ERRATUM: TOPOLOGICAL CENTRES OF CERTAIN BANACH MODULE ACTIONS

S. BAROOTKOOB, S. MOHAMMADZADEH AND H.R.E. VISHKI*

For a normed space \mathcal{X}, let $J_{\mathcal{X}}: \mathcal{X} \rightarrow \mathcal{X}^{* *}$ denote the canonical embedding of \mathcal{X} into $\mathcal{X}^{* *}$, with the second adjoint $\left(J_{\mathcal{X}}\right)^{* *}: \mathcal{X}^{* *} \rightarrow \mathcal{X}^{* * * *}$. We defined $\mathfrak{M}_{\mathcal{X}}$ (in Section 3 of the paper [1]) by

$$
\mathfrak{M}_{\mathcal{X}}=\left\{x^{* *} \in \mathcal{X}^{* *}: J_{\mathcal{X}^{* *}}\left(x^{* *}\right)=\left(J_{\mathcal{X}}\right)^{* *}\left(x^{* *}\right)\right\} .
$$

It is routine to verify that $\mathfrak{M}_{\mathcal{X}}$ is a closed subspace of $\mathcal{X}^{* *}$ containing \mathcal{X}. We have claimed that
"it would be desirable to characterize those \mathcal{X} for which $\mathfrak{M}_{\mathcal{X}}=\mathcal{X}$ ".
We have earlier surprisingly noticed that this is always true! Indeed: Let $x^{* *} \in \mathfrak{M}_{\mathcal{X}}$ and let $\left\{x_{\alpha}\right\}$ be a bounded net in \mathcal{X} such that $\left\{J_{\mathcal{X}}\left(x_{\alpha}\right)\right\}$ is w^{*}-convergent to $x^{* *}$. Then, for each $x^{* * *} \in \mathcal{X}^{* * *}$,

$$
\begin{aligned}
\lim _{\alpha}\left\langle x^{* * *}, J_{\mathcal{X}}\left(x_{\alpha}\right)\right\rangle & =\lim _{\alpha}\left\langle\left(J_{\mathcal{X}}\right)^{*}\left(x^{* * *}\right), x_{\alpha}\right\rangle=\lim _{\alpha}\left\langle J_{\mathcal{X}}\left(x_{\alpha}\right),\left(J_{\mathcal{X}}\right)^{*}\left(x^{* * *}\right)\right\rangle \\
& =\left\langle x^{* *},\left(J_{\mathcal{X}}\right)^{*}\left(x^{* * *}\right)\right\rangle=\left\langle\left(J_{\mathcal{X}}\right)^{* *}\left(x^{* *}\right), x^{* * *}\right\rangle \\
& =\left\langle J_{\mathcal{X}}{ }^{* * *}\left(x^{* *}\right), x^{* * *}\right\rangle \\
& =\left\langle x^{* * *}, x^{* *}\right\rangle .
\end{aligned}
$$

Therefore, $\left\{J_{\mathcal{X}}\left(x_{\alpha}\right)\right\}$ converges weakly to $x^{* *}$. As \mathcal{X} is a weakly closed subspace of $\mathcal{X}^{* *}$, we get $x^{* *} \in \mathcal{X}$, so that $\mathfrak{M}_{\mathcal{X}}=\mathcal{X}$, as claimed.

[^0]By this erratum we acknowledge that Example 3.2 (consequently Corollary 3.3) of the paper, in which we have claimed that $\mathfrak{M}_{c_{0}} \neq c_{0}$, is not correct and its proof is flawed. The actual error occurs when we use the decomposition $\ell^{\infty *}=c^{*} \oplus c^{\perp}$. Indeed, the right decomposition is $\ell^{\infty *}=c_{0}{ }^{*} \oplus c_{0}{ }^{\perp}=\ell^{1} \oplus c_{0}{ }^{\perp}$, which is known and holds even in more general situations. It is now more desirable that the reader replace $\mathfrak{M}_{\mathcal{X}}$ with \mathcal{X} throughout the paper.

Acknowledgments

We would like to thank the referee for his/her helpful comments.

References

[1] S. Barookkoob, S. Mohammadzadeh and H. R. E. Vishki, Topological centres of certain Banach module actions, Bull. Iranian Math. Soc. 35 (2) (2009), 15-26.

S. Barootkoob

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN.
Email: se-ba406@mail.um.ac.ir
S. Mohammadzadeh

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN.
Email: somohammadzad@yahoo.com

H.R.E. Vishki

Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, IRAN.
Email: vishki@um.ac.ir

[^0]: MSC(2000): $46 \mathrm{H} 20,46 \mathrm{H} 25$.
 Keywords: Arens product, bounded bilinear map, second dual.

 * Corresponding author
 (c) 2010 Iranian Mathematical Society.

