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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Recall that a mapping T of H into itself is called nonex-
pansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ H. A point x ∈ C is a fixed
point of T provided Tx = x. Denote by F (T ) the set of fixed points of
T ; that is, F (T ) = {x ∈ C : Tx = x}. Let f be a bifunction of C × C
into R, where R is the set of real numbers. The equilibrium problem
for f : C × C → R is to find x ∈ C such that

(1.1) f(x, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (f). Given a mapping
T : C → H, let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP (f)
if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈ C; i.e., z is a solution of
the variational inequality. Numerous problems in physics, optimization,
and economics reduce to finding a solution of (1.1). In 1997, Combettes
and Hirstoaga [5] introduced an iterative scheme for finding the best
approximation to initial data when EP (f) is nonempty and proved a
strong convergence theorem.

Let A : C → H be a mapping. The classical variational inequality,
denoted by V I(A,C), is to find u ∈ C such that

(1.2) 〈Au, v − u〉 ≥ 0,

for all v ∈ C. The variational inequality has been extensively studied in
the literature; see, e.g., [1, 6, 17, 19, 20] and the references therein. A
mapping A of C into H is called monotone if

(1.3) 〈Au−Av, u− v〉 ≥ 0,

for all u, v ∈ C. A mapping A of C into H is called α-inverse-strongly-
monotone if there exists a positive real number α such that

(1.4) 〈Au−Av, u− v〉 ≥ α‖Au−Av‖2,

for all u, v ∈ C. It is obvious that any α-inverse-strongly-monotone
mapping A is monotone and Lipschitz continuous. For finding an el-
ement of F (S) ∩ V I(A,C), Takahashi and Toyoda [12] introduced the
following iterative scheme:

(1.5) xn+1 = αnxn + (1− αn)SPC(xn − λnAxn),

for every n = 0, 1, 2, ..., where x0 = x ∈ C,αn is a sequence in (0, 1),
and λn is a sequence in (0, 2α). Recently, Nadezhkina and Takahashi [7]
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and Zeng and Yao [20] proposed some new iterative schemes for finding
elements in F (S) ∩ V I(A,C). In 1976, Korpelevich [2] introduced the
following so-called extragradient method:

(1.6)


x0 = x ∈ C,

x̄n = PC(xn − λnAxn),

xn+1 = PC(xn − λnAx̄n),

for all n ≥ 0, where λn ∈ (0, 1
k ), C is a closed convex subset of Rn and

A is a monotone and k-Lipschitz continuous mapping of C into Rn . He
proved that if V I(C,A) is nonempty, then the sequences {xn} and {x̄n},
generated by (1.6), converge to the same point z ∈ V I(C,A).

Motivated by the idea of Korpelevichs extragradient method, Zeng
and Yao [20] introduced a new extragradient method for finding an ele-
ment of F (S)∩V I(C,A) and obtained the following strong convergence
theorem under some suitable conditions . Let {xn} and {yn} be se-
quences in C defined as follows:

(1.7)


x1 = u ∈ C,

yn = PC(xn − λnAxn),

zn = αnu + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0.

Then, the sequence {xn} and {yn} converge strongly to the same point
PF(S)∩V I(C,A)x0 provided that limn→∞ ‖xn+1−xn‖ = 0. Later, Nadezhk-
ina and Takahashi [7] and Zeng and Yao [20] proposed some new iterative
schemes for finding elements in F (S)∩V I(C,A). In the same year, Yao
and Yao [18] introduced the following iterative scheme: Let C be a closed
convex subset of real Hilbert space H. Let A be an α-inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping
of C into itself such that F (S) ∩ V I(C,A) 6= ∅. Suppose x1 = u ∈ C
and {xn}, {yn} are given by (1.7) where {αn}, {βn}, {γn} are three se-
quences in [0, 1] and {λn} is a sequence in [0, 2α]. They proved that the
sequence {xn} defined by (1.7) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions
of the variational inequality for α-inverse-strongly monotone mappings
under some parameter controlling conditions. After that, Plubtieng and
Punpaeng [9] introduced an iterative scheme,

(1.8)


f(yn, u) + 1

rn
〈u− yn, yn − xn〉 ≥ 0, ∀u ∈ C,

yn = PC(xn − λnAxn)
xn+1 = αnu + βnxn + γnSPC(yn − λnAyn),
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for approximating a common element of the set of fixed points of a non-
expansive mapping and the set of solutions of the equilibrium problem
and obtained a strong convergence theorem in a real Hilbert space.

Let C be a closed convex subset of real Hilbert space H. Let A,B :
C → H be two mappings. We consider the following problem of finding
(x∗, y∗) ∈ C × C such that

(1.9)

{
〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈µBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

which is called a general system of variational inequalities where λ > 0
and µ > 0 are two constants. In particular, if A = B, then problem
(1.9) reduces to finding (x∗, y∗) ∈ C × C such that

(1.10)

{
〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈µAx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

which is defined by Verma [14] and Verma [15], and is called the new
system of variational inequalities. Furthermore, if x∗ = y∗, then problem
(1.10) reduces to the classical variational inequality V I(C,A).

Recently, Ceng et al. [4] introduced the following iterative scheme
by a relaxed extragradient method. Let the mappings A,B : C −→ H
be α-inverse-strongly monotone and β-inverse-strongly monotone, re-
spectively. Let S : C −→ C be a nonexpansive mapping and suppose
x1 = u ∈ C and {xn} is generated by

(1.11)

{
yn = PC(xn − µBxn)
xn+1 = αnu + βnxn + SPC(yn − λAyn), n ≥ 1,

where λ ∈ (0, 2α), µ ∈ (0, 2β), and {αn}, {βn}, {γn} are three sequences
in [0, 1] with αn + βn + γn = 1, ∀n ≥ 1. Then, they proved that the
iterative sequence {xn} converges strongly to some point x0 ∈ C.

Here, motivated and inspired by the above results, we will introduce
a new iterative scheme (3.1) below for finding a common element of the
set of fixed points of a nonexpansive mapping, the set of solutions of
an equilibrium problem, and the solutions of a general system of vari-
ational inequality problem for two inverse-strongly-monotone mappings
in a Hilbert space. Then, we prove some strong convergence theorems
which are connected with Ceng et al.’s result [4], Takahashi and Taka-
hashi’s result [13] and Zeng and Yao’s result [20]. Our results extends
and improve the corresponding results of Ceng et al. [4], Plubtieng and
Punpaeng [9], Su et al. [10] and several others.
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2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉
and let C be a closed convex subset of H. Let H be a real Hilbert space.
Then,

(2.1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉
and

(2.2) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2,

for all x, y ∈ H and λ ∈ [0, 1]. For every point x ∈ H, there exists a
unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC

is a nonexpansive mapping of H onto C and satisfies

(2.3) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2,

for every x, y ∈ H. Moreover, PCx is characterized by the following
properties: PCx ∈ C and

(2.4) 〈x− PCx, y − PCx〉 ≤ 0,

(2.5) ‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2,

for all x ∈ H, y ∈ C. It is easy to see that the following is true:

(2.6) u ∈ V I(C,A) ⇔ u = PC(u− λAu), λ > 0.

The following lemmas will be useful for proving our convergence re-
sult.

Lemma 2.1. (Osilike and Igbokwe [8]) Let (E, 〈., .〉) be an inner product
space. Then, for all x, y, z ∈ E and α, β, γ ∈ [0, 1] with α + β + γ = 1,
we have,

‖αx+βy+γz‖2 =α‖x‖2+β‖y‖2+γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 2.2. (Suzuki [11]) Let {xn} and {yn} be bounded sequences
in a Banach space X and let {βn} be a sequence in [0, 1] with 0 <
lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1−βn)yn +βnxn

for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞ ‖yn − xn‖ = 0.
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Lemma 2.3. (Goebel and Kirk [3]) Let H be a Hilbert space, C a closed
convex subset of H, and T : C → C a nonexpansive mapping with
F (T ) 6= ∅. If {xn} is a sequence in C weakly converging to x ∈ C and
if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Lemma 2.4. (Xu [16]). Assume {an} is a sequence of nonnegative real
numbers such that

an+1 ≤ (1− αn)an + δn, n ≥ 0,

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(1)

∑∞
n=1 αn = ∞,

(2) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then, limn→∞ an = 0.

For solving the equilibrium problem for a bifunction f : C × C → R,
let us assume that F satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C;
(A2) f is monotone; i.e., f(x, y) + F (y, x) ≤ 0, for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt→0 f(tz + (1− t)x, y) ≤ f(x, y);
(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1]

Lemma 2.5. (Blum and Oettli [1]) Let C be a nonempty closed convex
subset of H and let f be a bifunction of C × C into R satisfying (A1)-
(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

The following lemma is given in [5].

Lemma 2.6. (Combettes and Hirstoaga [5]) Assume that f : C×C → R
satisfies (A1)-(A4). For r > 0 and x ∈ H, define a mapping Tr : H → C
as follows:

Tr(x) = {z ∈ C : f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C},

for all z ∈ H. Then, the followings hold:
(1) Tr is single- valued;
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(2) Tr is firmly nonexpansive; i.e., for any x, y ∈ H, ‖Trx−Try‖2 ≤
〈Trx− Try, x− y〉;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

Lemma 2.7. (Ceng et al. [4, Lemma 2.1]) For given x∗, y∗ ∈ C ×
C, (x∗, y∗) is a solution of problem (1.9) if and only if x∗ is a fixed point
of the mapping G : C → C defined by

G(x) = PC [PC(x− µBx)− λAPC(x− µBx)], ∀x ∈ C,

where y∗ = PC(x∗−µBx∗), λ, µ are positive constants and A,B : C → H
are two mappings.

Remark 2.8. Let A : C → H be α-inverse-strongly-monotone. For
each u, v ∈ C and λ > 0, we have,

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v)− λ(Au−Av)‖2

= ‖u− v‖2 − 2λ〈u− v,Au−Av〉
+λ2‖Au−Av‖2

≤ ‖u− v‖2 + λ(λ− 2α)‖Au−Av‖2.(2.7)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping from C to H.

We note that the mapping G : C → C is a nonexpansive mapping
provided λ ∈ (0, 2α) and µ ∈ (0, 2β).
Throughout this paper, the set of fixed points of the mapping G is
denoted by Ω.

3. Main results

Here, we introduce an iterative scheme by the relaxed extragradient
approximation method for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of an equilibrium
problem, and the solution set of the general system of variational in-
equality problem for two inverse-strongly monotone mappings in a real
Hilbert space. We prove that the iterative sequences converge strongly
to a common element of the above three sets.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H.
Let f be a bifunction from C × C to R satisfying (A1)-(A4) and A,B :
C −→ H be α- and β-inverse-strongly monotone mappings, respectively.
Let S be a nonexpansive mapping of C into itself such that F (S) ∩ Ω ∩
EP (f) 6= ∅, given x1 = u ∈ H arbitrary. Let the sequences {xn}, {yn}
and {un} be given by

(3.1)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − µBun),
xn+1 = αnu + βnxn + γnSPC(yn − λAyn),∀n ∈ N,

where λ ∈ (0, 2α), µ ∈ (0, 2β) and {αn}, {βn}, {γn} are three sequences
in [0, 1] and {rn} ⊂ (0,∞) satisfying the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞.

Then, {xn} converges strongly to z ∈ F (S) ∩ Ω ∩ EP (f), where z =
PF (S)∩Ω∩EP (f)u and (z, y) is a solution of problem (1.9), where y =
PC(z − µBz).

Proof. Let x∗ ∈ F (S) ∩ Ω ∩ EP (f), and let {Trn} be a sequence of
mappings defined as in Lemma 2.6 and un = Trnxn. Then, x∗ = Sx∗,
x∗ = Trnx∗ and

x∗ = PC [PC(x∗ − µBx∗)− λAPC(x∗ − µBx∗)],

where we put y∗ = PC(x∗ − µBx∗) and vn = PC(yn − λAyn). Then,
x∗ = PC(y∗ − λAy∗) and

xn+1 = αnu + βnxn + γnSPCvn.

For any n ∈ N, we have,

(3.2) ‖un − x∗‖ = ‖Trnxn − Trnx∗‖ ≤ ‖xn − x∗‖.
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Since PC is nonexpansive and from Remark 2.8, we obtain that I − λA
and I − µB are nonexpansive. Then, it follows:

‖vn − x∗‖2 = ‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

≤ ‖(I − λA)yn − (I − λA)y∗‖2

≤ ‖yn − y∗‖2

= ‖PC(un − µBun)− PC(x∗ − µBx∗)‖2

≤ ‖(un − µBun)− (x∗ − µBx∗)‖2

≤ ‖un − x∗‖2

≤ ‖xn − x∗‖2.

Thus, we also have,

‖xn+1 − x∗‖ = ‖αnu + βnxn + γnSvn − x∗‖
≤ αn‖u− x∗‖+ βn‖xn − x∗‖+ γn‖vn − x∗‖
≤ αn(‖u− x∗‖) + βn‖xn − x∗‖+ γn‖xn − x∗‖
≤ αn(‖u− x∗‖) + (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖x1 − x∗‖}
= ‖u− x∗‖.

Therefore, the sequence {xn} is bounded. Hence, we also have that the
sets {un}, {vn} {Ayn}, {Bxn} and {Svn} are bounded. Moreover, by
nonexpansiveness of I − λA, I − µB and PC , we get

‖vn+1 − vn‖ = ‖PC(yn+1 − λAyn+1)− PC(yn − λAyn)‖
≤ ‖(yn+1 − λAyn+1)− (yn − λAyn)‖
≤ ‖(I − λA)yn+1 − (I − λA)yn‖
≤ ‖yn+1 − yn‖
= ‖PC(un+1 − µBun+1)− PC(un − µBun)‖
≤ ‖(I − µB)un+1 − (I − µB)un‖
≤ ‖un+1 − un‖.(3.3)

On the other hand, from uj = Trjxj , where j = n, n + 1, we have,

(3.4) f(uj , y) +
1
rj
〈y − uj , uj − xj〉 ≥ 0 for all y ∈ C.

Putting y = un+1 and y = un in (3.4), we get

f(un, un+1) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0



236 Kumam

and

f(un+1, un) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

From (A2) we have,

〈un+1 − un,
un − xn

rn
− un+1 − xn+1

rn+1
〉 ≥ 0,

and hence

〈un+1 − un, un − un+1 + un+1 − xn −
rn

rn+1
(un+1 − xn+1)〉 ≥ 0.

Since lim infn→∞ rn > 0, without loss of generality, assume that there
exists a real number c such that rn > c > 0 for all n ∈ N. Then, we
have,

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn + (1− rn

rn+1
)(un+1 − xn+1)〉

≤ ‖un+1 − un‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖un+1 − xn+1‖}

and hence,

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1
|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+
L

c
|rn+1 − rn|,(3.5)

where L = sup{‖un − xn‖ : n ∈ N}. Substituting (3.5) into (3.3), we
obtain:

‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖+
L

c
|rn+1 − rn|.(3.6)

Let xn+1 = (1− βn)zn + βnxn. Thus, we get

zn =
xn+1 − βnxn

1− βn
=

αnu + γnSPC(yn − λAyn)
1− βn

=
αnu + γnSvn

1− βn
.

It follows:

zn+1 − zn =
αn+1u + γn+1Svn+1

1− βn+1
− αnu + γnSvn

1− βn

= (
αn+1

1− βn+1
− αn

1− βn
)u +

γn+1

1− βn+1
(Svn+1 − Svn)

+(
γn+1

1− βn+1
− γn

1− βn
)Svn.
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Combining (3.6) and (3.7), we obtain:

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+

γn+1

1− βn+1
‖vn+1 − vn‖

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
|‖u‖+

γn+1

1− βn+1
‖xn+1 − xn‖

+
γn+1

1− βn+1

L

c
|rn+1 − rn|

+| γn+1

1− βn+1
− γn

1− βn
|‖Svn‖ − ‖xn+1 − xn‖

≤ | αn+1

1− βn+1
− αn

1− βn
| (‖u‖+ ‖Svn‖) +

γn+1

1− βn+1

L

c
|rn+1 − rn|.

From (ii), (iv) and (v), we get

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Thus, by Lemma 2.2, we have,

(3.7) lim
n→∞

‖zn − xn‖ = 0.

Consequently,

(3.8) lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0.

By (iv), (v), (3.3) and (3.5), we also have,
‖vn+1 − vn‖ → 0, ‖un+1 − un‖ → 0 and ‖yn+1 − yn‖ → 0 as n → ∞.
Since

xn+1 − xn = αnu + βnxn + γnSvn − xn = αn(u− xn) + γn(Svn − xn),

it follows from (ii) and (3.8) that

(3.9) lim
n→∞

‖xn − Svn‖ = 0.

Since x∗ ∈ F (S) ∩ Ω ∩ EP (f), we observe:

‖vn − x∗‖ = ‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖
≤ ‖(yn − λAyn)− (y∗ − λAy∗)‖
≤ ‖yn − y∗‖ = ‖PC(un − λAun)− PC(x∗ − λAx∗)‖
≤ ‖(un − λAun)− (x∗ − λAx∗)‖
≤ ‖un − x∗‖(3.10)
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and

‖un − x∗‖2 = ‖Trnxn − Trnx∗‖2 ≤ 〈Trnxn − Trnx∗, xn − x∗〉
= 〈un − x∗, xn − x∗〉

=
1
2
(‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2),

and then ‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2. From (3.10), we have,

‖xn+1 − x∗‖2 = ‖αnu + βnxn + γnSvn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖Svn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖un − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2

+γn(‖xn − x∗‖2 − ‖xn − un‖2)
= αn‖u− x∗‖2 + (βn + γn)‖xn − x∗‖2 − γn‖xn − un‖2

= αn‖u− x∗‖2 + (1− αn)‖xn − x∗‖2 − γn‖xn − un‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − γn‖xn − un‖2(3.11)

and hence,

γn‖xn − un‖2≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + ‖xn − xn+1‖(‖xn − x∗‖+ ‖xn+1 − x∗‖).(3.12)

Using (ii) and (3.8), we get

(3.13) lim
n→∞

‖xn − un‖ = 0.

Since lim infn→∞ rn > 0, we have,

(3.14) lim
n→∞

‖xn − un

rn
‖ = lim

n→∞

1
rn
‖xn − un‖ = 0.
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Again, since αn → 0 and (3.8) imply that ‖un − xn‖ → 0, as n →∞.
From (3.2), (3.10) and Lemma 2.1, we get

‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn{‖(yn − λAyn)− (y∗ − λAy∗)‖2}
≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn{‖yn − y∗‖2

+λ(λ− 2α)‖Ayn −Ay∗‖2}
= αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖un − x∗‖2

+γnλ(λ− 2α)‖Ayn −Ay∗‖2

= αn‖u− x∗‖2 + (βn + γn)‖xn − x∗‖2

+γnλ(λ− 2α)‖Ayn −Ay∗‖2

= αn‖u− x∗‖2 + (1− αn)‖xn − x∗‖2 + γnλ(λ− 2α)‖Ayn −Ay∗‖2

and

‖xn+1 − x∗‖2 ≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn{‖(un − µBun)
−(x∗ − µBx∗)‖2}

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn{‖un − x∗‖2

+µ(µ− 2β)‖Bun −Bx∗‖2}
= αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2

+γnµ(µ− 2β)‖Bun −Bx∗‖2

≤αn‖u− x∗‖2 + ‖xn − x∗‖2+γnµ(µ− 2β)‖Bun −Bx∗‖2.

Hence, by (3.15) and (3.15), we obtain:

γnλ(2α− λ)‖Ayn −Ay∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

= αn‖u− x∗‖2 + (‖xn − x∗‖+‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)
≤ αn‖u− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖
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and

γnµ(2β − µ)‖Bun −Bx∗‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

=αn‖u− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)(‖xn − x∗‖ − ‖xn+1 − x∗‖)
≤ αn‖u− x∗‖2 + (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖.

From (ii), (iii), (3.8), (3.15) and (3.15), respectively, we also have,

(3.15) ‖Ayn −Ay∗‖ → 0 and ‖Bun −Bx∗‖ → 0, as n →∞.

By (2.3), we obtain:

‖yn − y∗‖2 = ‖PC(un − µBun)− PC(x∗ − µBx∗)‖2

≤ 〈(un − µBun)− (x∗ − µBx∗), yn − y∗〉

=
1
2
{‖(un − µBun)− (x∗ − µBx∗)‖2 + ‖yn − y∗‖2

−‖(un − µBun)− (x∗ − µBx∗)− (yn − y∗)‖2}

≤ 1
2
{‖un − x∗‖2 + ‖yn − y∗‖2 − ‖(un − yn)− µ(Bun −Bx∗)

−(x∗ − y∗)‖2}

=
1
2
{‖un − x∗‖2 + ‖yn − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2µ〈(un − yn)− (x∗ − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2},

which implies:

‖yn − y∗‖2≤ ‖un − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2µ〈(un − yn)− (x∗ − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2.
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Thus, we observe:

‖xn+1 − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2 + γn‖yn − y∗‖2

≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2

+γn{‖un − x∗‖2 − ‖(un − yn)− (x∗ − y∗)‖2

+2µ〈(un − yn)− (x∗ − y∗), Bun −Bx∗〉 − µ2‖Bun −Bx∗‖2}
≤ αn‖u− x∗‖2 + βn‖xn − x∗‖2

+γn‖xn − x∗‖2 − γn‖(un − yn)− (x∗ − y∗)‖2

+2γnµ‖(un − yn)− (x∗ − y∗)‖‖Bun −Bx∗‖ − γnµ2‖Bun −Bx∗‖2

≤ αn‖u− x∗‖2 + (1− αn)‖xn − x∗‖2 − γn‖(un − yn)− (x∗ − y∗)‖2

+2γnµ‖(un − yn)− (x∗ − y∗)‖‖Bun −Bx∗‖.

It follows:

γn‖(un − yn)− (x∗ − y∗)‖2

≤ αn‖u− x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+2γnµ‖(un − yn)− (x∗ − y∗)‖‖Bun −Bx∗‖
≤ αn‖u− x∗‖2 + ‖xn+1 − xn‖(‖xn − x∗‖+ ‖xn+1 − x∗‖2)

+2γnµ‖(un − yn)− (x∗ − y∗)‖‖Bun −Bx∗‖.(3.16)

From (ii), (3.15), (3.8) and ‖Bun −Bx∗‖ → 0, as n →∞, we have,

(3.17) ‖(un − yn)− (x∗ − y∗)‖ → 0, as n →∞.
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We observe:

‖(yn − vn) + (x∗ − y∗)‖2

= ‖(yn − y∗)− [PC(yn − λAyn)− x∗]‖2

= ‖yn − λAyn − (y∗ − λAy∗)
−[PC(yn − λAyn)− x∗] + λ(Ayn −Ay∗)‖2

≤ ‖yn − λAyn − (y∗ − λAy∗)‖2

−‖PC(yn − λAyn)− PC(y∗ − λAy∗)‖2

+2λ〈Ayn −Ay∗, (yn − vn) + (x∗ − y∗)〉
≤ ‖yn − λAyn − (y∗ − λAy∗)‖2

−‖SPC(yn − λAyn)− SPC(y∗ − λAy∗)‖2

+2λ‖Ayn −Ay∗‖‖(yn − vn) + (x∗ − y∗)‖
≤ ‖yn − λAyn − (y∗ − λAy∗)‖2 − ‖Svn − Sx∗‖2

+2λ‖Ayn −Ay∗‖‖(yn − vn) + (x∗ − y∗)‖
≤ ‖yn − λAyn − (y∗ − λAy∗)− Svn − Sx∗‖

×(‖yn − λAyn − (y∗ − λAy∗)‖+ ‖Svn − Sx∗‖)
+2λ‖Ayn −Ay∗‖‖(yn − vn) + (x∗ − y∗)‖

≤ ‖xn − Svn + x∗ − y∗ − (xn − yn)− λ(Ayn −Ay∗)‖
×(‖yn − λAyn − (y∗ − λAy∗)‖2‖+ ‖Svn − Sx∗‖)
+2λ‖Ayn −Ay∗‖‖(yn − vn) + (x∗ − y∗)‖.

From (3.9), (3.17) and ‖Ayn −Ay∗‖ → 0, as n →∞, it follows:

‖(yn − vn) + (x∗ − y∗)‖ → 0, (n →∞).

We note that

‖Svn − vn‖ ≤ ‖Svn − xn‖+ ‖xn − un‖+ ‖(un − yn)− (x∗ − y∗)‖
+‖(yn − vn) + (x∗ − y∗)‖.

We then obtain:

(3.18) lim
n→∞

‖Svn − vn‖ = 0.

Next, we show that

lim sup
n→∞

〈u− z0, xn − z0〉 ≤ 0,
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where z0 = PF (S)∩Ω∩EP (f)u. To show this inequality, we choose a subse-
quence {vni} of {vn} such that

lim sup
n→∞

〈u− z0, Svn − z0〉 = lim
i→∞

〈u− z0, Svni − z0〉.

Since {vni} is bounded, there exists a subsequence {vnij
} of {vni} which

converges weakly to z. Without loss of generality, we can assume that
vni ⇀ z. From ‖Svn − vn‖ → 0, we obtain Svni ⇀ z. Let us show
z ∈ EP (f). Since un = Trnxn, we have,

f(un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0,∀y ∈ C.

From (A2), it follows:

1
rn
〈y − un, un − xn〉 ≥ f(y, un),

and hence 〈y − uni ,
uni−xni

rni
〉 ≥ f(y, uni). From ‖un − xn‖ → 0, ‖xn −

Svn‖ → 0 and ‖Svn − vn‖ → 0, we get uni ⇀ z. Since uni−xni
rni

→ 0, it
follows by (A4) that 0 ≥ f(y, z), for all y ∈ C. For t with 0 < t ≤ 1 and
y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C
and hence f(yt, z) ≤ 0. So, from (A1) and (A4) we have 0 = f(yt, yt) ≤
tf(yt, y) + (1− t)f(yt, z) ≤ tf(yt, y) and hence 0 ≤ f(yt, y). From (A3),
we have f(z, y) ≥ 0, for all y ∈ C and hence z ∈ EP (f). By Opial’s
condition, we obtain z ∈ F (S). Finally, by the same argument as that
in the proof of [4, Theorem 3.1, p. 384-385], we can show that z ∈ Ω.
Hence, z ∈ F (S) ∩ Ω ∩ EP (f). Now from (2.4), we have,

lim sup
n→∞

〈u− z0, xn − z0〉 = lim sup
n→∞

〈u− z0, Svn − z0〉

= lim
i→∞

〈u− z0, Svni − z0〉

= 〈u− z0, z − z0〉 ≤ 0.(3.19)
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Finally, we show that xn → z0, where z0 = PF (S)∩V I(A,C)∩EP (f)u. We
observe:

‖xn+1 − z0‖2 = 〈αnu + βnxn

+γnSvn − z0, xn+1 − z0〉
= αn〈u− z0, xn+1 − z0〉+ βn〈xn − z0, xn+1 − z0〉

+γn〈Svn − z0, xn+1 − z0〉

≤ 1
2
βn(‖xn − z0‖2 + ‖xn+1 − z0‖2) + αn〈u− z0, xn+1 − z0〉

+
1
2
γn(‖xn − z0‖2 + ‖xn+1 − z0‖2)

≤ 1
2
{(1− αn)‖xn − z0‖2 + ‖xn+1 − z0‖2}

+αn〈u− z0, xn+1 − z0〉,
which implies:

‖xn+1 − z0‖2 ≤ (1− αn)‖xn − z0‖2 + 2αn〈u− z0, xn+1 − z0〉.
Finally, by (3.19) and Lemma 2.4, we get that {xn} converges to z0,
where z0 = PF (S)∩Ω∩EP (f)u. This completes the proof. �

By Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C × C to R satisfying (A1)-(A4) and
A : C −→ H be α-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F (S) ∩ Ω ∩ EP (f) 6= ∅. Let f be
a contraction of H into itself, given x0 ∈ H arbitrary. Suppose that
x1 = u ∈ C and {xn}, {yn} and {un} be given by

(3.20)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = PC(un − λAun)
xn+1 = αnu + βnxn + γnSPC(yn − λAyn),∀n ∈ N,

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1]. If
{αn}, {βn}, {γn} and λ ∈ [a, b] for some a, b with 0 < a < b < 2α and
{rn} ⊂ (0,∞) satisfy the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,
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then {xn} converges strongly to u = PF (S)∩Ω∩EP (f)u.

Proof. By letting A = B and λ = µ, for n ∈ N, in Theorem 3.1, we
obtain the desired result. �

Setting PH = I, we obtain the following corollary.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C × C to R satisfying (A1)-(A4) and
A : C −→ H be α-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(A,C) ∩ EP (f) 6= ∅. Let
f be a contraction of H into itself, given x0 ∈ H arbitrary. Suppose
x1 = u ∈ C and {xn}, {yn} and {un} be given by

(3.21)
f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

xn+1 = αnu + βnxn + γnSPC(un − λAun),∀n ∈ N,

where λ ∈ (0, 2α) and {αn}, {βn}, {γn} are three sequences in [0, 1]. If
{αn}, {βn}, {γn} and λ ∈ [a, b] for some a, b with 0 < a < b < 2α and
{rn} ⊂ (0,∞) satisfy the following conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,

then {xn} converges strongly to z ∈ F (S) ∩ V I(C,A) ∩ EP (f), where
z = PF (S)∩V I(C,A)∩EP (f)u.

Using Theorem 3.1, we obtain the following two corollaries in Hilbert
space.

Corollary 3.4. (Ceng et. al [4, Theorem 3.1]) Let C be a closed convex
subset of a real Hilbert space H. Let A and B be α- and β-inverse-
strongly monotone mappings of C into H, respectively, and let S be a
nonexpansive mapping of C into itself such that F (S) ∩Ω 6= ∅. Suppose
x1 = u ∈ C and {xn}, {yn} are given by

yn = PC(xn − µBxn)
xn+1 = αnu + βnxn + γnSPC(yn − λAyn),

where λ ∈ (0, 2α), µ ∈ (0, 2β) and {αn}, {βn}, {γn} are three sequences
in [0, 1] and {rn} ⊂ (0,∞) satisfying the following conditions:



246 Kumam

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} converges strongly to PF (S)∩Ωu and (x∗, y∗) is a solution of
problem (1.9), where y∗ = PC(x∗ − µBx∗).

Proof. Put F (x, y) = 0, for all x, y ∈ C, and rn = 1, for all n ∈ N, in
Theorem 3.1 . Then, we have un = PCxn = xn. So, from Theorem 3.1,
the sequence {xn} converges strongly to PF (S)∩Ωu. �

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H.
Let A be an α−inverse-strongly monotone mapping of C into H and let S
be a nonexpansive mapping of C into itself such that F (S)∩V I(A,C) 6=
∅. Suppose that x1 = u ∈ C and {xn}, {yn} be given by

yn = PC(xn − λAxn)
xn+1 = αnu + βnxn + γnSPC(yn − λAyn),

where λ ∈ [0, 2α] and {αn}, {βn}, {γn} are three sequences in [0, 1] sat-
isfying

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} converges strongly to PF (S)∩Ωu. Moreover, we also have
(x∗, y∗) is a solution of problem (1.10), where y∗ = PC(x∗ − λAx∗).

Proof. By taking A = B and λ = µ in Corollary 3.4, we get the desired
result. �

4. Applications

A mapping T : C → C is called strictly pseudocontractive on C if
there exists k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x + (I − T )y‖2, for all x, y ∈ C.

If k = 0, then T is nonexpansive. Put A = I − T , where T : C → C
is a strictly pseudocontractive mapping with k. Then, we have, for all
x, y ∈ C,

‖(I −A)x− (I −A)y‖2 ≤ ‖x− y‖2 + k‖Ax−Ay‖2.
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On the other hand, we have,

‖(I −A)x− (I −A)y‖2 = ‖x− y‖2 − 2〈x− y, Ax−Ay〉+ ‖Ax−Ay‖2.

Hence, we have,

〈x− y, Ax−Ay〉 ≥ 1− k

2
‖Ax−Ay‖2.

Then, A is 1−k
2 −inverse strongly monotone.

Now, using Theorem 3.1, we state a strong convergence theorem for a
pair of nonexpansive mappings and strictly pseudocontractive mappings.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C × C to R satisfy (A1)-(A4) and let
S be a nonexpansive mappings of C into itself and let T, V be strictly
pseudocontractive mapping with constant k of C into itself such that
F (S) ∩ F (T ) ∩ EP (F ) 6= ∅. Suppose x1 = u ∈ C and {xn}, {yn} and
{un} are given by

f(un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = (1− µ)un + µV un

xn+1 = αnu + βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where {αn}, {βn}, {γn} are three sequences in [0, 1], λ ∈
[0, 1− k] and µ ∈ [0, 1− l]. If {αn}, {βn}, {γn} {rn} ⊂ (0,∞) satisfy

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iv) lim infn→∞ rn > 0,

∑∞
n=1 |rn+1 − rn| < ∞,

then {xn} converges strongly to z = PF (S)∩F (T )∩EP (f)u.

Proof. Put A = I−T and B = I−V . Then, A is 1−k
2 −inverse-strongly

monotone and B is 1−l
2 −inverse-strongly monotone. We have that F (T )

is the solution set of V I(A,C) and Ω; i.e., F (T ) = V I(A,C) ⇔
problem (1.9) ⇔ problem (1.10) (see cf. Ceng et al. [4, Theorem

4.1 pp. 388–389]) and

PC(un−µBun)=(1−µ)un+µV un and PC(yn−λAyn) = (1−λ)yn+λTyn.

Therefore, by Theorem 3.1, the result follows. �

Therefore, the following Corollary immediately from Theorem 4.1.
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Corollary 4.2. (Ceng et al. [4, Corollary 3.3]) Let C be a closed convex
subset of a real Hilbert space H. Let S be a nonexpansive mapping of
C into itself and let T, V be strictly pseudocontractive mappings with
constant k of C into itself such that F (S)∩F (T ) 6= ∅. Suppose x1 = u ∈
C and {xn} is given by

yn = (1− µ)xn + µV xn

xn+1 = αnu + βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where {αn}, {βn}, {γn} are three sequences in [0, 1], λ ∈
[0, 1 − k] and µ ∈ [0, 1 − l]. If {αn}, {βn}, {γn} satisfy the following
conditions:

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then {xn} converges strongly to x∗ = PF (S)∩Ωu and (x∗, y∗) is a solution
of problem (1.10), where y∗ = (1− µ)x∗ − µV x∗).

Corollary 4.3. Let C be a closed convex subset of a real Hilbert space
H. Let S be a nonexpansive mapping of C into itself and let T be a
strictly pseudocontractive mapping with constant k of C into itself such
that F (S) ∩ F (T ) 6= ∅. Suppose x1 = u ∈ C and {xn} is given by

yn = (1− λ)xn + λTxn

xn+1 = αnu + βnxn + γnS((1− λ)yn + λTyn),

for all n ∈ N, where λ ∈ [0, 1 − k] and {αn}, {βn}, {γn} are three se-
quences in [0, 1] satisfying

(i) αn + βn + γn = 1,
(ii) limn→∞ αn = 0,

∑∞
n=1 αn = ∞,

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} converges strongly to PF (S)∩F (T )u.

The following three theorems are connected with the problem of ob-
taining a common element of the sets of zeroes of a maximal monotone
operator and an α−inverse-strongly monotone operator.

Theorem 4.4. Let C be a nonempty closed convex subset of H. Let f
be a bifunction from C × C to R satisfying (A1) − (A4) and let A be
an α−inverse-strongly monotone operator in H and B : H → 2H be a
maximal monotone operator such that A−1(0)∩B−1(0)∩EP (f) 6=. Let
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JB
r be the resolvent of B for each r > 0. Let {xn} and {un} be sequences

generated by x1 = u ∈ H and

(4.1)


f(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ H,

yn = (un − λAun)
xn+1 = αnu + βnxn + γnJB

r (yn − λAyn),

where {λ} ⊂ [c, d] for some [c, d] ⊂ (0, 2α), {αn}, {βn}, {γn} and {rn}
satisfy the following conditions:

(i) αn + βn + γn = 1,
(ii) {αn} ⊂ [0, 1],

∑∞
n=0 αn = ∞, αn → 0;

(iii) {rn} ⊂ (0,∞), lim infn→∞ rn > 0,
∑∞

n=1 |rn+1 − rn| < ∞,
(iv) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then, {xn} and {un} converge strongly to z ∈ A−1(0)∩B−1(0)∩EP (f),
where z = PA−1(0)∩B−1(0)EP (f)x1.

Proof. Since A−10 = V (I,A) and F (JB
r ) = B−1(0), putting PH = I,

then, by Theorem 3.1, we obtain the desired result easily. �
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