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ABSTRACT. We introduce and study an iterative sequence for find-
ing the common element of the set of fixed points of a nonexpan-
sive mapping, the set of solutions of an equilibrium problem and
the solutions of the general system of variational inequality for two
inverse-strongly monotone mappings. Under suitable conditions,
some strong convergence theorems for approximating a common el-
ement of the above three sets are obtained. Moreover, using the
above theorem, we also find solutions of a general system of varia-
tional inequalities and a zero of a maximal monotone operator in a
real Hilbert space. As applications, we utilize our results to study
the zeros of the maximal monotone and some convergence prob-
lem for strictly pseudocontractive mappings. Our results include
the previous results as special cases extending and improving the
results of Ceng et al. [4], Yao and Yao [18] and some others.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. Recall that a mapping T of H into itself is called nonex-
pansive if [Tz —Ty|| < ||z —y| for all z,y € H. A point z € C is a fixed
point of T provided Tx = x. Denote by F(T) the set of fixed points of
T; that is, F(T) = {x € C : Tx = z}. Let f be a bifunction of C' x C
into R, where R is the set of real numbers. The equilibrium problem
for f:C x C — R is to find x € C such that

(1.1) f(z,y) >0 forally € C.

The set of solutions of (1.1) is denoted by EP(f). Given a mapping
T:C— H,let f(z,y) = (Tx,y — x) for all z,y € C. Then, z € EP(f)
if and only if (T'z,y — 2z) > 0 for all y € C; i.e., z is a solution of
the variational inequality. Numerous problems in physics, optimization,
and economics reduce to finding a solution of (1.1). In 1997, Combettes
and Hirstoaga [5] introduced an iterative scheme for finding the best
approximation to initial data when EP(f) is nonempty and proved a
strong convergence theorem.

Let A : C — H be a mapping. The classical variational inequality,
denoted by VI(A,C), is to find u € C such that

(1.2) (Au,v —u) >0,

for all v € C. The variational inequality has been extensively studied in
the literature; see, e.g., [1, 6, 17, 19, 20] and the references therein. A
mapping A of C' into H is called monotone if

(1.3) (Au — Av,u —v) >0,

for all u,v € C. A mapping A of C into H is called a-inverse-strongly-
monotone if there exists a positive real number « such that

(1.4) (Au — Av,u — v) > al|Au — Av|)?,

for all u,v € C. It is obvious that any a-inverse-strongly-monotone
mapping A is monotone and Lipschitz continuous. For finding an el-

ement of F(S)NVI(A,C), Takahashi and Toyoda [12] introduced the
following iterative scheme:

(1.5) Tnt1 = nZn + (1 — ap)SPo(xy, — ApAxy,),

for every n = 0,1,2, ..., where 29 = = € C,q, is a sequence in (0, 1),
and A, is a sequence in (0, 2a). Recently, Nadezhkina and Takahashi [7]
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and Zeng and Yao [20] proposed some new iterative schemes for finding
elements in F'(S) N VI(A,C). In 1976, Korpelevich [2] introduced the
following so-called extragradient method:

rxo=x € C,
(1.6) Tp = PC(l'n - AnAmn)a
Tnt1 = Po(zn, — MAZy),

for all n > 0, where A, € (0,1),C is a closed convex subset of R" and
A is a monotone and k-Lipschitz continuous mapping of C into R™ . He
proved that if VI(C, A) is nonempty, then the sequences {x, } and {z,},
generated by (1.6), converge to the same point z € VI(C, A).

Motivated by the idea of Korpelevichs extragradient method, Zeng
and Yao [20] introduced a new extragradient method for finding an ele-
ment of F'(S)NVI(C,A) and obtained the following strong convergence
theorem under some suitable conditions . Let {z,} and {y,} be se-
quences in C' defined as follows:

r1=u € C,
(17) Yn = PC(SUn - AnAxn)’
zn = apu + (1 — ay)SPo(xn — A\yAyy), Yn > 0.

Then, the sequence {z,} and {y,} converge strongly to the same point
Prsynvi(c,a)o provided that limy, e || Zn41—,| = 0. Later, Nadezhk-
ina and Takahashi [7] and Zeng and Yao [20] proposed some new iterative
schemes for finding elements in F'(S)NVI(C, A). In the same year, Yao
and Yao [18] introduced the following iterative scheme: Let C be a closed
convex subset of real Hilbert space H. Let A be an a-inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping
of C into itself such that F(S)NVI(C,A) # (). Suppose 1 = u € C
and {x,},{yn} are given by (1.7) where {ay},{0n}, {7} are three se-
quences in [0, 1] and {\,} is a sequence in [0, 2a]. They proved that the
sequence {x, } defined by (1.7) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions
of the variational inequality for a-inverse-strongly monotone mappings
under some parameter controlling conditions. After that, Plubtieng and
Punpaeng [9] introduced an iterative scheme,

f(ynyu)+%<u_ynayn_xn>20a Vu € C,
(1.8) Yn = Po(zn — M\Azy)
Tn+l = QpU + By + ’VnSPC(yn - )\nAyn)7



230 Kumam

for approximating a common element of the set of fixed points of a non-
expansive mapping and the set of solutions of the equilibrium problem
and obtained a strong convergence theorem in a real Hilbert space.

Let C be a closed convex subset of real Hilbert space H. Let A, B :
C — H be two mappings. We consider the following problem of finding
(x*,y*) € C x C such that
(1.9) MNy* +2* —y*,x —2*) >0, VaeCl,

' (uBx* +y* —x*,x —y*) >0, VzeCl,

which is called a general system of variational inequalities where A > 0
and p > 0 are two constants. In particular, if A = B, then problem
(1.9) reduces to finding (z*,y*) € C' x C such that

(My* +2* —y*,x —2*) >0, Vel
(WAx* + y* —z*,x —y*) >0, Ve,

which is defined by Verma [14] and Verma [15], and is called the new
system of variational inequalities. Furthermore, if x* = y*, then problem
(1.10) reduces to the classical variational inequality VI(C, A).

Recently, Ceng et al. [4] introduced the following iterative scheme
by a relaxed extragradient method. Let the mappings A,B: C — H
be a-inverse-strongly monotone and [-inverse-strongly monotone, re-
spectively. Let S : C — C be a nonexpansive mapping and suppose
x1 =u € C and {x,} is generated by

(1.10)

(1 11) Yn = PC(xn - Man)
Tnt1 = Qe+ Bpy + SPo(yn — Myp), n>1,

where X\ € (0,2a), 1 € (0,20), and {a,},{6n}, {7} are three sequences
in [0,1] with oy + Bn + 7 = 1, Yn > 1. Then, they proved that the
iterative sequence {z,} converges strongly to some point zy € C.

Here, motivated and inspired by the above results, we will introduce
a new iterative scheme (3.1) below for finding a common element of the
set of fixed points of a nonexpansive mapping, the set of solutions of
an equilibrium problem, and the solutions of a general system of vari-
ational inequality problem for two inverse-strongly-monotone mappings
in a Hilbert space. Then, we prove some strong convergence theorems
which are connected with Ceng et al.’s result [4], Takahashi and Taka-
hashi’s result [13] and Zeng and Yao’s result [20]. Our results extends
and improve the corresponding results of Ceng et al. [4], Plubtieng and
Punpaeng [9], Su et al. [10] and several others.
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2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, -)
and let C be a closed convex subset of H. Let H be a real Hilbert space.
Then,

(2.1) lz =yl = llz]* = lyll* — 2z —y.9)
and
(22) Az + (1= Nyl* = Alz]® + (1 = Nyl = A1 =Nz -yl
for all z,y € H and A € [0,1]. For every point x € H, there exists a
unique nearest point in C', denoted by Pox, such that

|z — Pox|| < [|lz —y| forallyeC.
Pp is called the metric projection of H onto C. It is well known that Po
is a nonexpansive mapping of H onto C' and satisfies
(2.3) (x —y, Pox — Poy) > || Pox — Peyll?,
for every x,y € H. Moreover, Pocx is characterized by the following
properties: Pox € C' and

(24) <m_PC:an_PC$> S()?

(2.5) lz = yl* > [lz — Pez||* + |ly — Poz|l?,
for all x € H,y € C. It is easy to see that the following is true:
(2.6) ueVI(C,A) < u= Po(u— NAu), A > 0.

The following lemmas will be useful for proving our convergence re-
sult.

Lemma 2.1. (Osilike and Igbokwe [8]) Let (E, (.,.)) be an inner product
space. Then, for all x,y,z € E and o, 3,y € [0,1] with a + 4+ v =1,
we have,

laz+By+vzll* = allz|*+Blly | 2|2~ abllz—ylI*~ayllz—2|*~ Iy —=II*

Lemma 2.2. (Suzuki [11]) Let {z,} and {yn} be bounded sequences
in a Banach space X and let {B,} be a sequence in [0,1] with 0 <
liminf, o By < limsup,,_, . Bn < 1. Suppose xp11 = (1 — Bn)yn + Bnn
for all integers n > 0 and limsup,, oo (||Yyn+1 — Ynll — [|Zn+1 — 24]|) < 0.
Then, limy, oo ||yn — znl| = 0.
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Lemma 2.3. (Goebel and Kirk [3]) Let H be a Hilbert space, C a closed
convex subset of H, and T : C — C a nonexpansive mapping with
F(T) # 0. If {xn} is a sequence in C weakly converging to x € C' and
if {{I = T)xn} converges strongly to y, then (I —T)x = y.

Lemma 2.4. (Xu [16]). Assume {a,} is a sequence of nonnegative real
numbers such that
n+1 < (1 - an)an + 5n7 n > 0,
where {a,} is a sequence in (0,1) and {0,} is a sequence in R such that
(1) Yopiy an = oo,
(2) limsup,, i” <0 or > 02 |0n] < o0.
Then, limy,_ o a, = 0.

For solving the equilibrium problem for a bifunction f: C x C — R,
let us assume that F' satisfies the following conditions:

(A1) f(z,z) =0, for all z € C,

(A2) f is monotone; i.e., f(z,y) + F(y,x) <0, for all z,y € C;
(A3) for each x,y,z € C’ limy o f(tz+ (1 — t)x y) < f(x Y);

(A4) for each z € C,y — f(z,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1]

Lemma 2.5. (Blum and Oettli [1]) Let C be a nonempty closed convex
subset of H and let f be a bifunction of C' x C into R satisfying (A1)-
(A4). Let v >0 and v € H. Then, there exists z € C such that

f(zay)-i‘%(y—Z,z—:U) >0 forally e C.

The following lemma is given in [5].

Lemma 2.6. (Combettes and Hirstoaga [5]) Assume that f : CxC — R
satisfies (A1)-(A4). Forr >0 andx € H, define a mapping T, : H — C
as follows:

T (z)={z € C:f(z,y)—i—%(y—z,z—x) > 0,Vy € C},

for all z € H. Then, the followings hold:
(1) T, is single- valued;



A relaxed extragradient approximation method 233

(2) T, is firmly nonexpansive; i.e., for any x,y € H, |Trx —T,y||*> <
<Tr$ - Ty, x — y>;

(3) F(T)) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.7. (Ceng et al. [4, Lemma 2.1]) For given z*,y* € C x
C, (z*,y*) is a solution of problem (1.9) if and only if x* is a fized point
of the mapping G : C — C defined by

G(z) = Po[Po(x — pBx) — MAPo(x — uBz)], Yz € C,

where y* = Po(x*—pBx*), \, u are positive constants and A, B : C — H
are two mappings.

Remark 2.8. Let A : C — H be a-inverse-strongly-monotone. For
each u,v € C and X\ > 0, we have,

I = A)u— (I = AA)l® = [(u—v) = A(Au — Av)||?
= Jlu—v|* - 2\u — v, Au — Av)
+22 || Au — Av||?
(2.7) <l — o]+ AN = 2a) || Au — Av|)?.

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.

We note that the mapping G : C — C' is a nonexpansive mapping
provided A € (0,2«) and p € (0,20).
Throughout this paper, the set of fixed points of the mapping G is
denoted by €.

3. Main results

Here, we introduce an iterative scheme by the relaxed extragradient
approximation method for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of an equilibrium
problem, and the solution set of the general system of variational in-
equality problem for two inverse-strongly monotone mappings in a real
Hilbert space. We prove that the iterative sequences converge strongly
to a common element of the above three sets.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H .
Let f be a bifunction from C x C to R satisfying (A1)-(A4) and A, B :
C — H be a- and B-inverse-strongly monotone mappings, respectively.
Let S be a nonexpansive mapping of C' into itself such that F(S)N QN
EP(f) # 0, given x1 = u € H arbitrary. Let the sequences {xn},{yn}
and {uy} be given by

(3.1)  yn = Po(un — pBuy),
Tnt1 = Qpt + BnZn + Y SPo(yn — Nyn),¥n € N,

where X € (0,2a),p € (0,20) and {an},{6n}, {1} are three sequences
in [0,1] and {r,} C (0,00) satisfying the following conditions:

(i) an+ Bn+m =1,

i) lmy, oo @t = 0, 02 @y = 00,

(iii) 0 < liminf,, o B, < limsup,,_,., On < 1,
)

(iv) Hminf, oo rn > 0,207 [rpg1 — ra] < .

Then, {x,} converges strongly to z € F(S)NQ N EP(f), where z =
Pr(synanep(pnu and (z,y) is a solution of problem (1.9), where y =
Po(z — pBz).

Proof. Let z* € F(S)NQ N EP(f), and let {T;,} be a sequence of
mappings defined as in Lemma 2.6 and u,, = T}, ©,. Then, 2* = Sx*,
x* =T, x* and

x* = Po[Po(x* — uBx™) — MAPg(a™ — pBx™)),

where we put y* = Po(2* — pBz*) and v, = Po(yn, — AAyy,). Then,
x* = Po(y* — AMy*) and

Tnt1 = QU + BTy + S Povy.

For any n € N, we have,

(3.2) un — || = | Ty, 20 — T2 || < |lzn — 27
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Since P¢ is nonexpansive and from Remark 2.8, we obtain that I — \A
and I — puB are nonexpansive. Then, it follows:

= [|Pc(yn — Myy) — Po(y* — A Ay")|?

lon — 2*||?

Thus, we also have,

[zns1 — 27|

< T = AA)yn — (I = AA)y*|?
< lyn — y* 1P
= || Pc(un — pBuy) — Po(a* — pBz*)|?
< |[(un — pBuy) — (z* — pBa*)|?
< g — 22
< g — 22
= |lanu + Bnxn + Y Svy — z¥||
< anllu =2 + Bullzn — || + nllon — 27|
< ap(llu = 2%) + Ballzn — 2| + nllzn — 27|
< ap(llu—a%) + (1 — an)llzn — 27
< max{[lu —z*|, |21 — 27}

[l = 2.

Therefore, the sequence {x,} is bounded. Hence, we also have that the
sets {un}, {vn} {Ayn}, {Bz,} and {Sv,} are bounded. Moreover, by
nonexpansiveness of I — \A, I — uB and Po, we get

V41 — val

(3.3)

IAIA A

INIA

| Po(Yn+1 — AMynt1) — Po(yn — AMyn) ||
[(Unt1 — AAyni1) = (yn — AMAyn) ||

(I = AA)yn+1 — (I = AA)y,||

[9n+1 = all

| Po(unt1 — pBuny1) — Po(un — pBuy)||
I(T — pBYnss — (1 — pBun

Unt1 — wnll-

On the other hand, from u; = 7). ;z;, where j = n,n + 1, we have,

1
(3.4) f(Uj,y)+r—(y—Uj,Uj—:cj> >0 foralyeC.

J

Putting y = up4+1 and y = u,, in (3.4), we get

1

f(unaunJrl) + 7<Un+1 — Up, Up — xn) >0

n
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and
1
f(un+1a Un) + 7<un — Un+1, Un+1 — $n+1> > 0.
Tn+1
From (A2) we have,
Up — Tn Up41 — Tpi1
<un+1 — Unp, - > 2 07
Tn Tn+1
and hence
Tn
<un+1 — Up, Up — Uptl + Uptl — Ty — ri(unJrl - l'n+1)> > 0.
n+1

Since liminf, . r, > 0, without loss of generality, assume that there
exists a real number ¢ such that r, > ¢ > 0 for all n € N. Then, we
have,

Tn

[tn i1 = tn|* < (i1 — i, Tpg1 — zn + (1 — )(Unt1 — Tns1))
T'n+1

Tn

< lluntr = unlltllznss = @nll + 11 = —|llunt1 = zn4all}

n+1

and hence,

[tnt1 —unl < [T — zal| + [7n+1 = Tollluns1 — Taga ||

Tn+1

L
(3-5) < llontr = 2l + —lrngn = ral,

where L = sup{|lu, — x,|| : » € N}. Substituting (3.5) into (3.3), we
obtain:

L
(3.6) [ont1 = vnll < Nznsr = @nll + —lrngs = ral.

Let p41 = (1 — Bn)zn + Bnxn. Thus, we get
_ Tp4l — Bnn _ apu + 7nSPC(yn - )\Ayn) _ Qpu + VS

- 1_/871 B 1_/671 B 1_671
It follows:
o — = 41U + Vnt15Ung1 Gl + 1nSvy
1- /GTL+1 1- ﬂn
Qnt1 7% Yn41
— (1 — /g;n—i—l -1 ﬁn)u + T ;nﬂ (Svpt1 — Svp)
+( Tn+1 In )Svn.

1*/6n+1 _1*/871
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Combining (3.6) and (3.7), we obtain:

lzn+1 = znll = |1 — znll
Qp41 Qp Tn+1
< — ull + ———||lvp1 — v
Tn+1 Tn
+ — Sv,|| — ||z —x
2 = 1Sl onts — o
Qpt1 079 Tn+1
< — ull + ———||zpe1 —
T2 Sl + 2 —
1 L
+1 — ﬁn-f-l c ‘Tn—&—l Tn’
Yn+1 Tn
+ — Sv,ll — ||z -
2 = 1ol onis = ol
(077 | (6773 Tn+1 L
< — u|| + ||Sv + ————|rpe1 — Tl
2 = 2 (a4 S0 l) + 25 s =
From (ii), (iv) and (v), we get
limsup(||znt1 — 2ull = |Tn41 — 24l]) < 0.
n—oo
Thus, by Lemma 2.2, we have,
(3.7) lim ||z, — x| = 0.
n—oo
Consequently,
(3.8) lim ||zp41 — 2] = lim (1 — B,)||zn — xn|| = 0.
n—oo n—oo

By (iv), (v), (3.3) and (3.5), we also have,
[ons1 — vall = O, ltns1 — tnl] — 0 and lgnsr — yall — 0 a5 1 — co.
Since

Tyl — Tn = QpU + By + 1Sy — Tp = an(u — ) + Y0 (Svn — 24),
it follows from (ii) and (3.8) that

(3.9) HILIEO |zn, — Svp|| = 0.

Since z* € F(S) N QN EP(f), we observe:

1Pc(yn — AAyn) — Po(y™ — Ay

[(yn = AAyn) — (y* — Ay

lyn — 47|l = [ Po(un — AMun) — Po(z™ — AAz")]|
[(un — AAun) — (27 — AAz™)|

lun — 2|

[[on — 27|

VAN VARRVANN VAN

(3.10)
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lun = 2*|? = |Tr,2n — T, 2| < (T, 20 = Trp 2, 0 — 27)
= (up —a*,zy, — ")
1
= Hllun = 2"|* + llzn = 27[* = [lzn — wnl®),

and then ||u, — z*||? < ||zn, — 2*||? — ||zn — un||?. From (3.10), we have,

|Zn+1 —x*||2 |l + Brntn + YnSvn _‘T*Hz

< anllu— 2P+ Bullzn — 2| + vl Svn — 2"

< anllu— 2P + Bullen — 2| + ynllon — 2

< anllu = 2P + Bullen — 2| 4 yullun — 27

< anflu—a*|* + Bullzn — 27|

Fn(llzn = 2*|1? = |20 — unl?)

= anllu =2+ (Bn + ) |20 — 212 = |20 — ual®

= anllu =27+ (1 = an)llzn — 2*|° = yallzn — unl|?
(3.11) < anllu = 2P+ flzn — 27 = yallen — wall?
and hence,

Yallon = unll? < anllu = 2| + 2 — 2| = [lznsr — 27|

(3.12) < anllu = 2*|? + ||z = zngall(lzn — 2 + llznsr — 27
Using (ii) and (3.8), we get

(3.13) lim |z, — un|| = 0.

n—oo
Since liminf,, .. 1, > 0, we have,

(3.14) lim || 2t
n—oo r

. 1
| = lim —||z, —uy| = 0.
n n—oo rn
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Again, since a;, — 0 and (3.8) imply that ||u, — x,|| — 0, as n — oo.
From (3.2), (3.10) and Lemma 2.1, we get

[
anllu— z*|* + Bullzn — 2*||° + ynllvn — 27|
anllu = 2*|* + Bulln — %[> + dll(gn — Muyn) — (y* — MAy")|I*}
anllu— z*(° + Bullzn — 2% + v fllyn — v*II?
+A(A — 20)[| Ay, — Ay*|*}
= apllu—2** + Bullzn — %[> + Yallun — 2*||
+'Yn)\()‘ - Qa)HAyn - Ay*H2
= anllu—z** + (Bn + o)z — ¥
+n AN — 20) || Ay, — Ay*|?
= apllu— 2P+ (1 = an)llzn — 2*)* + A — 20) || Ay, — Ay*|?

VAN VAN VAN

and

lznsr — 2" < anllu— 2" |P + Ballen — 27 + nllvn — 27

< apllu— 2P + Ballzn — 2 + nllyn — 2|

< anllu— 2P + Bullen — 21 + | (un — pBun)
—(a* — uBz")|I”}

< amflu—a”|* + Bullzn — 2| + A llun — 27|

+u(p — 28)| Bun, — Bz*||*}
= apflu— x*Hz + Bullzn — x*HZ +Ynllzn — 2
+mp(p — 2B)|| Bun, — Bz*|)?
<o lu—z** + [|on — 2P+ ynp(p — 28) || Buy — Ba*||.

*H2

Hence, by (3.15) and (3.15), we obtain:

MA(2a = V)| Ay, — Ay*|®
< anflu = |P + |z — 2P = znsn — 2|

= anllu—2*|* + (lon — 2|+ llzns1 — ) (lzn — 27| = l@ner — 27[1)

< anllu =2 + (lzn — 2"[| + 201 — 2" Dllzn — n |
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and

Vi (20 — p)|| Buy, — Ba*|)?
< agllu— 2+ lzg — 2| = e — 2
= apllu = 2> + (|zn — 2| + 2041 — ) (l2n — 27| = [2n41 — 2*]))

< anllu =2 + (lon = 2*[| + lzns1 — 2 [Dllzn — 2ol

From (i), (iii), (3.8), (3.15) and (3.15), respectively, we also have,

(3.15) |Ayn, — Ay*|| — 0 and ||Bu,, — Bz*|| — 0, as n — oo.
By (2.3), we obtain:

9~ 9" 1= |1Pe(un — #Bun) — Pola® — uBa®)P

< ((un — pBup) = (¢" — pBa™), yn — y°)

= 5l = pBun) — " — uBa) | + g — o
~[I(un — pBun) = (¢* — uBz™) = (yn — y*)|*}

< gl =212+ g — 5*I2 ~ I — ) — p(Bum — B
" )}

= Sl = 2 + Dl = "% = N = ) = (& = 5P
F2ul(n — yn) — (%~ 9°), Bun — Ba") — 4| Bun — Ba"|?),

which implies:

g = 5 IP< M — 217 = [l(un = yn) = (=" = ")
+20{ (U, — yn) — (% —y*), Bu,, — Bx*) — 1| Bu,, — Bx*|*.
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Thus, we observe:

VAN VAR VAN

IN

< opllu— 2P+ (1 — o)z — 27 = Yl (un — ya) — (% — )17
29l (un = yn) — (2% = y*)||[| Buy, — Ba™||.
It follows:

|nsr — 2|

apllu — x*H2 + Bullzn — x*||2 + Ynllvn — JU*”2
apllu = 2*[1* + Ballzn — 2*(1” + llyn — v
anllu— a*|? + Bpllzn — 2*|

Yt | wn — x*HQ — [[(un —yn) — (v

*

—y)|?

+2u((un = yn) — (&" = "), Bun — Ba") — || Bu,, — Ba*|*}

anllu = z*|° + Ballzn — "2
Fnllzn — 21 = yall(un = yn) — (@

*

— )|
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+2ypll (un — yn) = (2* = y*)l| Bup — Bx*|| — yups?|| Buy, — Ba*||?

Yl (un = ) — (" = y)|”

< anllu =2 + lzn = 2" |? = llwne — 27|
+29mpl|(un = yn) — (2 = y*) ||| Bun — Ba™||
< anflu = 2P + llznss = zall(lon = 2 + l2ns — 2*(?)

(316)  +29ull(n — ya) — (" — )|l Bun — Ba|.

From (ii), (3.15), (3.8) and ||Bu,, — Bz*|| — 0, as n — oo, we have,

(3.17) |t = yn) = (2" = y")]| = 0, as n — oc.
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‘We observe:

(g = vn) + (= = y)|”

= |l(yn —¥") — [Pe(yn — Ayn) — 2712

= ”yn — My, — (y* - )‘Ay*)

—[Po(yn — AMyn) — 2*] + MAyn — Ay*)|1?

Hyn — My, — (Z/* - )\Ay*)H2

— | P (yn — AMuyn) — Poly* — My™)|)?

+2MAyn — Ay™, (Yn — va) + (2" — y"))

”yn — My, — (?/* - )‘Ay*)H2

—[1SPo(yn — AMya) — SPo(y* — My*)|?
+2M[Ayn — Ay [ (yn — vn) + (2" =yl

[y — AMyn — (y* — MAy*)||* = [|Sv, — Sz*|?
2N Ayn — Ay*[[|(yn — vn) + (=" = y") ||

|yn — AMyn — (y* = My™) — Sv, — Sz™||

X([lyn — Ayn — (y* — AAY")|| + [|Sv, — Sz™ )
+2M[Ayn — Ay [ (yn — vn) + (2" =yl

|20 — Svp + 2" —y" — (zn — yn) — A(Ayn — Ay")||
X([[yn — My — (y* — MY || + || Svn — Sz*)
+2M[Ayn — Ay* (|| (Y — vn) + (2" —y") |-

IN

IN

IN

IN

IN

From (3.9), (3.17) and ||Ay, — Ay*|| — 0,as n — oo, it follows:
1y = vn) + (&* =y = 0, (n— o0).
We note that

[Svn —vall < 1Svn — @nll + |20 — wnl| + [[(un — yn) — (=" — 3|
+(yn —vn) + (" =y

We then obtain:

(3.18) lim ||Sv, —v,|| = 0.
n—oo

Next, we show that

lim sup(u — 29,z — 20) <0,
n—oo
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where 290 = Pp(s)nonep(f)u- To show this inequality, we choose a subse-
quence {uvp, } of {v,} such that

lim sup(u — zq, Sv, — 20) = lim (u — 29, Svn, — 20).
n—00 1—00

Since {vy, } is bounded, there exists a subsequence {Unij} of {vy,} which
converges weakly to z. Without loss of generality, we can assume that
Up, — 2. From ||Sv, — v,|| — 0, we obtain Sv,, — z. Let us show
z € EP(f). Since uy, = T, xy, we have,

1

T'n
From (A2), it follows:

1

— (Y — Un, Up, — $n> > f(y, un),
Tn

and hence (y — um,u";i;xnﬂ > f(y,up,). From ||up — zp|| — 0, ]|z, —

Svp|| — 0 and || Sv, — vp| — 0, we get u,, — 2. Since % — 0, it
follows by (A4) that 0 > f(y, z), for all y € C. For ¢ with 0 < ¢ < 1 and
y e C,let yy =ty + (1 —t)z. Since y € C and z € C, we have y, € C
and hence f(y:, z) <0. So, from (Al) and (A4) we have 0 = f(ys, y¢) <
tf (e, y) + (1 =) f(ye, 2) < tf (g, y) and hence 0 < f(ye,y). From (A3),
we have f(z,y) >0, forally € C and hence z € EP(f). By Opial’s
condition, we obtain z € F(S). Finally, by the same argument as that
in the proof of [4, Theorem 3.1, p. 384-385], we can show that z € €.
Hence, z € F(S)N QN EP(f). Now from (2.4), we have,

limsup(u — 29,2, — 20) = limsup{u — zp, Svy, — 20)
n—oo n—oo
= lim (u — 20, Svp, — 20)
71— 00

(3.19) = (u—z0,2—2) <0.
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Finally, we show that z,, — z0, where 20 = Pr(s)nvia,c)nep(f)u- We
observe:
[Zns1 — 20 = (anu + Bon
+’7nsvn — 20, Tn+1 — ZO>
= anp(u— 20, Tny1 — 20) + Bn(Tn — 20, Tnt1 — 20)

+’7n<Svn — 20, Tn+1 — ZO>

1
iﬂn(Hxn — 20| 4 |na1 — 20]|%) + anlu — 20, Tni1 — 20)

IN

1
5l = 20[* + a1 = 20l)

1
10 = an)llzn = 20[” + l2ns1 = 20/*}

+an(u — 20, Tpt1 — 20),

IN

which implies:
[Znt1 — z0ll* < (1= om)||n — 20]|” + 200 (u — 20, Tng1 — 20)-

Finally, by (3.19) and Lemma 2.4, we get that {z,} converges to zy,
where 20 = Pr(s)nonep(f)u- This completes the proof. O

By Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. Let C be a closed convexr subset of a real Hilbert space
H. Let f be a bifunction from C x C to R satisfying (A1)-(A4) and
A : C — H be a-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F(S) N QN EP(f) # 0. Let f be
a contraction of H into itself, given xo € H arbitrary. Suppose that
z1 =u € C and {zn},{yn} and {u,} be given by

f(un7y)+%n<y_unvun_$n> 207 Vyec;

(3.20)  y, = Po(uy, — ANAuy)
Tpt1 = Qpt + BnZn + Y SPo(yn — MNAyn),Vn € N,

where X € (0,2a) and {an},{Bn}, {7} are three sequences in [0,1]. If
{an}, {6n}, {1} and X € [a,b] for some a,b with 0 < a < b < 2« and
{rn} C (0,00) satisfy the following conditions:

(i) an+ Bn+m =1,

(i) limp oo 0 = 0,> 07y = 00,

(iii) 0 < liminf, o Bp < limsup,, . On < 1,

(iv) lminf, oo 7y > 0,07 |1 — 1| < 00,
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then {x,} converges strongly to u = Pp(synonep(f)U-

Proof. By letting A = B and A = p, for n € N, in Theorem 3.1, we
obtain the desired result. O

Setting Py = I, we obtain the following corollary.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C x C to R satisfying (A1)-(A4) and
A : C — H be a-inverse-strongly monotone. Let S be a nonexpansive
mapping of C into itself such that F(S)NVI(A,C)NEP(f) # 0. Let
f be a contraction of H into itself, given xy € H arbitrary. Suppose
z1 =u € C and {zn},{yn} and {u,} be given by

f(unay)+i<y_umun_$n> >0, Vy € C;
Tpt1 = At + BnZn + Y0 SPo(un — Auy,),Vn € N,
where A € (0,2a) and {an}, {Bn}, {m} are three sequences in [0,1]. If
{an}, {Bn}, {m} and X € [a,b] for some a,b with 0 < a < b < 2a and
{rn} C (0,00) satisfy the following conditions:

(i) n + Bn + 0 =1,

(i) limy oo 0 = 0,> 07t = 00,

(iii) 0 < liminf, s By < limsup,,_,. On < 1,

(iv) Iminf, oo 7y > 0,> 07 |1 — | < 00,
then {xy} converges strongly to z € F(S)NVI(C,A) N EP(f), where
z = Pr(s)nvi(c,A)nEP(f)U-

(3.21)

Using Theorem 3.1, we obtain the following two corollaries in Hilbert
space.

Corollary 3.4. (Ceng et. al [4, Theorem 3.1]) Let C be a closed convex
subset of a real Hilbert space H. Let A and B be a- and [-inverse-
strongly monotone mappings of C into H, respectively, and let S be a
nonezxpansive mapping of C into itself such that F(S)NQ # 0. Suppose
z1=u € C and {z,},{yn} are given by

Yn = PC(xn - Nan)
Tl = QpU + Bnn + VnSPC(yn - Af4g/n)7

where XA € (0,2a), u € (0,28) and {an}, {Bn}, {7} are three sequences
in [0,1] and {r,} C (0,00) satisfying the following conditions:
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(1) an + B+ =1,
(i) limy ooy = 0,3 07 | @y = 00,
(iii) 0 < liminf, s By < limsup,, . On < 1.
Then, {x,} converges strongly to Pp(gnqu and (x*,y*) is a solution of
problem (1.9), where y* = Po(x* — pBx*).

Proof. Put F(z,y) =0, for all z,y € C, and r, = 1, for all n € N, in
Theorem 3.1 . Then, we have u,, = Pox, = ,. So, from Theorem 3.1,
the sequence {r,} converges strongly to Pp(gynqu- O

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H.
Let A be an a—inverse-strongly monotone mapping of C' into H and let S
be a nonexpansive mapping of C into itself such that F(S)NVI(A,C) #
0. Suppose that 1 =u € C and {xy}, {yn} be given by
yn = Po(xn, — ANAxy,)
Tn+1 = OpU + ﬁnxn + ’YnSPC(yn - >\Ayn)7
where A € [0,2a] and {an},{Bn}, {1} are three sequences in [0,1] sat-
isfying
(i) Qp + B+ =1,
(i) limp oo 0 =0, 07y = 00,
(iii) 0 < liminf, o By < limsup,, . Gn < 1.
Then, {x,} converges strongly to Pr(synqu. Moreover, we also have
(z*,y*) is a solution of problem (1.10), where y* = Po(x* — NAx™).

Proof. By taking A = B and A\ = p in Corollary 3.4, we get the desired
result. d

4. Applications

A mapping T : C — (' is called strictly pseudocontractive on C if
there exists k with 0 < k < 1 such that

|72 — Tyl < [l — y|I? + K|(I = T)a + (I = T)yl?, for all a,y € C.

If £k =0, then T is nonexpansive. Put A =1 —T, where T : C — C
is a strictly pseudocontractive mapping with k. Then, we have, for all

z,y € C,
I(I = A)x — (I — A)y|]* < [l —y[|* + k|| Az — Ay|]*.
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On the other hand, we have,
I = A)z — (T — A2 = llz — gl - 2(x — y, Az — Ay) + | Az — Ay]2
Hence, we have,

1—k
(v —y, Az — Ay) > ——|| Az — Ayl

Then, A is %—inverse strongly monotone.

Now, using Theorem 3.1, we state a strong convergence theorem for a
pair of nonexpansive mappings and strictly pseudocontractive mappings.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space
H. Let f be a bifunction from C x C to R satisfy (A1)-(A4) and let
S be a nonexpansive mappings of C into itself and let T,V be strictly
pseudocontractive mapping with constant k of C into itself such that
F(S)NF(T)N EP(F) # 0. Suppose x1 = u € C and {xn},{yn} and
{un} are given by

f(unvy)+%<y_unaun_xn> ZO, vy607

Yn = (1 - N)un + uVup

Tpi1 = aplU + BpTy + VnS((l - )\)yn + )\Tyn)v

for all n € N, where {an},{Bn}, {1} are three sequences in [0,1], X €
[07 1- k] and p € [07 1 - l] If {an}v {ﬁn}v {PYn} {Tn} - (O, OO) Satisfy
(i) an + B+ =1,
(i) limy oo 0 = 0, 07 Q= 00,
(iii) 0 < liminf, o B < limsup,, . On < 1,
(iv) Iminf, ooy > 0,> 07 |1 — | < 00,

then {x,} converges strongly to z = Pr(s\np(T)nEP(f)U-

Proof. Put A=7—T and B=1—-V. Then, A is %—inverse—strongly

monotone and B is 1Tfl—invelrse—strongly monotone. We have that F(T')

is the solution set of VI(A,C) and Q; ie., F(T) = VI(A,C) &
problem (1.9) < problem (1.10) (see cf. Ceng et al. [4, Theorem
4.1 pp. 388-389]) and

Po(up—pBuy) = (1—p)uptuVuy, and Po(y,—AAyn) = (1=X)yn+ATyn.
Therefore, by Theorem 3.1, the result follows. O

Therefore, the following Corollary immediately from Theorem 4.1.
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Corollary 4.2. (Ceng et al. [4, Corollary 3.3]) Let C be a closed convex
subset of a real Hilbert space H. Let S be a nonexrpansive mapping of
C into itself and let T,V be strictly pseudocontractive mappings with
constant k of C' into itself such that F(S)NF(T) # (). Suppose x1 = u €
C and {x,} is given by

yn = (1 — p)a, + pVa,
Tpy1 = apth + Bun + Y S((1 = Nyn + ATyn),
for all n € N, where {an},{Bn}, {1} are three sequences in [0,1], X €
0,1 — k] and p € [0,1 —1]. If {an},{Bn}, {7} satisfy the following
conditions:
(i) an+Bn+mm=1,
(i) limp—oo 0 = 0,> 07 = 00,
(iii) 0 < liminf,, o B < limsup,,_,. On < 1,
then {xy,} converges strongly to x* = Pp(g)nqu and (x*,y*) is a solution
of problem (1.10), where y* = (1 — p)z* — pVzx*).

Corollary 4.3. Let C be a closed convexr subset of a real Hilbert space
H. Let S be a nonexpansive mapping of C into itself and let T be a
strictly pseudocontractive mapping with constant k of C' into itself such
that F(S)NF(T) # 0. Suppose x1 = u € C and {x,} is given by
Yn = (1 = Nzp, + ATy
Tnt1 = At + GnZn + 1S (1 — Nyn + ANTyn),
for all m € N, where X\ € [0,1 — k| and {an}, {Bn}, {1} are three se-
quences in [0, 1] satisfying
(i) an+ B+ =1,
(i) limy oo 0y = 0,0 | @y = 00,
(iii) 0 < liminf, s By < limsup,, ., On < 1.
Then, {xn} converges strongly to Pp(s)np(1)U-

The following three theorems are connected with the problem of ob-
taining a common element of the sets of zeroes of a maximal monotone
operator and an a—inverse-strongly monotone operator.

Theorem 4.4. Let C' be a nonempty closed convex subset of H. Let f
be a bifunction from C x C to R satisfying (Al) — (A4) and let A be
an a—inverse-strongly monotone operator in H and B : H — 29 be a
mazimal monotone operator such that A=1(0) N B~Y(0) N EP(f) #. Let
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JB be the resolvent of B for eachr > 0. Let {x,} and {u,} be sequences
generated by r1 =u € H and

(4'1) Yn = (un - /\Aun)

Tpg1 = QpU + Bpay + 'YnJrB(yn - >\Ayn):

where {\} C [c,d] for some [c,d] C (0,2c), {an}, {Bn}, {1} and {r,}
satisfy the following conditions:
(i) an"‘ﬂn"”yn =1,

(“) {an} - [07 1]: Z;o:() ap = 00, ap — 0;

(éi1) {rn} C (0,00), iminf, oo rn > 0,> 07 [rng1 — ra| < 00,

(1v) 0 < liminf, s Bp < limsup,, . On < 1.
Then, {z,} and {u,} converge strongly to = € A=1(0)NB~1(0)NEP(f),
where z = PA—l(O)ﬁB—l(O)EP(f)xl'

Proof. Since A710 = V(I, A) and F(JP) = B~Y(0), putting Py = I,
then, by Theorem 3.1, we obtain the desired result easily. ]
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