Bulletin of the Iranian Mathematical Society Vol. 36 No. 1 (2010), pp 273-274.

ERRATUM: TOPOLOGICAL CENTRES OF CERTAIN BANACH MODULE ACTIONS

S. BAROOTKOOB, S. MOHAMMADZADEH AND H.R.E. VISHKI*

For a normed space \mathcal{X} , let $J_{\mathcal{X}} : \mathcal{X} \to \mathcal{X}^{**}$ denote the canonical embedding of \mathcal{X} into \mathcal{X}^{**} , with the second adjoint $(J_{\mathcal{X}})^{**} : \mathcal{X}^{**} \to \mathcal{X}^{****}$. We defined $\mathfrak{M}_{\mathcal{X}}$ (in Section 3 of the paper [1]) by

$$\mathfrak{M}_{\mathcal{X}} = \{ x^{**} \in \mathcal{X}^{**} : J_{\mathcal{X}^{**}}(x^{**}) = (J_{\mathcal{X}})^{**}(x^{**}) \}.$$

It is routine to verify that $\mathfrak{M}_{\mathcal{X}}$ is a closed subspace of \mathcal{X}^{**} containing \mathcal{X} . We have claimed that

"it would be desirable to characterize those \mathcal{X} for which $\mathfrak{M}_{\mathcal{X}} = \mathcal{X}$ ".

We have earlier surprisingly noticed that this is always true! Indeed: Let $x^{**} \in \mathfrak{M}_{\mathcal{X}}$ and let $\{x_{\alpha}\}$ be a bounded net in \mathcal{X} such that $\{J_{\mathcal{X}}(x_{\alpha})\}$ is w^* -convergent to x^{**} . Then, for each $x^{***} \in \mathcal{X}^{***}$,

$$\begin{aligned} \lim_{\alpha} \langle x^{***}, J_{\mathcal{X}}(x_{\alpha}) \rangle &= \lim_{\alpha} \langle (J_{\mathcal{X}})^{*}(x^{***}), x_{\alpha} \rangle = \lim_{\alpha} \langle J_{\mathcal{X}}(x_{\alpha}), (J_{\mathcal{X}})^{*}(x^{***}) \rangle \\ &= \langle x^{**}, (J_{\mathcal{X}})^{*}(x^{***}) \rangle = \langle (J_{\mathcal{X}})^{**}(x^{**}), x^{***} \rangle \\ &= \langle J_{\mathcal{X}^{**}}(x^{**}), x^{***} \rangle \\ &= \langle x^{***}, x^{**} \rangle. \end{aligned}$$

Therefore, $\{J_{\mathcal{X}}(x_{\alpha})\}$ converges weakly to x^{**} . As \mathcal{X} is a weakly closed subspace of \mathcal{X}^{**} , we get $x^{**} \in \mathcal{X}$, so that $\mathfrak{M}_{\mathcal{X}} = \mathcal{X}$, as claimed.

MSC(2000): 46H20, 46H25.

Keywords: Arens product, bounded bilinear map, second dual.

^{*}Corresponding author

^{© 2010} Iranian Mathematical Society.

By this erratum we acknowledge that Example 3.2 (consequently Corollary 3.3) of the paper, in which we have claimed that $\mathfrak{M}_{c_0} \neq c_0$, is not correct and its proof is flawed. The actual error occurs when we use the decomposition $\ell^{\infty*} = c^* \oplus c^{\perp}$. Indeed, the right decomposition is $\ell^{\infty*} = c_0^* \oplus c_0^{\perp} = \ell^1 \oplus c_0^{\perp}$, which is known and holds even in more general situations. It is now more desirable that the reader replace $\mathfrak{M}_{\mathcal{X}}$ with \mathcal{X} throughout the paper.

Acknowledgments

We would like to thank the referee for his/her helpful comments.

References

 S. Barookkoob, S. Mohammadzadeh and H. R. E. Vishki, Topological centres of certain Banach module actions, *Bull. Iranian Math. Soc.* 35 (2) (2009), 15–26.

S. Barootkoob

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN. Email: se-ba406@mail.um.ac.ir

S. Mohammadzadeh

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN.

Email: somohammadzad@yahoo.com

H.R.E. Vishki

Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN.

Email: vishki@um.ac.ir

274