ERRATUM: TOPOLOGICAL CENTRES OF CERTAIN BANACH MODULE ACTIONS

S. BAROOTKOOB, S. MOHAMMADZADEH AND H.R.E. VISHKI∗

For a normed space \(\mathcal{X} \), let \(J_\mathcal{X} : \mathcal{X} \to \mathcal{X}^{**} \) denote the canonical embedding of \(\mathcal{X} \) into \(\mathcal{X}^{**} \), with the second adjoint \((J_\mathcal{X})^{**} : \mathcal{X}^{**} \to \mathcal{X}^{****}\).

We defined \(\mathfrak{M}_\mathcal{X} \) (in Section 3 of the paper [1]) by

\[
\mathfrak{M}_\mathcal{X} = \{ x^{**} \in \mathcal{X}^{**} : J_\mathcal{X}(x^{**}) = (J_\mathcal{X})^{**}(x^{**}) \}.
\]

It is routine to verify that \(\mathfrak{M}_\mathcal{X} \) is a closed subspace of \(\mathcal{X}^{**} \) containing \(\mathcal{X} \). We have claimed that

“it would be desirable to characterize those \(\mathcal{X} \) for which \(\mathfrak{M}_\mathcal{X} = \mathcal{X} \).”

We have earlier surprisingly noticed that this is always true! Indeed: Let \(x^{**} \in \mathfrak{M}_\mathcal{X} \) and let \(\{x_\alpha\} \) be a bounded net in \(\mathcal{X} \) such that \(\{J_\mathcal{X}(x_\alpha)\} \) is \(w^* \)-convergent to \(x^{**} \). Then, for each \(x^{***} \in \mathcal{X}^{***} \),

\[
\lim_\alpha \langle x^{***}, J_\mathcal{X}(x_\alpha) \rangle = \lim_\alpha \langle (J_\mathcal{X})^*(x^{***}), x_\alpha \rangle = \lim_\alpha \langle J_\mathcal{X}(x_\alpha), (J_\mathcal{X})^*(x^{***}) \rangle \\
= \langle x^{**}, (J_\mathcal{X})^*(x^{***}) \rangle = \langle (J_\mathcal{X})^{**}(x^{**}), x^{***} \rangle \\
= \langle J_\mathcal{X}^{**}(x^{**}), x^{***} \rangle \\
= \langle x^{***}, x^{**} \rangle.
\]

Therefore, \(\{J_\mathcal{X}(x_\alpha)\} \) converges weakly to \(x^{**} \). As \(\mathcal{X} \) is a weakly closed subspace of \(\mathcal{X}^{**} \), we get \(x^{**} \in \mathcal{X} \), so that \(\mathfrak{M}_\mathcal{X} = \mathcal{X} \), as claimed.

Keywords: Arens product, bounded bilinear map, second dual.

∗Corresponding author

© 2010 Iranian Mathematical Society.
By this erratum we acknowledge that Example 3.2 (consequently Corollary 3.3) of the paper, in which we have claimed that $\mathfrak{M}_{c_0} \neq c_0$, is not correct and its proof is flawed. The actual error occurs when we use the decomposition $\ell_\infty^* = c^* \oplus c_0^\perp$. Indeed, the right decomposition is $\ell_\infty^* = c_0^* \oplus c_0^\perp = \ell_1 \oplus c_0^\perp$, which is known and holds even in more general situations. It is now more desirable that the reader replace \mathfrak{M}_X with X throughout the paper.

Acknowledgments
We would like to thank the referee for his/her helpful comments.

References