PRIME HIGHER DERIVATIONS ON ALGEBRAS

MADJID MIRZAVAZIRI

Communicated by Saeid Azam

Dedicated to Professor A. M. Naranjani

Abstract

Let \mathcal{A} be an algebra. A sequence $\left\{d_{n}\right\}$ of linear mappings from \mathcal{A} into \mathcal{A} is called a higher derivation if $d_{n}(a b)=$ $\sum_{k=0}^{n} d_{k}(a) d_{n-k}(b)$ for each $a, b \in \mathcal{A}$ and each nonnegative integer n. We say that a sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is a prime higher derivation if $d_{n}(a b)=\sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b)$ for each $a, b \in \mathcal{A}$ and each $n \in \mathbb{N}$. Giving some examples of prime higher derivations, we establish a characterization of prime higher derivations in terms of derivations.

1. Introduction

Let \mathcal{A} be an algebra and $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping. A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a σ-derivation if it satisfies the Leibniz rule $\delta(a b)=\delta(a) \sigma(b)+\sigma(a) \delta(b)$ for all $a, b \in \mathcal{A}$. In the case $\sigma=I_{\mathcal{A}}$, the identity mapping on \mathcal{A}, a σ-derivation is called a derivation. (For other approaches to generalized derivations and their applications, see $[1,2$, $4,9,10]$ and references therein. In particular, an automatic continuity problem for (σ, τ)-derivations is considered in [8] and an achievement of continuity of (σ, τ)-derivations without linearity is given in [6].)

MSC(2000): 16W25.

Keywords: Algebra, derivation, higher derivation, σ-derivation, prime higher derivation. This research was supported by a grant from Ferdowsi University of Mashhad.
Received: 08 November 2008, Accepted: 02 February 2009.
(c) 2010 Iranian Mathematical Society.

A sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a higher derivation if $d_{n}(a b)=\sum_{k=0}^{n} d_{k}(a) d_{n-k}(b)$ for each $a, b \in \mathcal{A}$ and each nonnegative integer n. Higher derivations were introduced by Hasse and Schmidt [5], and algebraists sometimes call them Hasse-Schmidt derivations. For an account on higher derivations the reader is referred to the book [3]. Taking idea from this notion under a number theoretic view, we are motivated to consider all sequences $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} satisfying the relation $d_{n}(a b)=\sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b)$ for each $a, b \in \mathcal{A}$ and each $n \in \mathbb{N}$. If p is prime then $d_{p}(a b)=d_{1}(a) d_{p}(b)+d_{p}(a) d_{1}(b)(a, b \in \mathcal{A})$ which shows that d_{p} is a d_{1}-derivation. In the case that d_{1} is the identity mapping on \mathcal{A}, d_{p} is a derivation for each prime p. On the other hand, for each prime p, the subsequence $\left\{d_{p^{n}}\right\}$ of $\left\{d_{n}\right\}$ is a higher derivation. These are the reasons for prefering to use the terminology prime higher derivation for such a sequence of linear mappings on \mathcal{A}. Let d_{p} be an arbitrary derivation on \mathcal{A} for each prime p. As a typical example of a prime higher derivation, one can define $d_{n}: \mathcal{A} \rightarrow \mathcal{A}$ by $d_{n}=\prod_{i=1}^{r} \frac{d_{p_{i}}^{\alpha_{i}}}{\alpha_{i}!}$, where $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ with $p_{1}<\ldots<p_{r}$. However, there are other examples of prime higher derivations on algebras.

In [7], the author gives a characterization of higher derivations on an algebra \mathcal{A} in terms of derivations on \mathcal{A}, provided that d_{0} is the identity mapping on \mathcal{A}. Here, we characterize all prime higher derivations on an algebra \mathcal{A} in terms of derivations on \mathcal{A}, provided that d_{1} is the identity mapping on \mathcal{A}. Though the notion of a prime higher derivation has some interests in its own right, regarding the fact that the subsequence $\left\{d_{p^{n}}\right\}$ of a prime higher derivation $\left\{d_{n}\right\}$ is a higher derivation, we can say that prime higher derivation is a generalization of higher derivation and in fact we generalize the result of [7]. Throughout the paper, all algebras are assumed over the field of complex numbers.

2. Preliminaries

Throughout the paper, \mathbb{P} stands for the set of all prime numbers and $I_{\mathcal{A}}$ is the identity mapping on \mathcal{A}. We also denote the greatest prime divisor of n by $g(n)$. If $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n$ for a prime p, then we write $p^{\alpha} \| n$ and we denote α by $e(p, n)$.

Let \mathcal{A} be an algebra and $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping. A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a σ-derivation if it satisfies the Leibniz rule $\delta(a b)=\delta(a) \sigma(b)+\sigma(a) \delta(b)$ for all $a, b \in \mathcal{A}$. In the case $\sigma=I_{\mathcal{A}}$, a
σ-derivation is called a derivation. A sequence $\left\{d_{n}\right\}$ of linear mappings on \mathcal{A} is called a higher derivation if $d_{n}(a b)=\sum_{k=0}^{n} d_{k}(a) d_{n-k}(b)$ for each $a, b \in \mathcal{A}$ and each nonnegative integer n.

Definition 2.1. Let \mathcal{A} be an algebra. We say that a sequence $\left\{d_{n}\right\}$ of linear mappings from \mathcal{A} into \mathcal{A} is a prime higher derivation if $d_{n}(a b)=$ $\sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b)$ for each $a, b \in \mathcal{A}$ and each $n \in \mathbb{N}$.

Lemma 2.2. Let $\left\{d_{n}\right\}$ be a prime higher derivation on an algebra \mathcal{A}. Then, for each $p \in \mathbb{P}$ the sequence $D_{n}=d_{p^{n}}$ is a higher derivation on \mathcal{A}.

Proof. We have

$$
D_{n}(a b)=d_{p^{n}}(a b)=\sum_{k=0}^{n} d_{p^{k}}(a) d_{p^{n-k}}(b)=\sum_{k=0}^{n} D_{k}(a) D_{n-k}(b),
$$

for each $a, b \in \mathcal{A}$.
The following lemma guarantees the existence of a notable source of examples of prime higher derivations.

Lemma 2.3. Let \mathcal{A} be an algebra, $\left\{d_{p}\right\}_{p \in \mathbb{P}}$ be a sequence of derivations on \mathcal{A} and $d_{1}=I_{\mathcal{A}}$. For $n \in \mathbb{N}$, define $d_{n}: \mathcal{A} \rightarrow \mathcal{A}$ by $d_{n}=$ $\frac{1}{e(g(n), n)} d_{\frac{n}{g(n)}} d_{g(n)}$. Then, $\left\{d_{n}\right\}$ is a prime higher derivation.

Proof. We have to show that $d_{n}(a b)=\sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b)$ for all $a, b \in \mathcal{A}$ and all $n \in \mathbb{N}$. We use strong multiplicative induction. For $n=1$ and $n \in \mathbb{P}$, the result is obvious. Let the result hold for all proper divisors of n. For $a, b \in \mathcal{A}$ we have

$$
\begin{aligned}
d_{n}(a b) & =\frac{1}{e(g(n), n)} d_{\frac{n}{g(n)}} d_{g(n)}(a b) \\
& =\frac{1}{e(g(n), n)} d_{\frac{n}{g(n)}}\left(d_{g(n)}(a) b+a d_{g(n)}(b)\right) \\
& =\frac{1}{e(g(n), n)} \sum_{\ell \frac{n}{g(n)}}\left[d_{\ell} d_{g(n)}(a) d_{\frac{n}{\ell g(n)}}(b)+d_{\ell}(a) d_{\frac{n}{\ell g(n)}} d_{g(n)}(b)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{e(g(n), n)} \sum_{\ell \left\lvert\, \frac{n}{g(n)}\right.}\left[e(g(n), \ell g(n)) d_{\ell g(n)}(a) d_{\frac{n}{\ell g(n)}}(b)\right. \\
& \left.+e\left(g(n), \frac{n}{\ell}\right) d_{\ell}(a) d_{\frac{n}{\ell}}(b)\right] \\
= & \sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b) .
\end{aligned}
$$

Definition 2.4. A prime higher derivation $\left\{d_{n}\right\}$ on an algebra \mathcal{A} is called ordinary if it is of the form specified in Lemma 2.3.

The following result is now obvious.
Proposition 2.5. A prime higher derivation $\left\{d_{n}\right\}$ on an algebra \mathcal{A} is ordinary if and only if there is a sequence $\left\{d_{p}\right\}_{p \in \mathbb{P}}$ of derivations on \mathcal{A} such that $d_{n}=\prod_{i=1}^{r} \frac{d_{p_{i}}^{\alpha_{i}}}{\alpha_{i}!}$ for each $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ with $p_{1}<\ldots<p_{r}$.

Remark 2.6. Let Ψ be a permutation on the prime numbers. Define \preceq on \mathbb{P} by $p \preceq q$ if and only if $\Psi(p) \leq \Psi(q)$. Under this order, we assume that $G(n)$ be the greatest prime divisor on n. Then, the proof of Lemma 2.3 is still valid for G instead of g. Note that the only fact used in the proof is that when $\ell \left\lvert\, \frac{n}{g(n)}\right.$ we have $g(\ell g(n))=g(n)$. Using this method, we can find other examples of prime higher derivations.

3. The result

Here, we give a characterization of a prime higher derivation in terms of derivations.

In what follows, we denote the number of not necessarily distinct prime divisors of n by $\Omega(n)$. Note that $\Omega(1)=0$ and if $k \mid n$ then $\Omega(n)=$ $\Omega(k)+\Omega\left(\frac{n}{k}\right)$.

Proposition 3.1. Let \mathcal{A} be an algebra and $\left\{d_{n}\right\}$ be a prime higher derivation on \mathcal{A} with $d_{1}=I_{\mathcal{A}}$. Then, there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} such that

$$
\text { for each } n \geq 2 . \quad \Omega(n) d_{n}=\sum_{k \mid n, k \neq 1} \delta_{k} d_{\frac{n}{k}}
$$

Proof. We use strong multiplicative induction on n. If p is prime, then we put $\delta_{p}=d_{p}$. Then, δ_{p} is a derivation and $\Omega(p) d_{p}=d_{p}=\delta_{p}=\delta_{p} d_{1}$.

Now suppose that δ_{k} is defined and is a derivation for $k \mid n$ with $k \neq$ $1, n$. Putting $\delta_{n}=\Omega(n) d_{n}-\sum_{k \mid n, k \neq 1, n} \delta_{k} d_{\frac{n}{k}}$, we show that the welldefined mapping δ_{n} is a derivation on \mathcal{A}. For $a, b \in \mathcal{A}$, we have

$$
\begin{aligned}
\delta_{n}(a b) & =\Omega(n) d_{n}(a b)-\sum_{k \mid n, k \neq 1, n} \delta_{k} d_{\frac{n}{k}}(a b) \\
& =\Omega(n) \sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b)-\sum_{k \mid n, k \neq 1, n} \delta_{k}\left(\sum_{\ell \left\lvert\, \frac{n}{k}\right.} d_{\ell}(a) d_{\frac{n}{k \ell}}(b)\right) .
\end{aligned}
$$

Since the δ_{k} are derivations, we have

$$
\begin{aligned}
\delta_{n}(a b)= & \sum_{k \mid n} \Omega(k) d_{k}(a) d_{\frac{n}{k}}(b)+\sum_{k \mid n} d_{k}(a) \Omega\left(\frac{n}{k}\right) d_{\frac{n}{k}}(b) \\
& -\sum_{k \mid n,, k \neq 1, n} \sum_{\ell \left\lvert\, \frac{n}{k}\right.}\left[\delta_{k}\left(d_{\ell}(a)\right) d_{\frac{n}{k \ell}}(b)+d_{\ell}(a) \delta_{k}\left(d_{\frac{n}{k \ell}}(b)\right)\right] .
\end{aligned}
$$

Separating the terms $k=1, n$ from the first and second summation and $\ell=1, \frac{n}{k}$ from the last one, we have

$$
\begin{aligned}
\delta_{n}(a b)= & \Omega(n) d_{n}(a) b+a \Omega(n) d_{n}(b) \\
& -\sum_{k \mid n, k \neq 1, n} \delta_{k}\left(d_{\frac{n}{k}}(a)\right) b-\sum_{k \mid n, k \neq 1, n} a \delta_{k}\left(d_{\frac{n}{k}}(b)\right) \\
& +\sum_{k \mid n, k \neq n}\left[\Omega(k) d_{k}(a)-\sum_{j \mid k, j \neq 1} \delta_{j} d_{\frac{k}{j}}(a)\right] d_{\frac{n}{k}}(b) \\
& +\sum_{k \mid n, k \neq 1} d_{k}(a)\left[\Omega\left(\frac{n}{k}\right) d_{\frac{n}{k}}(b)-\sum_{j \left\lvert\, \frac{n}{k}\right., j \neq 1} \delta_{j} d_{\frac{n}{k j}}(b)\right] .
\end{aligned}
$$

By our assumption,

$$
\begin{aligned}
& \Omega(k) d_{k}(a)-\sum_{j \mid k, j \neq 1} \delta_{j} d_{\frac{k}{j}}(a)=0, \\
& \Omega\left(\frac{n}{k}\right) d_{\frac{n}{k}}(b)-\sum_{j \left\lvert\, \frac{n}{k}\right., j \neq 1} \delta_{j} d_{\frac{n}{k j}}(b)=0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\delta_{n}(a b)= & \Omega(n) d_{n}(a) b-\sum_{k \mid n, k \neq 1, n} \delta_{k}\left(d_{\frac{n}{k}}(a)\right) b \\
& +a \Omega(n) d_{n}(b)-\sum_{k \mid n, k \neq 1, n} a \delta_{k}\left(d_{\frac{n}{k}}(b)\right) \\
= & \delta_{n}(a) b+a \delta_{n}(b)
\end{aligned}
$$

hence, δ_{n} is a derivation on \mathcal{A}.
To illustrate the recursive relation mentioned in Proposition 3.1, let us compute some terms of $\left\{d_{n}\right\}$.

Example 3.2. Using Proposition 3.1, the first six non-prime terms of $\left\{d_{n}\right\}$ are

$$
\begin{aligned}
d_{4}= & \frac{1}{2} \delta_{2}^{2}+\frac{1}{2} \delta_{4} \\
d_{6}= & \frac{1}{2} \delta_{2} \delta_{3}+\frac{1}{2} \delta_{3} \delta_{2}+\frac{1}{2} \delta_{6} \\
d_{8}= & \frac{1}{6} \delta_{2}^{3}+\frac{1}{6} \delta_{2} \delta_{4}+\frac{1}{3} \delta_{8} \\
d_{9}= & \frac{1}{2} \delta_{3}^{2}+\frac{1}{2} \delta_{9} \\
d_{10}= & \frac{1}{2} \delta_{2} \delta_{5}+\delta_{10} \\
d_{12}= & \frac{1}{6} \delta_{2}^{2} \delta_{3}+\frac{1}{6} \delta_{2} \delta_{3} \delta_{2}+\frac{1}{6} \delta_{2} \delta_{6}+\frac{1}{6} \delta_{3} \delta_{2}^{2}+\frac{1}{6} \delta_{3} \delta_{4}+\frac{1}{3} \delta_{4} \delta_{3}+\frac{1}{3} \delta_{6} \delta_{2} \\
& +\frac{1}{3} \delta_{12}
\end{aligned}
$$

Theorem 3.3. Let $\left\{d_{n}\right\}$ be a prime higher derivation on an algebra \mathcal{A} with $d_{1}=I_{\mathcal{A}}$. Then, there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} such that

$$
d_{n}=\sum_{i=1}^{\Omega(n)}\left(\sum_{n=k_{1} \cdots k_{i}}\left(\prod_{j=1}^{i} \frac{1}{\Omega\left(k_{j}\right)+\ldots+\Omega\left(k_{i}\right)}\right) \delta_{k_{1}} \ldots \delta_{k_{i}}\right) \quad(n \geq 2)
$$

where the inner summation is taken over all representations of n as a multiplication of not necessarily distinct natural numbers greater than 1.

Proof. We show that if d_{n} is of the above form then it satisfies the recursive relation of Proposition 3.1. Since the solution of the recursive relation is unique, this proves the theorem. Simplifying the notation, we put $a_{k_{1}, \ldots, k_{i}}=\prod_{j=1}^{i} \frac{1}{\Omega\left(k_{j}\right)+\ldots+\Omega\left(k_{i}\right)}$. Note that if $k_{1} \cdots k_{i}=n$ then $\Omega(n) a_{k_{1}, \ldots, k_{i}}=a_{k_{2}, \ldots, k_{i}}$. Moreover, $a_{n}=\frac{1}{\Omega(n)}$.

$$
\begin{aligned}
& \text { Now, we have } \\
& \begin{aligned}
\Omega(n) d_{n} & =\sum_{i=2}^{n}\left(\sum_{n=k_{1} \cdots k_{i}} \Omega(n) a_{k_{1}, \ldots, k_{i}} \delta_{k_{1}} \ldots \delta_{k_{i}}\right)+\delta_{n} \\
& =\sum_{i=2}^{n}\left(\sum_{k_{1} \mid n, k_{1} \neq 1, n} \delta_{k_{1}} \sum_{\frac{n}{k_{1}}=k_{2} \cdots k_{i}} a_{k_{2}, \ldots, k_{i}} \delta_{k_{2}} \ldots \delta_{k_{i}}\right)+\delta_{n} \\
& =\sum_{k_{1} \mid n, k_{1} \neq 1, n} \delta_{k_{1}} \sum_{i=2}^{\frac{n}{k_{1}}}\left(\sum_{\frac{n}{k_{1}}=k_{2} \cdots k_{i}} a_{k_{2}, \ldots, k_{i}} \delta_{k_{2}} \ldots \delta_{k_{i}}\right)+\delta_{n} \\
& =\sum_{k_{1} \mid n, k_{1} \neq 1, n} \delta_{k_{1}} d_{\frac{n}{k_{1}}}+\delta_{n} \\
& =\sum_{k \mid n, k_{1} \neq 1} \delta_{k} d_{\frac{n}{k}} .
\end{aligned}
\end{aligned}
$$

Example 3.4. We evaluate the coefficients $a_{k_{1}, \ldots, k_{i}}$ for the case $n=12$. For $n=12$, we can write

$$
12=2 \cdot 6=6 \cdot 2=3 \cdot 4=4 \cdot 3=2 \cdot 2 \cdot 3=2 \cdot 3 \cdot 2=3 \cdot 2 \cdot 2
$$

By the definition of $a_{k_{1}, \ldots, k_{i}}$, we have

$$
\begin{aligned}
a_{12} & =\frac{1}{3} \\
a_{2,6} & =\frac{1}{1+2} \cdot \frac{1}{2}=\frac{1}{6} \\
a_{6,2} & =\frac{1}{2+1} \cdot \frac{1}{1}=\frac{1}{3} \\
a_{3,4} & =\frac{1}{1+2} \cdot \frac{1}{2}=\frac{1}{6} \\
a_{4,3} & =\frac{1}{2+1} \cdot \frac{1}{1}=\frac{1}{3}, \\
a_{2,2,3} & =a_{2,3,2}=a_{3,2,2}=\frac{1}{1+1+1} \cdot \frac{1}{1+1} \cdot \frac{1}{1}=\frac{1}{6} .
\end{aligned}
$$

We can therefore deduce that
$d_{12}=\frac{1}{3} \delta_{12}+\frac{1}{6} \delta_{2} \delta_{6}+\frac{1}{3} \delta_{6} \delta_{2}+\frac{1}{6} \delta_{3} \delta_{4}+\frac{1}{3} \delta_{4} \delta_{3}+\frac{1}{6} \delta_{2} \delta_{2} \delta_{3}+\frac{1}{6} \delta_{2} \delta_{3} \delta_{2}+\frac{1}{6} \delta_{3} \delta_{2} \delta_{2}$.

Theorem 3.5. Let \mathcal{A} be an algebra, D be the set of all higher derivations $\left\{d_{n}\right\}$ on \mathcal{A} with $d_{1}=I_{\mathcal{A}}$ and Δ be the set of all sequences $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} with $\delta_{1}=0$. Then, there is a one to one correspondence between D and Δ.

Proof. Let $\left\{\delta_{n}\right\} \in \Delta$. Define $d_{n}: \mathcal{A} \rightarrow \mathcal{A}$ by $d_{1}=I_{\mathcal{A}}$ and

$$
d_{n}=\sum_{i=1}^{\Omega(n)}\left(\sum_{n=k_{1} \cdots k_{i}}\left(\prod_{j=1}^{i} \frac{1}{\Omega\left(k_{j}\right)+\ldots+\Omega\left(k_{i}\right)}\right) \delta_{k_{1}} \ldots \delta_{k_{i}}\right) \quad(n \geq 2)
$$

We show that $\left\{d_{n}\right\} \in D$. By Theorem 3.3, $\left\{d_{n}\right\}$ satisfies the recursive relation

$$
\Omega(n) d_{n}=\sum_{k \mid n, k \neq 1} \delta_{k} d_{\frac{n}{k}} .
$$

To show that $\left\{d_{n}\right\}$ is a prime higher derivation, we use strong multiplicative induction on n. For $n=1$, we have $d_{1}(a b)=a b=d_{1}(a) d_{1}(b)$ and if p is a prime then $d_{p}(a b)=\delta_{p} d_{1}(a b)=\delta_{p}(a) b+a \delta_{p}(b)$. Let us assume that $d_{k}(a b)=\sum_{i \mid k} d_{i}(a) d_{\frac{k}{i}}(b)$ for $k \mid n$ with $k \neq n$. Thus, we have

$$
\begin{aligned}
\Omega(n) d_{n}(a b)= & \sum_{k \mid n, k \neq 1} \delta_{k} d_{\frac{n}{k}}(a b) \\
= & \sum_{k \mid n, k \neq 1} \delta_{k} \sum_{i \left\lvert\, \frac{n}{k}\right.} d_{i}(a) d_{\frac{n}{k i}}(b) \\
= & \sum_{i \mid n}\left(\sum_{k \left\lvert\, \frac{n}{i}\right.} \delta_{k} d_{\frac{n}{k i}}(a)\right) d_{i}(b) \\
& +\sum_{i \mid n} d_{i}(a)\left(\sum_{k \left\lvert\, \frac{n}{i}\right.} \delta_{k} d_{\frac{n}{k i}}(b)\right) .
\end{aligned}
$$

Using our assumption, we can write

$$
\begin{aligned}
\Omega(n) d_{n}(a b)= & \sum_{i \mid n} \Omega\left(\frac{n}{i}\right) d_{\frac{n}{i}}(a) d_{i}(b) \\
& +\sum_{i \mid n} d_{i}(a) \Omega\left(\frac{n}{i}\right) d_{\frac{n}{i}}(b) \\
= & \sum_{i \mid n} \Omega(i) d_{i}(a) d_{\frac{n}{i}}(b)+\sum_{i \mid n} \Omega\left(\frac{n}{i}\right) d_{i}(a) d_{\frac{n}{i}}(b) \\
= & \Omega(n) \sum_{k \mid n} d_{k}(a) d_{\frac{n}{k}}(b) .
\end{aligned}
$$

Thus, $\left\{d_{n}\right\} \in D$.
Conversely, suppose that $\left\{d_{n}\right\} \in D$. Define $\delta_{n}: \mathcal{A} \rightarrow \mathcal{A}$ by $\delta_{1}=0$ and

$$
\delta_{n}=\Omega(n) d_{n}-\sum_{k \mid n, k \neq 1, n} \delta_{k} d_{\frac{n}{k}} .
$$

Then, Proposition 3.1 ensures that $\left\{\delta_{n}\right\} \in \Delta$.
Now, define $\varphi: \Delta \rightarrow D$ by $\varphi\left(\left\{\delta_{n}\right\}\right)=\left\{d_{n}\right\}$, where,

$$
d_{n}=\sum_{i=1}^{\Omega(n)}\left(\sum_{n=k_{1} \cdots k_{i}}\left(\prod_{j=1}^{i} \frac{1}{\Omega\left(k_{j}\right)+\ldots+\Omega\left(k_{i}\right)}\right) \delta_{k_{1}} \ldots \delta_{k_{i}}\right)
$$

Then, φ is clearly a one to one correspondence.
Let \mathcal{A} be an algebra and $\left\{d_{n}\right\}$ be a higher derivation on \mathcal{A}. If we define $D_{n}: \mathcal{A} \rightarrow \mathcal{A}$ by $D_{2^{n}}=d_{n}(n \geq 0)$ and $D_{n}=0$ if n is not a power of 2 , then $\left\{D_{n}\right\}$ is a prime higher derivation. Evaluating the δ_{n} of Proposition 3.1 we see that $\delta_{n}=0$ if n is not a power of 2 . This gives the following result mentioned in [7].

Theorem 3.6. [7, Theorem 2.3] Let $\left\{d_{n}\right\}$ be a higher derivation on an algebra \mathcal{A} with $d_{0}=I$. Then, there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} such that

$$
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1}} \ldots \delta_{r_{i}}\right) .
$$

References

[1] M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 89-93.
[2] M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and ϕ-derivations, J. London Math. Soc. 66(2) (2002) (3) 710-720.
[3] H. G. Dales, Banach algebra and Automatic continuity, Oxford University Press, 2001.
[4] J. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, Preprints in Math. Sci. 2003:32, LUTFMA-5036-2003 Centre for Math. Sci., Dept of Math., Lund Inst. of Tech., Lund Univ., 2003.
[5] H. Hasse and F. K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937) 215-237.
[6] S. Hejazian, A. R. Janfada, M. Mirzavaziri and M. S. Moslehian, Achievement of continuity of (φ, ψ)-derivations without linearity, Bull. Belg. Math. Soc. Simon Stevin. 14(4) (2007) 641-652.
[7] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. in Alg., 38 (3) (2010) 981-987.
[8] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ-derivations on C^{*}-algebras, Proc. Amer. Math. Soc. 134(11) (2006) 3319-3327.
[9] M. Mirzavaziri and M. S. Moslehian, σ-amenability of Banach algebras, Southeast Asian Bull. Math. 33 (2009) 89-99.
[10] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc. 32(1) (2006) 65-78.

Madjid Mirzavaziri

Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Mashhad, Iran
Email: mirzavaziri@math.um.ac.ir and mirzavaziri@gmail.com

