di(ηj) 6= Di(ηj′ ) mod
(2πZn).

(c3) If Fi = DiDi−1 · · ·D1(En) mod (2πZn), then Fi is a symmetric
subset of En; i.e., ∀η ∈ Fi, η1 ∈ Fi, η2 ∈ Fi.

By Lemma 2.5, we prove the following theorem providing us with n-D
low-pass orthogonal wavelet filters.

Theorem 2.6. Let Hn(ω1, · · · , ωn) be the n-D filter of Lemma 2.1. Let
D1, D2, · · · , Dn−1 be the dilation matrices that satisfy the above three
conditions (c1), (c2) and (c3). Define an n-D filter H0 by

(2.5) H0(ω1, · · · , ωn) =
n−1∏
k=0

Hn

(
Dk · · ·D0(ω1, · · · , ωn)

)
.

Then, H0(0, · · · , 0) = 1. Moreover, H0 satisfies the following orthogo-
nality condition,

(2.6)
3n−1∑
i=0

|H0(ω + ηi)|2 = 1, ∀ω ∈ Rn,

where ηi, i = 0, · · · , 3n − 1 are the different points of the set En =
{0, 2

3π, 4
3π}n.

Proof. Since Hn(0, · · · , 0) = 1, then H0(0, · · · , 0) =
n−1∏
k=0

Hn

(
Dk · · ·D0(0, · · · , 0)

)
= 1. We first let η1

i = η3n−1+i, η2
i =

η2·3n−1+i, i = 0, · · · , 3n−1 − 1. Since D1(ηi) = D1(η1
i ) mod (2πZn), and

D1(ηi) = D1(η2
i ) mod (2πZn), ∀ηi ∈ En, we conclude that
3n−1∑
i=0

|H0(ω + ηi)|2

=
3n−1∑
i=0

|Hn(ω + ηi)|2
n−1∏
k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2
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=
3n−1−1∑

i=0

[
|Hn(ω + ηi)|2 + |Hn(ω + η1

i )|2 + |Hn(ω + η2
i )|2

]
×

n−1∏
k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2
=

3n−1−1∑
i=0

n−1∏
k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2.
Again, we let D1

1(ηi) = D1(η3n−2+i), D2
1(ηi) = D1(η2·3n−2+i), where

D1
1(ηi) and D2

1(ηi) are symmetric of D1(ηi), i = 0, · · · , 3n−2 − 1. Then
D2[D1(ηi)] = D2[D1

1(ηi)] mod (2πZn), and D2[D1(ηi)] = D2[D2
1(ηi)]

mod (2πZn), ∀ηi ∈ En, obtaining

3n−1−1∑
i=0

n−1∏
k=1

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2
=

3n−1−1∑
i=0

∣∣∣Hn

(
D1(ω + ηi)

)∣∣∣2 n−1∏
k=2

∣∣∣Hn

(
Dk · · ·D2D1(ω + ηi)

)∣∣∣2
=

3n−2−1∑
i=0

[∣∣∣Hn

(
D1(ω + ηi)

)∣∣∣2 +
∣∣∣Hn

(
D1

1(ω + ηi)
)∣∣∣2

+
∣∣∣Hn

(
D2

1(ω + ηi)
)∣∣∣2]× n−1∏

k=2

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2
=

3n−2−1∑
i=0

n−1∏
k=2

∣∣∣Hn

(
Dk · · ·D1(ω + ηi)

)∣∣∣2
=

...

=
∣∣∣Hn

(
[Dn−1 · · ·D1](ω + η0)

)∣∣∣2 +
∣∣∣Hn

(
[Dn−1 · · ·D1]1(ω + η0)

)∣∣∣2
+

∣∣∣Hn

(
[Dn−1 · · ·D1]2(ω + η0)

)∣∣∣2 = 1,

where [Dn−1 · · ·D1]1(ηi) and [Dn−1 · · ·D1]2(ηi) are symmetric of
[Dn−1 · · ·D1](ηi). Hence, (2.6) holds. �

Theorem 2.7. The wavelet filters H0(ω1, ω2) given by Theorem 2.6 are
nonseparable.
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Proof. According to Theorem 2.6,

(2.7) H0(ω1, ω2) = H2(ω1, ω2)H2

(
D1(ω1, ω2)

)
,

where H2(ω1, ω2) is defined as given in given in Lemma 2.5. To show
that H0(ω1, ω2) is nonseparable, we only need to check that H2(ω1, ω2)
is nonseparable. By Lemma 2.5, we get

(2.8)
H2(ω1, ω2)=H1(3ω1)H1(ω2)+H1(3ω1+

2
3
π)G1(ω2)+H1(3ω1+

4
3
π)G

′
1(ω2),

where H1(ω1) is a 1-D orthogonal filter. We assume that H2(ω1, ω2) is
separable.

First case: we prove that

(2.9) H2(ω1, ω2) = m1(a11ω1 + a12ω2)m2(a21ω1 + a22ω2)

is not possible, where m1(·), m2(·) are two 1-D orthogonal filters,
(a11, a12), (a21, a22) ∈ Z2.

Next we discuss the following nine cases:
(i) a11 + a12 = 0 mod (3) and a21 + a22 = 1 mod (3). Since

(2.10) |H2(ω1, ω2)|2+|H2(ω1+
2
3
π, ω2+

2
3
π)|2+|H2(ω1+

4
3
π, ω2+

4
3
π)|2 = 1.

for the sake of simplicity, we let m1(A) denote m1(a11ω1+a12ω2), m2(B)
denote m2(a21ω1 + a22ω2). Then, by substituting (2.9) into (2.10), we
get

|m1(A)|2|m2(B)|2 +
∣∣∣m1[A +

2
3
π(a11 + a12)]

∣∣∣2
×

∣∣∣m2[B +
2
3
π(a21 + a22)]

∣∣∣2 +
∣∣∣m1[A +

4
3
π(a11 + a12)]

∣∣∣2
×

∣∣∣m2[B +
4
3
π(a21 + a22)]

∣∣∣2
= |m1(A)|2

[
|m2(B)|2 + |m2(B +

2
3
π)|2 + |m2(B +

4
3
π)|2

]
= |m1(A)|2 · 1 = 1, ∀(ω1, ω2) ∈ R2,

which is a contradiction. The same result holds in the following cases:
(ii) a11 + a12 = 0 mod (3) and a21 + a22 = 2 mod (3);
(iii) a11 + a12 = 1 mod (3) and a21 + a22 = 0 mod (3);
(iv) a11 + a12 = 2 mod (3) and a21 + a22 = 0 mod (3);
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(v) a11 + a12 = 0 mod (3) and a21 + a22 = 0 mod (3).

Next, we consider the case:
(vi) a11 + a12 = 1 mod (3) and a21 + a22 = 1 mod (3). Similarly, by

substituting (2.9) into (2.10), we get

|m1(A)|2|m2(B)|2 +
∣∣∣m1[A +

2
3
π(a11 + a12)]

∣∣∣2
×

∣∣∣m2[B +
2
3
π(a21 + a22)]

∣∣∣2 +
∣∣∣m1[A +

4
3
π(a11 + a12)]

∣∣∣2
×

∣∣∣m2[B +
4
3
π(a21 + a22)]

∣∣∣2
= |m1(A)|2|m2(B)|2 + |m1(A +

2
3
π)|2|m2(B +

2
3
π)|2

+[1− |m1(A)|2 − |m1(A +
2
3
π)|2][1− |m1(B)|2 − |m1(B +

2
3
π)|2]

= |m1(A)|2[|m1(B)|2 + |m1(B +
2
3
π)|2 − 1]

+|m1(B)|2[|m1(A)|2 + |m1(A +
2
3
π)|2 − 1]

= |m1(A +
2
3
π)|2[|m1(B +

2
3
π)|2 − 1]

+|m1(B +
2
3
π)|2[|m1(A +

2
3
π)|2 − 1] + 1

= 1.

Since |m1(A + 2
3π)|2, |m1(B + 2

3π)|2 ≤ 1, by the previous equality, we
get |m1(A + 2

3π)|2 = |m1(B + 2
3π)|2 = 1, which is a contradiction. The

same result holds in the following three cases:
(vii) a11 + a12 = 1 mod (3) and a21 + a22 = 2 mod (3);
(viii) a11 + a12 = 2 mod (3) and a21 + a22 = 1 mod (3);
(viiii) a11 + a12 = 2 mod (3) and a21 + a22 = 2 mod (3).

Hence, we have proved that (2.9) not to be possible.

Second case: we prove that

(2.11) H2(ω1, ω2) = m0(a1ω1 + a2ω2)

is not possible either, where m0(·) is a 1-D orthogonal wavelet filter.
Next, we discuss the following three cases:
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(i) a1 + a2 = 0 mod (3). By substituting (2.11) into (2.10), we get
|m0|2(a1ω1 +a2ω2) = 1/3,∀(ω1, ω2) ∈ R2 , which is a contradiction with
m0(0) = 1.

(ii) a1 + a2 = 1 mod (3). First, we assume that a1 = 1 mod (3) and
a2 = 0 mod (3). According to (2.11) and (2.8), we get H2(2

9π, 0) =
m0(2

9πa1) = 0, H2(2
9π, 2

3π) = m0(2
9πa1 + 2

3πa2) = G
′
1(

2
3π), and

H2(2
9π, 4

3π) = m0(2
9πa1 + 4

3πa2) = G
′
1(

4
3π). On the other hand, since

a2 = 0 mod (3), we obtain m0(2
9πa1) = m0(2

9πa1 + 2
3πa2) = m0(2

9πa1 +
4
3πa2). Hence, we get G

′
1(

2
3π) = G

′
1(

4
3π) = 0, which is a contradiction

with G
′
1(0) = 0. Second, we assume that a1 = 0 mod (3) and a2 = 1 mod

(3). According to (2.11) and (2.8), we get H2(2
3π, 0) = m0(2

3πa1) = 1,

H2(4
3π, 0) = m0(4

3πa1) = 1. Since a1 = 0 mod (3), we get m0(2
3π) =

m0(4
3π) = 1, which is a contradiction with m0(0) = 1.

(iii) a1 + a2 = 2 mod (3). The proof is similar to (ii). Collecting
everything together, we conclude that H2(ω1, ω2) is nonseparable. Fur-
thermore, H0(ω1, ω2) is also nonseparable. �

Similarly, the previous proof can be easily extended to the n-D case.
Then, we get the following corollary.

Corollary 2.8. The wavelet filters H0(ω1, · · · , ωn) given by Theorem
2.6 are nonseparable.

3. Design of n-D high-pass orthogonal wavelet filters

As we have previously mentioned, the construction of the 3n − 1
mother wavelets Ψi, i = 1, · · · , 3n − 1, requires the construction of
3n − 1, n-D high-pass filters Hi, i = 1, · · · , 3n − 1. These high-pass
filters together with the previously defined filters H0 have to satisfy the
equations,

(3.1)
3n−1∑
j=0

Hi(ω + ηj)Hi
′ (ω + ηj) = δii

′ , ∀ 0 ≤ i, i
′ ≤ 3n − 1, ω ∈ Rn,

where ηj , j = 0, · · · , 3n − 1, are the different points of the set En =
{0, 2

3π, 4
3π}n.

In our case, a solution to (3.1) is given by the following theorem.
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Theorem 3.1. Let H0(ω) = Hn(ω1, · · · , ωn), where ω ∈ Rn, and Hn(·)
is the wavelet filter as specified in Lemma 2.5. Let D1, D2, · · · , Dn−1 be
the dilation matrices that satisfy the three conditions (c1), (c2) and (c3).
If Hi is the filter defined by:

(3.2) Hi(ω) =
n−1∏
k=0

[
εi
kH0(Dk · · ·D0ω)+

1− εi
k√

2
G0(Dk · · ·D0ω)+

1− εi
k√

2
G

′
0(Dk · · ·D0ω)

]
,

where G0, G
′
0 together with H0 satisfy the following equation,

 H0(ω) H0(ω + 2
3πn) H0(ω + 4

3πn)
G0(ω) G0(ω + 2

3πn) G0(ω + 4
3πn)

G
′
0(ω) G

′
0(ω + 2

3πn) G
′
0(ω + 4

3πn)


×

 H0(ω) H0(ω + 2
3πn) H0(ω + 4

3πn)
G0(ω) G0(ω + 2

3πn) G0(ω + 4
3πn)

G
′
0(ω) G

′
0(ω + 2

3πn) G
′
0(ω + 4

3πn)

∗

= I3,

(εi
0, ε

i
1, · · · , εi

n)i=1,··· ,3n−1 are the different points of {0, 1}n\(0, · · · , 0).
Then, Hi, i = 1, · · · , 3n − 1, is a solution of (3.1).

Proof. First, we consider two integers i, i
′ ∈ {1, · · · , 3n − 1} such that

i 6= i
′
and prove that

3n−1∑
j=0

Hi(ω + ηj)Hi
′ (ω + ηj) = 0.

Since i 6= i
′
, then there exists 0 ≤ ` ≤ n − 1 such that εi

k = εi′
k , ∀ 0 ≤

k ≤ ` − 1 and εi
` 6= εi′

` . We assume that εi
` = 1, εi′

` = 0. We first study
the case where 0 ≤ ` < n − 1. By using the factorization technique in



Construction of nonseparable orthogonal wavelets of L2(Rn) 195

the proof of Theorem 2.6, we get
3n−1∑
j=0

Hi(ω + ηj)Hi′ (ω + ηj)

=
3n−1∑
j=0

[
εi
0H0(ω + ηj) +

1− εi
0√

2
G0(ω + ηj) +

1− εi
0√

2
G

′
0(ω + ηj)

]
×

[
εi′
0 H0(ω + ηj) +

1− εi′
0√

2
G0(ω + ηj) +

1− εi′
0√

2
G

′
0(ω + ηj)

]
×

n−1∏
k=1

[
εi
kH0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′
k H0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
=

3n−1−1∑
j=0

{[
εi
0H0(ω + ηj) +

1− εi
0√

2
G0(ω + ηj) +

1− εi
0√

2
G

′
0(ω + ηj)

]
×[εi′

0 H0(ω + ηj) +
1− εi′

0√
2

G0(ω + ηj) +
1− εi′

0√
2

G
′
0(ω + ηj)]

+
[
εi
0H0(ω + η1

j ) +
1− εi

0√
2

G0(ω + η1
j ) +

1− εi
0√

2
G

′
0(ω + η1

j )
]

×
[
εi′
0 H0(ω + η1

j ) +
1− εi′

0√
2

G0(ω + η1
j ) +

1− εi′
0√

2
G

′
0(ω + η1

j )
]

+
[
εi
0H0(ω + η2

j ) +
1− εi

0√
2

G0(ω + η2
j ) +

1− εi
0√

2
G

′
0(ω + η2

j )
]

×
[
εi′
0 H0(ω + η2

j ) +
1− εi′

0√
2

G0(ω + η2
j ) +

1− εi′
0√

2
G

′
0(ω + η2

j )
]}

×
n−1∏
k=1

[
εi
kH0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2

×G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′
k H0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
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+
1− εi′

k√
2

G
′
0

(
Dk · · ·D0(ω + ηj)

)]
=

3n−1−1∑
j=0

n−1∏
k=1

[
εi
kH0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2

×G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′
k H0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
=

...

=
3n−`−1∑

j=0

n−1∏
k=`

[
εi
kH0(Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2

×G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′
k H0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
=

3n−`−1−1∑
j=0

{
H0

(
[D` · · ·D0](ω + ηj)

)[ 1√
2
G0

(
[D` · · ·D0](ω + ηj)

)
+

1√
2
G

′
0

(
[D` · · ·D0](ω + ηj)

)]
+ H0

(
[D` · · ·D0]1(ω + ηj)

)
×

[ 1√
2
G0

(
[D` · · ·D0]1(ω + ηj)

)
+

1√
2
G

′
0

(
[D` · · ·D0]1(ω + ηj)

)]
+H0

(
[D` · · ·D0]2(ω + ηj)

)[ 1√
2
G0

(
[D` · · ·D0]2(ω + ηj)

)
+

1√
2

×G
′
0

(
[D` · · ·D0]2(ω + ηj)

)]}
×

n−1∏
k=`+1

[
εi
kH0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
×

[
εi′
k H0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G0

(
Dk · · ·D0(ω + ηj)

)
+

1− εi′
k√

2
G

′
0

(
Dk · · ·D0(ω + ηj)

)]
= 0,
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where [D` · · ·D0]1(ηj) and [D` · · ·D0]2(ηj) are symmetric of
[D` · · ·D0](ηj), ` = 0, · · · , n − 2. For the second case where ` = n − 1,
one can easily check that

3n−1∑
j=0

Hi(ω + ηj)Hi′ (ω + ηj)

= H0

(
[Dn−1 · · ·D0](ω + η0)

)[ 1√
2
G0

(
[Dn−1 · · ·D0](ω + η0)

)
+

1√
2
G

′
0

(
[Dn−1 · · ·D0](ω + η0)

)]
+ H0

(
[Dn−1 · · ·D0]1(ω + η0)

)
×

[ 1√
2
G0

(
[Dn−1 · · ·D0]1(ω + η0)

)
+

1√
2
G

′
0

(
[Dn−1 · · ·D0]1(ω + η0)

)]
+ H0

(
[Dn−1 · · ·D0]2(ω + η0)

)
×

[ 1√
2
G0

(
[Dn−1 · · ·D0]2(ω + η0)

)
+

1√
2
G

′
0

(
[Dn−1 · · ·D0]2(ω + η0)

)]
= 0.

Finally, the case i = i′ has a proof similar to that of Theorem 2.6 and

we conclude that
3n−1∑
j=0

Hi(ω + ηj)Hi(ω + ηj) = 1. �

Remark 3.2. It is well known that condition (3.1) does not ensure that
Hi, i = 1, · · · , 3n − 1, generate an orthogonal wavelet basis of L2(Rn).
In fact, we need to study the stability of the wavelet functions Ψi

j,k

generated by Hi. The stability of Ψi
j,k can be similarly established as in

[7].

4. An example

Example. Let H1(ω) = 1
3(1 + z + z2), z = e−iω, ω ∈ R. According to

[4], H1(ω) generates an orthogonal Haar scaling function φ with scale=3.
Then, we have

∑
k∈Z

|φ̂(ω + 2πk)|2 = 1. Hence, the translates of φ are

stable. Furthermore, H1(ω) also satisfies the condition,

|H1(ω)|2 + |H1(ω +
2
3
π)|2 + |H1(ω +

4
3
π)|2 = 1, ∀ω ∈ R.
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Let H2(ω1, ω2) be the 2-D filter given by H2(ω1, ω2) = H1(ω1). It is
easy to see that H2(ω1, ω2) satisfies the condition (2.3). Consequently,

we consider the matrix D1 =
(

2 1
−1 1

)
. It is easy to check that D1

satisfies the three conditions (c1), (c2) and (c3). Hence, by applying
Theorem 2.6, we conclude that the 2-D wavelet filter H0 given by

H0(ω1, ω2) = H2(ω1, ω2)H2

(
D1(ω1, ω2)

)
= H1(ω1)H1(2ω1 + ω2)

=
[1
3
(1 + e−iω1 + e−2iω1)

][1
3
(1 + e−i(2ω1+ω2) + e−i(2ω1+ω2)

]
=

1
9
(1 + z1 + z1

2 + z1
2z2 + z1

3z2 + z1
4z2 + z1

4z2
2 + z1

5z2
2

+z1
6z2

2)

satisfies the orthogonality condition (2.6), where z1 = e−iω1 , z2 = e−iω2 .
Note that if Φ denotes the scaling function generated by H0, then ac-
cording to [7], we conclude that the translates of Φ are stable and H0

generates a stable orthogonal wavelet basis of L2(R2).
Furthermore, let G1(ω) = −

√
2

6 +
√

2
3 z −

√
2

6 z2, G
′
1(ω) = −

√
6

6 +
√

6
6 z2, z = e−iω, be the corresponding high-pass filters of H1(ω) (see

[4]). We can check that H1, G1, G
′
1 satisfy the equation (2.4). Let

G2(ω1, ω2) and G
′
2(ω1, ω2) be the 2-D filters given by G2(ω1, ω2) =

G1(ω1) and G
′
2(ω1, ω2) = G

′
1(ω1), respectively. Then, it is easy to see

that H2(ω1, ω2), G2(ω1, ω2) and G
′
2(ω1, ω2) satisfy the equation (2.4).

According to Theorem 3.1, the corresponding high-pass filters Hi i =
1, · · · , 8, are obtained via (3.2). Since the translates of Φ are stable, we
conclude that the Ψi

j,k form a stable orthogonal wavelet basis of L2(R2).
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