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SOME NEW CHARACTERIZATION RESULTS ON
EXPONENTIAL AND RELATED DISTRIBUTIONS

M. TAVANGAR AND M. ASADI∗

Communicated by Ahmad Reza Soltani

Abstract. It is well-known that most of the characterization re-
sults on exponential distribution are based on the solution of Cauchy
functional equation and integrated Cauchy functional equation. Here,
we consider the functional equation

F (x) = F (xy) + F (xQ(y)), x, xQ(y) ∈ [0, θ), y ∈ [0, 1],

where F and Q satisfy certain conditions, to give some new char-
acterization results on exponential, power and Pareto distributions
using the concepts of conditional random variables and order sta-
tistics.

1. Introduction

Because of importance of the exponential and geometric distributions,
in many branches of statistics and applied probability, a large number of
research articles appear in the literature characterizing these distribu-
tions based on different properties. The monographs of Galambos and
Kotz (1978), Azarlov and Volodin (1986), and Rao and Shanbhag (1994)
are devoted to characterizations of probability distributions, mainly on
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exponential and geometric distributions. Usually, the problem of char-
acterizing a probability distribution function leads to solve a functional
equation. It is mentioned in Rao and Shanbhag (1986) that most of
the characteristic properties of the exponential and geometric distribu-
tions, based on conditional expectations and order statistics, can be
obtained from “integrated Cauchy functional equation” under minimal
assumptions. The monograph of Rao and Shanbhag (1994) provides
a comprehensive study of the applications of the integrated Cauchy
functional equation on characterizing exponential and geometric dis-
tributions based on different relations between ordered random vari-
ables. Asadi et al. (2001) applied integrated Cauchy functional equa-
tion to obtain several characterization results on exponential, power and
Pareto distributions. Let X be a lifetime (non-negative) random vari-
able with cumulative distribution function (cdf) F , and survival function
S = 1− F . The random variable X is said to have

• exponential distribution with mean λ if

S(x) = e−x/λ, x ≥ 0, λ > 0,

• power function distribution with parameter vector (α, θ) if

F (x) =
(x

θ

)α
, 0 ≤ x ≤ θ, α > 0, θ > 0,

• Pareto distribution with parameter vector (α, β) if

S(x) =
(

β

x

)α

, x ≥ β, α > 0.

These distributions are of particular interest in statistical literature for
their flexibility to model various data with different applications. Our
purpose here is to give some characterization results on the above dis-
tributions. The results are applications of a functional equation which
is recently solved by Aczel et al. (1999). Their result is stated in the
following theorem.

Theorem 1.1. Among the functions F : [0, θ) → R+(= [0,∞)), θ ∈
(0,∞], and Q : [0, 1] → R+, the functional equation

F (x) = F (xy) + F (xQ(y)), x, xQ(y) ∈ [0, θ), y ∈ [0, 1],(1.1)

has the trivial solutions

F = 0, Q arbitrary (≤ 1 if θ < ∞),(1.2)
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and  F (x) = c > 0, x ∈ (0, θ), F (0) = 0,
Q(y) = 0, y ∈ (0, 1], Q(0) > 0 arbitrary

(≤ 1 if θ < ∞).
(1.3)

For all other solutions, there exist constants k > 0, α > 0 such that

F (x) = kxα, Q(y) = (1− yα)1/α.(1.4)

If θ > 1 and F (1) = 1, then k = 1.
Conversely, all pairs of functions of the form (1.2), (1.3) and (1.4)

satisfy (1.1).

It is mentioned in Aczel et al. (1999) that the functions F and/or Q
may map into the given ranges; and onto is not assumed. Neither is any
regularity (monotonicity, continuity) supposed. Also, the same result
follows when one assumes that Eq. (1.1) holds only for almost all pairs
(x, y) ∈ [0, θ)× [0, 1] (with respect to planar Lebesgue measure).

The remainder of the paper is organized as follows: In Section 2, we
obtain some characterization results on exponential, power and Pareto
distributions based on functional equation in (1.1). Section 3 deals
with some characterization results based on equality in distribution of
some conditional random variables such as residual life random variable.
In this section, characterizations based upon equality of expectation of
some conditional random variables are also given. Section 4 is devoted
to characterization results based on identity of distributions and equality
of expectation of some functions of order statistics. The results of this
section are extensions of the results obtained recently by Asadi (2006),
and Tavangar and Asadi (2007).

2. Characterizations based on relations satisfied by
cumulative distribution function

Assume that F is a cdf. In what follows, we will define the support of
F (or a random variable having cdf F ) as (α(F ), ω(F )), where α(F ) =
inf{x : F (x) > 0}, and ω(F ) = sup{x : F (x) < 1}. Note that, in general,
the former may be −∞, and the latter may be +∞. If F satisfies (1.1),
then, as a consequence of properties of a distribution function (such as
the right continuity), two trivial solutions of equation (1.1) are excluded
and we obtain the following result.
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Theorem 2.1. Let F be any cdf with support [0, θ), θ > 0. Suppose that
Q : [0, θ) → R+. The functional equation

F (x) = F (xy) + F (xQ(y)), x, xQ(y) ∈ [0, θ), y ∈ [0, 1],(2.1)

holds if and only if F is a (rescaled) power function distribution with
parameter vector (α, θ), for some constant α > 0, and Q(y) = (1 −
yα)1/α, 0 ≤ y ≤ 1.

Remark 2.2. Equation (2.1) has a probabilistic interpretation as fol-
lows. Let X be a continuous non-negative random variable on [0, θ)
with cdf F . If there is a function Q, which satisfies in the conditions of
Theorem 2.1, such that

P [X > xy | X ≤ x] = P [X ≤ xQ(y) | X ≤ x], x,∈ [0, θ), y ∈ [0, 1],

then Q(y) = (1− yα)1/α, and X has the power function distribution.

Most of the characterization results on exponential distribution are
based on the Cauchy functional equation which is known in the statis-
tical literature as the ‘lack of memory property’. A non-negative ran-
dom variable X is said to have the lack of memory property if, for all
x, y > 0, its survival function S satisfies S(x + y) = S(x)S(y). It is
well-known that the only continuous distribution with this property is
the exponential survival function. In the following theorem we give a
characterization result on exponential distribution which is based upon
the functional equation in Theorem 2.1.

Theorem 2.3. Let F be any cdf with support R+, and S = 1 − F .
Assume that Q : R+ → R+. The functional equation

S(x) = S(x + y) + S(x + Q(y)), x, y ∈ [0,∞),(2.2)

holds if and only if F is an exponential distribution with mean λ, for
some λ > 0, and Q(y) = −λ log(1− e−y/λ), y > 0.

Proof. The ‘if’ part of the theorem is straightforward and hence we
prove the ‘only if’ part. To this end, we define the cdf G as G(z) =
S(− log z), z ∈ [0, 1), where S is the survival function defined in the
statement of the theorem. Let u = e−x, v = e−y, and Q∗(v) =
exp{−Q(− log v)}. It is obvious that Q∗ : [0, 1] → R+. Now, Eq. (2.2)
implies that G(u) = G(uv) + G(uQ∗(v)), u, uQ∗(v) ∈ [0, 1), v ∈ [0, 1].
That is, the pair of functions (G, Q∗) satisfies Eq. (2.1) with θ = 1.
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Therefore, using Theorem 2.1, we have G(x) = xα, x ∈ [0, 1), and
Q∗(y) = (1 − yα)1/α, y ∈ [0, 1], for some constant α > 0. This means
that F is an exponential cdf with mean λ = 1/α, and Q is as stated in
the theorem. Hence, the proof is complete. �

Remark 2.4. The probabilistic interpretation of Eq. (2.2) is as follows.
Let X be continuous non-negative random variable on (0,∞) with sur-
vival function S. If there exists a function Q which satisfies in conditions
of Theorem 2.3, and

P [X ≥ x + y | X ≥ x] = P [X < x + Q(y) | X ≥ x], x, y > 0,

then Q(y) = −λ log(1−e−y/λ), for some λ > 0, and X has an exponential
distribution with mean 1/λ. It is also worth noting that Q(y) here is
equal to Q(y) = λ

∫∞
y r(x)dx, where r(x) = f(x)/F (x) is the reversed

hazard rate, and f is the density of F .

The next theorem gives a characterization of the Pareto distribution
which follows from Theorem 2.1. The proof, being the same as the proof
of Theorem 2.3, is omitted.

Theorem 2.5. Let F be any cdf with support [β,∞), and S = 1 − F .
Suppose that Q : [1,∞) → R+. Then, the functional equation

S(x) = S(xy) + S(xQ(y)), x, xQ(y) ∈ [β,∞), y ∈ [1,∞),

holds if and only if F is a Pareto distribution with parameter vector
(α, β), for some constant α > 0, and Q(y) = (1− y−α)−1/α, y ≥ 1.

3. Characterizations based on conditional random variables

Given any cdf F , the quantile (or generalized inverse) function F← is
defined by

F←(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1).
It is known that F←, in general, does not preserve the relation “ < ”;
i.e., it is not true that

x < y ⇔ F←(x) < F←(y).

For any cdf F , the following lemma, which can be proved easily, provides
some results on F←, which we will use in the sequel.
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Lemma 3.1. For any cdf F ,
(i) t < F←(u) ⇔ F (t) < u,
(ii) u ≤ F (t) ⇔ F←(u) ≤ t.

Let X be an arbitrary random variable with cdf F . Then, F (X) as
well as S(X) = 1 − F (X) have uniform U(0, 1) distributions. Hence,
using the probability integral transform, we conclude that F←[S(X)]
is distributed as F , where F← is the quantile function. That is X

d=
F←[S(X)], where d= stands for equality in distribution. A natural ques-
tion that arises is whether there exists a strictly decreasing function Q,
for which the relation X

d= Q(X) holds. In this section, we obtain some
solutions to this question for some special conditional random variables
(such as the residual life random variable). First, we show that when the
random variable of interest is the residual life random variable, the func-
tion Q is unique and the underlying distribution is exponential. This is
given by the following theorem.

Theorem 3.2. Let X be a non-negative random variable with the sur-
vival function S. Suppose that Q : R+ → R+ is a strictly decreasing
function. Let also Xt = [X − t | X > t] be the residual life random vari-
able. Then Xt

d= Q(Xt), for almost all t ∈ R+ (with respect to Lebesgue
measure) with S(t) > 0, if and only if S is the survival function of an
exponential random variable with mean λ, for some constant λ > 0, and
Q(y) = −λ log(1− e−y/λ), y > 0.

Proof. First, note that under the assumption S(t) > 0, the conditional
random variable Xt is well-defined. Also, note that since every monotone
function is measurable, Q(Xt) is a random variable. We have,

P [Q(Xt) ≥ x] = 1− P [Xt > Q−1(x)]

= 1− P [X > t + Q−1(x)]
P [X > t]

.

Let U be a random variable with uniform U(0, 1) distribution. From the
probability integral transform, we have X

d= F←(U). Now, it follows
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from Lemma 3.1 that

P [Q(Xt) ≥ x] = 1− P [U > F (t + Q−1(x))]
P [U > F (t)]

= 1− S(t + Q−1(x))
S(t)

,

and

P [Xt ≥ x] =
P [X ≥ t + x]

P [X > t]

=
1

S(t)
{S(t + x) + F (t + x)− F ((t + x)−)}.

We need to prove that

P [Xt ≥ x] =
S(t + x)

S(t)
.(3.1)

Let D = {x ∈ R+ | F has jump at x} denote the set of discontinu-
ity points of F which is known to be countable. If D is an empty set,
then the result is trivial. Hence, let D = {d1, d2, . . .}, and define the set
Ei’s, i = 1, 2, . . ., as Ei = {(t, x) ∈ R+×R+ | t+x = di} = {(di−x, x) |
x ∈ [0, di]}. It is easy to observe that the Ei are measurable sets of
planar Lebesgue measure zero which, in turn, implies that D is a set of
planar Lebesgue measure zero. Therefore, Eq. (3.1), and consequently
the following equation hold for almost all pairs (t, x) ∈ R+ ×R+ with
respect to planar Lebesgue measure:

S(t) = S(t + x) + S(t + Q−1(x)).

Now the result follows from Theorem 2.3.

Remark 3.3. It can be easily shown that Theorem 3.2 holds if we
replace Xt

d= Q(Xt) with Xt
d= [Q(X − t) | X > t], where Q meets the

requirements of the theorem.

A similar result characterizing a (rescaled) power function distribution
is as follows.

Theorem 3.4. Let X be a non-negative random variable with support
[0, θ) having the cdf F . Assume that Q : [0, 1] → R+ is a strictly decreas-
ing function. Let also X(t) = [t−1X | X ≤ t]. Then, X(t)

d= Q(X(t)), for
almost all t ∈ [0, θ] (with respect to Lebesgue measure) with F (t) > 0, if
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and only if F is a (rescaled) power function distribution with parameter
vector (α, θ), for some α > 0, and Q(y) = (1− yα)1/α, 0 ≤ y ≤ 1.

Proof. Along the lines of the proof of Theorem 3.2, we get

P [X(t) ≥ x] = 1− F (tx)
F (t)

,

for almost all pairs (t, x) ∈ [0, θ]× [0, 1] with respect to planar Lebesgue
measure, and

P [Q(X(t)) ≥ x] =
F (tQ−1(x))

F (t)
,

for all (t, x) ∈ [0, θ] × [0, 1]. Now, the result follows from Theorem
2.1. �

We can now state the next result characterizing the Pareto distribu-
tion. The proof is similar to the ones given for the above theorems and
hence is omitted.

Theorem 3.5. Let X be a non-negative random variable with support
[β,∞), and denote by S its survival function. Assume that Q : [0, 1] →
R+ is a strictly decreasing function. Let also X[t] = [tX−1 | X > t].

Then, X[t]
d= Q(X[t]), for almost all t ∈ [β,∞) (with respect to Lebesgue

measure) with S(t) > 0, if and only if S is the survival function of a
Pareto distribution with parameter vector (α, β), for some α > 0, and
Q(y) = (1− yα)1/α, 0 ≤ y ≤ 1.

In the following theorem, we prove some results characterizing ex-
ponential, power and Pareto distributions based on some conditional
expectations.

Theorem 3.6. Let X be a non-negative random variable having a con-
tinuous cdf F , and survival function S.

(i) Assume that the support of F is (0, θ), and limt→0 F (t)/tα exists
for constant α > 0. Then,

E{X | X ≤ t} = E{(tα −Xα)1/α | X ≤ t}, 0 ≤ t ≤ θ,(3.2)

if and only if F is a (rescaled) power function distribution with parameter
vector (α, θ).



Some new characterization results on exponential 265

(ii) Assume that the support of F is (0,∞), and limt→∞ et/λS(t) exists
for constant λ > 0. Then,

E{X − t | X > t} = E{−λ log(1− e−(X−t)/λ) | X > t},(3.3)
t ≥ 0,

if and only if F is an exponential distribution with mean λ.
(iii) Assume that the support of F is (β,∞), and limt→∞ tαS(t) exists

for constant α > 0. Then,

E{X−1 | X > t} = E{(t−α −X−α)1/α | X > t}, t ≥ β,(3.4)

if and only if F is a Pareto distribution with parameter vector (α, β).

Proof. (i) The ‘if’ part is easy to verify. To prove the ‘only if’ part,
note that Eq. (3.2) is equivalent to:∫ t

0
{F (t)− F (x)− F ((tα − xα)1/α)}dx = 0, 0 ≤ t ≤ θ.(3.5)

Since F is continuous, given any t ∈ [0, θ], there exists a point ut ∈ (0, t)
such that

F (t)
tα

=
uα

t

tα
F (ut)

uα
t

+
tα − uα

t

tα
F ((tα − uα

t )1/α)
tα − uα

t

.(3.6)

Let µ∗t be a probability measure which is concentrated on two points
only such that it puts mass uα

t /tα at point t−ut, and mass 1−uα
t /tα at

point t − (tα − uα
t )1/α. Let H(t) = F (t)/tα, t ∈ [0, θ]. Then, Eq. (3.6)

can be written as:

H(t) =
∫ t

0
H(t− u)µ∗t (du).

It follows from Theorem 1 of Fosam and Shanbhag (1997) that H(t) is
a positive constant independent of t. Hence, the proof is complete.

(ii) The proof of the ‘if’ part is straightforward and hence we prove
the ‘only if’ part. To this end, note that Eq. (3.3) is equivalent to∫ ∞

0
{S(t)− S(t + x)− S(t− λ log(1− e−x/λ))}dx = 0, t ≥ 0,

which, after making appropriate transformations, can be written as:∫ s

0
{S(− log s)− S(− log u)− S(− log(sα − uα)1/α}1

u
du = 0, 0 ≤ s ≤ 1,
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with α = 1/λ. Defining G(s) = S(− log s), 0 ≤ s ≤ 1, we get an integral
equation similar to Equation (3.5) with F replaced by G. The result
then follows using the same arguments as the ones used to prove part
(i) of the theorem.

(iii) The ‘if’ part is easy to verify and hence we prove the ‘only if’
part. One can show that Eq. (3.4) is equivalent to∫ 1

0
{S(t)− S(t/x)− S([t(1− xα)]−1/α)}dx = 0, t ≥ β.

Let G(z) = S(1/z), 0 < z < 1/β. Upon making appropriate transfor-
mations, it is easily seen that Eq. (3.5) holds with F , and θ replaced by
G, and 1/β, respectively. This implies that G is the cdf of a (rescaled)
power function distribution with parameter vector (α, 1/β). In view of
the relation between S and G, the proof is then complete. �

4. Characterizations based on order statistics

Let X1, X2, . . . , Xn be independent random variables with a common
cdf F . The order statistics relative to Xi are denoted by X1:n, X2:n, . . . ,
Xn:n. Order statistics have many applications in different branches of
applied probability and statistics such as reliability, life-testing, goodness
of fit tests, etc. (see, for example, David and Nagaraja, 2003). In
the statistics literature, a large number of research work is devoted to
characterizations of probability distributions based on order statistics.
(Among others, we refer the reader to Rao and Shanbhag, 1994, Azlarov
and Volodin, 1986, and Asadi, et al., 2001). In this section, we give some
characterizations of the exponential, power, and Pareto distributions
based on order statistics. The specialized versions of the results of this
section have already appeared in Asadi (2006), and Tavangar and Asadi
(2007). Before giving the main results of this section, we first prove the
following lemma.

Lemma 4.1. Let X1:n, X2:n, . . . , Xn:n be the order statistics from any
cdf F . Then,

(i) The survival function of [Xr:n | X1:n > t], 1 ≤ r ≤ n, is given by

Ḡr,n(x|t) =
r−1∑
i=0

(
n

i

)
{1− θt(x)}i{θt(x)}n−i, x > t,

where θt(x) = S(x)/S(t), and S(x) = 1− F (x), and
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(ii) The cdf of [Xr:n | Xn:n ≤ t] is given by

Hr,n(x|t) =
n∑

i=r

(
n

i

)
{ϕt(x)}i{1− ϕt(x)}n−i, x ≤ t,

where ϕt(x) = F (x)/F (t).

Proof. (i) The proof follows from the fact that [Xr:n | X1:n > t],
r = 1, 2, . . . , n, can be considered as the order statistics from conditional
random variable [X | X > t] with survival function S(x)/S(t), x > t.

(ii) The proof follows by noting that [Xr:n | Xn:n ≤ t], r = 1, 2, . . . , n,
are the order statistics from conditional random variable [X | X ≤ t]
with cdf F (x)/F (t), x ≤ t. �

Now, we can prove the following theorem.

Theorem 4.2. Let X1:n, X2:n, . . . , Xn:n denote the order statistics from
any cdf F with support R+. Let S = 1− F and assume that Q : R+ →
R+ is a strictly decreasing function. Then,

[Xr:n − t | X1:n > t] d= [Q(Xn−r+1:n − t) | X1:n > t],(4.1)

for some 1 ≤ r ≤ n, and for almost all t ∈ R+ (with respect to Lebesgue
measure) with S(t) > 0, if and only if Q(y) = −λ log(1− e−y/λ), y > 0,
and F is an exponential distribution with mean λ, for some λ > 0.

Proof. First, we prove the ‘only if’ part of the theorem. Using Lemma
4.1, we get

P [Xr:n − t ≥ x | X1:n > t] =
r−1∑
i=0

(
n

i

)
{1− θt(t + x)}i{θt(t + x)}n−i

+{Gr,n(t + x|t)−Gr,n((t + x)− |t)},
where Gr,n(x|t) is the cdf of the conditional random variable [Xr:n |
X1:n > t], and θt(t + x) = S(t + x)/S(t). In view of what we have
observed in the proof of Theorem 3.2, we have,

P [Xr:n − t ≥ x | X1:n > t] =
n∑

i=n−r+1

(
n

i

)
{θt(t + x)}i{1− θt(t + x)}n−i

=
∫ θt(t+x)

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz,
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for all (t, x) ∈ R+ ×R+, except on a set of planar Labesgue measure 0,
where the last equality is from the relation between binomial sums and
the incomplete beta function in which B(., .) denotes the complete beta
function (see, for example, David and Nagaraja, 2003). On the other
hand, we can use Lemma 4.1 again to obtain:

P [Q(Xn−r+1:n − t) ≥ x | X1:n > t]
= 1− P [Xn−r+1:n > t + Q−1(x) | X1:n > t]

= 1−
n−r∑
i=0

(
n

i

) {
1− θt(t + Q−1(x))

}i {
θt(t + Q−1(x))

}n−i

=
n∑

i=n−r+1

(
n

i

) {
1− θt(t + Q−1(x))

}i {
θt(t + Q−1(x))

}n−i

=
∫ 1−θt(t+Q−1(x))

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz.

Now, from these results and Eq. (4.1), we obtain:

θt(t + x) = 1− θt(t + Q−1(x)),

for almost all (t, x) ∈ R+ × R+, which leads to Eq. (2.2). Now, the
result follows from Theorem 2.3. The ‘if’ part of the theorem is easy to
verify and hence is omitted. Hence, the proof is complete. �

The following theorem proves a characterization of the power function
distribution.

Theorem 4.3. Let X1:n, X2:n, . . . , Xn:n be the order statistics from any
cdf F with support [0, θ]. Assume that Q : [0, 1] → R+ is a strictly
decreasing function. Then,

[Xr:n | Xn:n ≤ t] d= [t Q(t−1Xn−r+1:n) | Xn:n ≤ t],

for some 1 ≤ r ≤ n, and for almost all t ∈ [0, θ] (with respect to Lebesgue
measure) with F (t) > 0, if and only if Q(y) = (1 − yα)1/α, 0 ≤ y ≤ 1,
and F is a (rescaled) power function distribution with parameter vector
(α, θ), for some constant α > 0.
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Proof. To prove the ‘only if’ part of the theorem, note that one can
apply Lemma 4.1 to obtain

P [Xr:n ≥ x | Xn:n ≤ t] = 1−
n∑

i=r

(
n

i

)
{ϕt(x)}i{1− ϕt(x)}n−i

+{Hr,n(x|t)−Hr,n(x− |t)},
where ϕt(x) = F (x)/F (t), and Hr,n(x|t) denotes the cdf of [Xr:n |
Xn:n ≤ t]. In view of the arguments already made, one can conclude
that for almost all (t, x) ∈ [0, θ]× [0, θ] (with respect to planar Lebesgue
measure),

P [Xr:n ≥ x | Xn:n ≤ t]=1−
n∑

i=r

(
n

i

)
{ϕt(x)}i{1−ϕt(x)}n−i

=
r−1∑
i=0

(
n

i

)
{ϕt(x)}i{1− ϕt(x)}n−i,

=
n∑

i=n−r+1

(
n

i

)
{1− ϕt(x)}i{ϕt(x)}n−i,

=
∫ 1−ϕt(x)

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz.

Also, we have,

P
[
t Q(t−1Xn−r+1:n) ≥ x | Xn:n ≤ t

]
=

n∑
i=n−r+1

(
n

i

)
{ϕt(tQ−1(x/t))}i{1− ϕt(tQ−1(x/t))}n−i

=
∫ ϕt(tQ−1(x/t))

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz.

Now, the result follows from Theorem 2.1. The ‘if’ part of the theorem
is trivial and hence its proof is omitted. The proof is now complete. �

Remark 4.4. The special case of Theorem 4.3, when Q(y) = 1 − y
and the underlying distribution is continuous, is investigated by Asadi
(2006), and Tavangar and Asadi (2007).

Theorem 4.5. Let X1:n, X2:n, . . . , Xn:n denote the order statistics based
on any cdf F with support [β,∞). Let also S = 1 − F . Assume that
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Q : [0, 1] → R+ is a strictly decreasing function. Then,[
t

Xr:n
X1:n > t

]
d=

[
Q

(
t

Xn−r+1:n

)
X1:n > t

]
,

for almost all t ∈ [β,∞), (with respect to Lebesgue measure) with S(t) >

0, if and only if Q(y) = (1 − yα)1/α, 0 ≤ y ≤ 1, and F is a Pareto
distribution with parameter vector (α, β), for some constant α > 0.

Proof. Using Lemma 4.1, we can write

P

[
t

Xr:n
> x X1:n > t

]
= 1−

r−1∑
i=0

(
n

i

)
{θt(t/x)}n−i{1− θt(t/x)}i

−{Gr,n(t/x|t)−Gr,n((t/x)− |t)},

= 1−
n∑

i=n−r+1

(
n

i

)
{θt(t/x)}i{1− θt(t/x)}n−i

= 1−
∫ θt(t/x)

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz.

and

P

[
Q

(
t

Xn−r+1:n

)
> x X1:n > t

]
=

n−r∑
i=0

(
n

i

)
{θt(t/Q−1(x))}n−i{1− θt(t/Q−1(x))}i

= 1−
∫ 1−θt(t/Q−1(x))

0

1
B(r, n− r + 1)

zn−r(1− z)r−1dz.

The result then follows from Theorem 2.5 . (we omit the details). �

The following theorem gives a characterization of the rescaled beta
distribution. The proof is similar to the proof of Theorem 4.3 and hence
is omitted.

Theorem 4.6. Let X1:n, X2:n, . . . , Xn:n denote the order statistics from
any cdf F with support [0, θ). Let also S = 1 − F . Assume that Q :
[0, 1] → R+ is a strictly decreasing function. Then,

[Xr:n | X1:n > t] d= [1− (1− t) Q((1− t)−1(1−Xn−r+1:n)) | X1:n > t],
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for some 1 ≤ r ≤ n, and for almost all t ∈ [0, θ] (with respect to Lebesgue
measure) with S(t) > 0, if and only if Q(y) = (1 − yβ)1/β, 0 ≤ y ≤ 1,
and F is a rescaled beta distribution of the form F (x) = 1− (1− x/θ)β,
0 ≤ x < θ, for some constant β > 0.

By imposing some restrictions on the underlying cdf, one can obtain
the following result which is stronger than that given in this section.
The proof is omitted, since it follows easily from proofs of Theorems
4.2, 4.3, and 4.5, and the argument made for the proof of Theorem 3.6.

Theorem 4.7. Let X1:n, X2:n, . . . , Xn:n denote the order statistics based
on a continuous cdf F and survival function S.

(i) Assume that the support of F is (0,∞), and lim et/λS(t) exists as
t →∞, for some constant λ > 0. Then,

E{Xr:n − t | X1:n > t} = E{−λ log(1− e−(Xn−r+1:n−t)) | X1:n > t}, t > 0,

for some 1 ≤ r ≤ n, if and only if F is an exponential distribution with
mean λ.

(ii) Assume that the support of F is (0, θ), and lim F (t)/tα exists as
t → 0, for some constant α > 0. Then,

E{Xr:n | Xn:n ≤ t} = E{(tα −Xα
n−r+1:n)1/α | Xn:n ≤ t}, 0 ≤ t ≤ θ,

for some 1 ≤ r ≤ n, if and only if F is a power function distribution
with parameter vector (α, θ).

(iii) Assume that the support of F is (β,∞), and lim tαS(t) exists as
t →∞, for some α > 0. Then,

E{X−1
r:n | X1:n > t} = E{(t−α −X−α

n−r+1:n)1/α | X1:n > t}, t ≥ β,

for some 1 ≤ r ≤ n, if and only if F is a Pareto distribution with
parameter vector (α, β).
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