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ASYMPTOTIC BEHAVIOR OF MULTIVARIATE
REWARD PROCESSES WITH NONLINEAR REWARD

FUNCTIONS

K. KHORSHIDIAN AND A.R. SOLTANI

Abstract. In this work we study a multivariate reward process
Z(t) = (Z1(t), ...,Zp(t)), t ≥ 0, defined on a semi-Markov pro-
cess {J (t), t ≥ 0} with a Markov renewal process {(Jn, Tn), n =
0, 1, 2, . . . } and non-linear reward functions ρ1 , ...,ρp respec-
tively. We follow the definitoin of Soltani 1996, for nonlinear
reward processes.Usually in practice, reward functions are not of
constant rate, i.e., are not linear in time, e.g., for water and elec-
tricity consumption costs. Hence we have tried to deal with gen-
eral forms of reward functions, say nonlinear. Using the relation
between Laplace transforms of different components of the pro-
cess, the Laplace transforms of mean vector EZ(t), and the covari-
ance matrix Σ(t), are specified. Differentiating the Laplace trans-
forms near the point 0, and inverting them provides asymptotic
formulas for EZ(t) and Σ(t), as t −→∞. Interestingly our results
indicate that for general reward functions ρ = (ρ1 , ...,ρp) ,

EZ(t) = C0+C1 t+◦(1) , Σ(t) = W0 t+W1 t2+◦(t) , t −→∞ ,

where the vectors C0 , C1 and the matrices W0 , W1 are fully spec-
ified. These results, in particular, provide asymptotic formulas for
mean and variance of a univariate reward process. An example is
given and followed through the paper.
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1. Introduction

Let {J (t), t ≥ 0} be a semi-Markov process with a Markov renewal
process {(Jn, Tn), n = 0, 1, 2, . . . }. The state space of {Jn} is as-
sumed to be N = {0, 1, 2, . . . , }. A Markov renewal process could be
considered as an extension of a renewal process tied with a Markov
chain. {Jn , n = 0, 1, 2, . . . } is a Markov chain, { Tn , n = 0, 1, 2, . . . }
are renewal epochs of visiting successive states in underlying Markov
chain, and J (t) is the state of the process at time t ≥ 0. For more
details, see [2], [3] and [14] .

Based on {J (t), t ≥ 0}, a multivariate reward process may be de-
fined as Z(t) = (Z1(t), ...,Zp(t)), where

Zi(t) =
∑

n: Tn+1<t

ρ
i
(Jn, Tn+1 − Tn) + ρ

i
(J (t) , X(t)), i = 1, ..., p ,

(1.1)
where X(t) is the age process, that is the sojourn time since the last
transition until t. Each function ρ

i
in (1.1) is called a reward function

, and is a real function of two variables; ρ
i

: N × R −→ R, where

ρ
i
(j, τ) measures the excess reward when time τ is spent in the state j ,

and Zi(t) is the total reward gained up to time t by the i-th component
of the system. If ρ

i
(j, τ) = jτ, i = 1, ..., p then the reward process

Z(t) becomes the multivariate reward process treated by Sumita and
Masuda 1987, Masuda and Sumita 1991, Sumita 1993, Ball 1999, etc.
In the case that ρ is of the polynomial form

ρ
i
(k, x) =

mi∑
n=1

gin(k)xn, (1.2)

where gin, n = 1, . . . , mi are given functions, an explicit formula for
the mean vector EZ(t); t ≥ 0, is given in Soltani 1996, which is
based on G(x, t) the joint distribution of (J (t) , X(t) ) . The prob-
lem with earlier results, is that in more realistic systems and situa-
tions they don’t work well, because of linearity or at most polynomial
nature of corresponding reward functions and the unknown distribu-
tions. Soltani and Khorshidian 1998, arrived at a formula for EZ(t)
, t −→ ∞, in univariate case with general reward functions using
Markov Renewal Theory approach , which is difficult to extend to the
multivariate case.
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In the present study we will try to relax these assumptions and con-
sider more general reward functions. Using Laplace transform tech-
niques we determine the asymptotic behavior of EZ(t), the mean vec-
tor and Σ(t), the covariance matrix of Z(t), for each t ≥ 0, t −→ ∞.
Interestingly our results indicate that for general reward functions ρ,

EZ(t) = C0 + C1 t + ◦(1) , t −→∞,

and

Σ(t) = W0 t + W1 t2 + ◦(t) , t −→∞,

where the vectors C0 , C1 and the matrices W0 , W1 are fully specified.

For more details on semi-Markov processes see [2], [3] and [14]. Con-
cerning the asymptotic behavior of a semi-Markov process see [4] and
[5].

Example 1. This is the same example as [6], with an extra vector
of nonlinear reward functions entering to the multivariate case. Con-
sider a manufacturing system which produces perfect products as well
as defective products in a random manner. The system has two modes
of operations: state 1 indicates that the system is under low-quality
production mode in that the system produces defective with high rate
while state 2 is the high-quality production mode with smaller defec-
tive production rate. There is one state corresponding to failure/setup,
which is represented by state 0 . The total production rate (includ-
ing both defective and perfect items) in state 1 is the same as that in
state 2 , and we cannot distinguish these two modes of operation. The
machine may switch its states within 0 , 1 , and 2 . Suppose that the
machine produces perfect items by rate 0.1 per unit of time at state 1
, and by rate 2 at state 2 . If we define ρ1(0, x) = 0, ρ1(1, x) = 0.1x,
ρ1(2, x) = 2x, then Z1(t) becomes the total number of perfect items
produced during (0, t] . Let ρ2 represent the costs of production and
other services,

ρ2(0, x) = 2x3, ρ2(1, x) = 5(e0.05x − 1), ρ2(2, x) = 3(e2x − 1),

then Z2(t) becomes the total cost during (0, t]. In matrix form,

ρ(0, x) =

(
0

2x3

)
, ρ(1, x) =

(
0.1x

5(e0.05x − 1)

)
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, ρ(2, x) =

(
2x

3(e2x − 1)

)
.

2. Notations and Preliminaries

Corresponding to a semi-Markov process {J (t), t ≥ 0}, let Aij(x)
measures the transition probability from state i to the state j within
the time interval (0, x] ,i.e.,

Aij(x) = P {Jn+1 = j, Tn+1 − Tn ≤ x | Jn = i}.

Let aij(x) denote the density of Aij(x) and let

Ai(x) =
∑
j∈N

Aij(x), Ai(x) = 1 − Ai(x),

Pij(t) = P {J (t) = j | J (0) = i }.

The Markov renewal kernel is denoted by R(t) =
∑∞

n=0 An?, where An?

is the n-fold convolution of A(x) with itself, A(x) is the matrix with en-
tries Aij(x). The joint distributions corresponding to the bivariate pro-
cess {(J (t), X(t)), t ≥ 0 } and the process {(J (t), X(t), Z(t)), t ≥
0}, respectively, are given by

Gij(x, t) = P {J (t) = j, X(t) ≤ x | J (0) = i},
Fij(x, z, t) = P{J (t) = j, X(t) ≤ x, Z(t) ≤ z | J (0) = i },

where by Z(t) ≤ z we mean (Z1(t) ≤ z1, . . ., Zp(t) ≤ zp). A vector
(w1, ..., wp) in Rp is denoted by w. The following Laplace transforms
are of frequent use in subsequent sections.

αij(s) =
∫ ∞

0
e−sx dAij(x),

αi(s) =
∫ ∞

0
e−sx dAi(x),

φij(v, w, s) =
∫ ∞

0

∫
Rp

∫ ∞

0
e−vx−w′z−st fij(x, z, t) dx dz dt,

σij(w, s) =
∫ ∞

0

∫
Rp

e−w′z−st fij(0
+, z, t) dz dt,

Ckj(w, s) =
∫ ∞

0
e−w′ρ(k,x)−sx dAkj(x),

Ej(w, s) =
∫ ∞

0
e−w′ρ(j,x)−sx Aj(x)dx.
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Throughout this paper a matrix with entries yij, i, j ∈ N , is denoted
by y = [ yij ] and a diagonal matrix with entries yi, i ∈ N , is denoted
by yD = [ δijyj ]. The initial probability vector is denoted by p(0),
and the unit vector by e = [ 1 1 . . . 1 ]. The following important
and informative relation between Laplace Transforms is established in
[7] and [11],

φ(v, w, s) = σ(w, s)ED(w, s + v)

= (I − C(w, s))−1ED(w, s + v). (2.1)

Recall from [11] that in the univariate case, when the reward function
is given by

ρ(k, x) =
m∑

n=1

gn(k)xn,

it has been shown that

E(Zρ(t)) =
∫ t

0
p′(0)

m∑
n=1

nEn−1 (τ)ρ
D:n e dτ, (2.2)

where gn(k), k ∈ N , are the entries of the matrix ρ
D:n , n = 1, . . . , m;

and

En(t) =
∫ ∞

0
xn G(dx, t). (2.3)

The formula (2.2) enables one to compute the mean of the cumulative
reward up to time t, whenever the reward function is a polynomial.

The problem with (2.2), is the unknown structure of G(x, t) in (2.3),
therefore we try to evaluate the asymptotic value of E(Zρ(t)), t −→
∞. What we need in theory is to obtain (2.1) and it’s derivatives, but
as seen in the following example, even for simple forms of A(.) and
ρ(., .) it is not an easy task and therefore we proceed as next sections.

Example 1.( continued ): Let w = (w1, w2)
′
, and

a(x) =
d

dx
A(x) =

 0 0.8.2e−2x 0.2.2e−2x

0.9.0.2e−0.2x 0 0.1.0.3e−0.3x

0.8.e−x 0.2.0.8e−0.8x 0

 .

W.L.O.G. it is assumed that there is no self transition ( if there is
a self transition, the transition functions can be modified so that the
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self transition function to be 0 ). Also

A(x) =

 e−2x 0 0
0 0.9e−0.2x + 0.1.e−0.3x 0
0 0 0.8.e−x + 0.2.e−0.8x

 .

To arrive at (2.1), suppose we want to evaluate C21(w, s) and
E2(w, s) ,

C21(w, s) =
∫ ∞

0
0.16e−2w1x−3w2(e2x−1)−sx e−0.8xdx,

E2(w, s) =
∫ ∞

0
e−2w1x−3w2(e2x−1)−sx( 0.8.e−x + 0.2.e−0.8x)dx.

As is seen, it is not easy to compute the above integrals, even for
such uncomplicated transition probability matrix and reward func-
tions, therefore we proceed as next sections.

3. Asymptotic Behavior Of EZρ(t)

In this section we assume that Zρ(t) is a univariate reward pro-
cess corresponding to a general reward function ρ(k, x). Recall from
[11]that

Ls E(Zρ(t)) = − p′(0)
∂φ(0, w, s)

∂w
|w=0 e , (3.1)

where Ls stands for the Laplace transform of the given function with
respect to the parameter s , and

∂φ(0, w, s)

∂w
|w=0

= (I − α(s))−1
[
−
∫ ∞

0
ρ(k, x)e−sxAkj(dx)

]
(I − α(s))−1 (I − αD(s))

s

+(I − α(s))−1
[
−δkj

∫ ∞

0
ρ(j, x)e−sxAj(x)dx

]
. (3.2)

Recall from [4] that as s −→ 0 ,

(I − α(s))−1 = H0 +
1

s
H1 + ◦(1)

where

H1 =
1

m1

e π′ , m1 = π′A1 e , Ai =
∫ ∞

0
xiA(dx),
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π is the unique stationary distribution, i.e., π′A(∞) = π′,

H0 =
1

m1
e π′{−A1+

1
2m1

A2 e π′}+{Z0−
1

m1
e π′A1Z0}{P−

1
m1

A1 e π′}+I ,

Z0 is the fundamental matrix associated with the discrete time Markov
chain governed by P , i.e. Z0 = {I − P + e π′}−1, and ◦(1) −→ 0, as
s −→ 0.
Let

Bi
kj =

∫ ∞

0
xiρ(k, x)Akj(dx),

θi
j =

∫ ∞

0

∫ x

0
uiρ(j, u)duAj(dx),

and Bi = [Bi
kj] , Θi

D = [δkjθ
i
j] . The following theorem provides the

behavior of EZρ(t), t −→∞.

Theorem 3.3. Let Zρ(t) be a reward process given by (1.1) with
reward function ρ(k, x) and suppose that Bi, and Θi

D , i = 0, 1, 2
exists, then as t −→∞,

EZρ(t) = p′(0)
(
H0B

0 −H1B
1 + H1Θ

0
D + H1B

0 t
)

e + ◦(1).

Proof. By applying the Taylor’s Theorem to the term e−sx in the
integrals in (3.2) we obtain that

∫∞
0 ρ(k, x)e−sxAkj(dx)

=
∫ ∞

0
ρ(k, x)(1− sx +

s2x2

2
e−s∗x)Akj(dx)

=
∫ ∞

0
ρ(k, x)Akj(dx)− s

∫ ∞

0
xρ(k, x)Akj(dx)

+
s2

2

∫ ∞

0
x2ρ(k, x)e−s∗xAkj(dx)

= B0
kj − s B1

kj + ◦kj(s), s −→ 0

where 0 < s∗ < s and

◦kj(s) =
s2

2

∫ ∞

0
x2ρ(k, x)e−s∗xAkj(dx) <

s2

2

∫ ∞

0
x2ρ(k, x)Akj(dx)

=
s2

2
B2

kj.
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In matrix form[∫ ∞

0
ρ(k, x)e−sxAkj(dx)

]
= B0 − s B1 + ◦(s), (3.4)

where ◦(s) = [◦kj(s)]. Also

∫∞
0 ρ(j, x)e−sxAj(x)dx

=
∫ ∞

0
Aj(dx)

∫ x

0
ρ(j, u)e−sudu

=
∫ ∞

0

∫ x

0
e−suρ(j, u)duAj(dx)

=
∫ ∞

0

∫ x

0
(1− su +

s2u2

2
e−s∗u)ρ(j, u)duAj(dx) 0 < s∗ < s

=
∫ ∞

0

∫ x

0
ρ(j, u)duAj(dx)− s

∫ ∞

0

∫ x

0
uρ(j, u)duAj(dx)

+
s2

2

∫ ∞

0

∫ x

0
u2e−s∗uρ(j, u)duAj(dx)

= θ0
j − s θ1

j + ◦j(s), s −→ 0

where

◦j(s) =
s2

2

∫ ∞

0

∫ x

0
u2e−s∗uρ(j, u)duAj(dx)

<
s2

2

∫ ∞

0

∫ x

0
u2ρ(j, u)duAj(dx)

=
s2

2
θ2

j .

In matrix form, with ◦(s) = [δkj ◦j (s)],

[
δkj

∫ ∞

0
ρ(j, x)e−sxAj(x)dx

]
= Θ0

D − s Θ1
D + ◦(s). (3.5)

The fact (I − α(s)) e = (I − αD(s)) e , provides that

(I − α(s))−1(I − αD(s)) e = e .
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Substitute (3.4) and (3.5) in (3.2) and use Keilson’s result for the term
(I − α(s))−1 to obtain that

− s
∂φ(0, w, s)

∂w
|w=0 e = (H0 +

1

s
H1 + ◦(1))(B0 − s B1 + ◦(s)) e

+ s (H0 +
1

s
H1 + ◦(1))(Θ0

D − s Θ1
D + ◦(s)) e

= (H0B
0 −H1B

1 + H1Θ
0
D +

1

s
H1B

0) e + ◦(1).

The proof is complete by (3.1).

Example 1.( continued ): In this section we compute EZi(t) i = 1, 2

as discussed in section 1,

EZi(t) = p′(0)
(
H0B

0
i −H1B

1
i + H1Θ

0
D:i + H1B

0
i t
)

e+◦(1), i = 1, 2.

At first we compute the needed matrices and vectors,

P = A(∞) =

 0 0.8 0.2
0.9 0 0.1
0.8 0.2 0

 ,

π′P = π′ =⇒ π′ = (0.46, 0.4, 0.13).

A1 =

 0 0.4 0.1
4.5 0 1/3
0.8 0.25 0

 , A2 =

 0 0.4 0.1
45 0 20/9
1.6 5/8 0

 ,

giving that

m1 = π′A1e
¯

= (0.46, 0.4, 0.13)

 0 0.4 0.1
4.5 0 1/3
0.8 0.25 0


 1

1
1

 = 2.306,

H1 =
e
¯
π′

m1

=

 0.2023 0.1734 0.0578
0.2023 0.1734 0.0578
0.2023 0.1734 0.0578

 ,

H0 =

 0.9805 0.0051 0.0033
0.1873 4.6027 0.9311
−.0613 0.1519 1.0546

 .

Now consider the bivariate reward process ρ(k, x) of Example 1,

ρ(0, x) =

(
0

2x3

)
, ρ(1, x) =

(
0.1x

5(e0.05x − 1)

)
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, ρ(2, x) =

(
2x

3(e2x − 1)

)
.

Then

B0
1 =

 0 0 0
0.45 0 0.03
1.6 0.5 0

 , B1
1 =

 0 0 0
4.5 0 0.22
3.2 1.25 0

 ,

Θ0
1 =

 0 0 0
0 2.361 0
0 0 14.1

 , B0
2 =

 0 1.2 44.4
1.5 0 0.1
0.6 0.2 0

 ,

B1
2 =

 0 2.4 0.6
63.8 0 3.43
1.35 .583 0

 , Θ0
2 =

 0.75 0 0
0 27.83 0
0 0 .283

 .

Assume that the initial probabilities are p′(0) = (0.2 , 0.3 , 0.5). It
follows from Theorem 3.3, that as t −→∞,

EZρ(t) =

[
2.548
5.697

]
+

[
0.205
9.558

]
t + ◦(1) .

The next section is devoted to the asymptotic behavior of Σ(t), the
covariance matrix of multivariate process Z(t) = (Z1(t),Z2(t), ...,Zp(t)).

4. Asymptotic Behavior Of The Covariance Matrix

In this section we consider a multivariate reward process Z(t) =
(Z1(t),Z2(t),
...,Zp(t)), with a multidimensional reward function ρ = (ρ1 , ...,ρp),

and obtain an asymptotic formula for Σ(t) , t −→ ∞ , under mild
conditions on ρ. First note that from the relation∫ ∞

0
e−stE{e−w′z(t)} dt = p′(0)φ(0, w, s) e,

it follows that∫ ∞

0
e−stE{Zi(t)Zj(t)} dt = p′(0)

∂2φ(0, w, s)

∂wi∂wj

∣∣∣w=0 e . (4.1)

Also it follows from (2.1) that

φ(0, w, s) = σ(w, s)ED(w, s).
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Theorem 4.2. Suppose that ρr(k, x), r=1,2,...,p, satisfy the follow-
ing conditions

Bi
r:kj =

∫ ∞

0
xiρr(k, x)Akj(dx) < ∞ i = 0, 1, 2,

Bi
rs:kj =

∫ ∞

0
xiρr(k, x)ρs(k, x)Akj(dx) < ∞ i = 0, 1, 2,

θi
j:r =

∫ ∞

0

∫ x

0
uiρr(j, u)duAj(dx) < ∞ i = 0, 1, 2,

θi
j:rs =

∫ ∞

0

∫ x

0
uiρr(j, u)ρs(j, u)duAj(dx) < ∞ i = 0, 1, 2.

and denoting Bi
r = [Bi

r:kj], Bi
rs = [Bi

rs:kj], Θi
D:r = [δkjθ

i
j:r], Θi

D:rs =

[δkjθ
i
j:rs]. Then as t −→∞,

E Zr(t)Zs(t) = p′(0){Y1t
2 + Y0t} e + ◦(t) ,

where

Y1:rs = H1(B
0
rH1B

0
s + B0

sH1B
0
r )

and

Y0:rs = H0(B
0
rH1B

0
s + B0

sH1B
0
r )

+H1(B
0
rH0B

0
s + B0

sH0B
0
r −B0

rH1B
1
s −B0

sH1B
1
r

−B1
rH1B

0
s −B1

sH1B
0
r + B0

rH1Θ
0
D:s + B0

sH1Θ
0
D:r + B0

rs).

Proof. Without loss of generality, we evaluate EZ1(t)Z2(t). Differen-
tiating of (2.1) gives that

∂φ(0, w, s)

∂w1

=
∂σ(w, s)

∂w1

ED(w, s) + σ(w, s)
∂ED(w, s)

∂w1

,

and

∂2φ(0, w, s)

∂w1∂w2

=
∂2σ(w, s)

∂w1∂w2

ED(w, s) +
∂σ(w, s)

∂w1

∂ED(w, s)

∂w2

+
∂σ(w, s)

∂w2

∂ED(w, s)

∂w1

+ σ(w, s)
∂2ED(w, s)

∂w1∂w2

.

(4.3)

Also from (2.1),

σ(w, s) = σ(w, s)C(w, s) + I,
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which implies that,

∂σ(w, s)

∂w1

=
∂σ(w, s)

∂w1

C(w, s) + σ(w, s)
∂C(w, s)

∂w1

,

or

∂σ(w, s)

∂w1

= (I − C(w, s))−1∂C(w, s)

∂w1

(I − C(w, s))−1 (4.4)

similarly

∂σ(w, s)

∂w2

= (I − C(w, s))−1∂C(w, s)

∂w2

(I − C(w, s))−1.

By using a similar method and formula (4.4) we obtain that

∂2σ(w, s)

∂w1∂w2

= (I − C(w, s))−1{ ∂C(w, s)

∂w1

(I − C(w, s))−1∂C(w, s)

∂w2

+
∂C(w, s)

∂w2

(I − C(w, s))−1∂C(w, s)

∂w1

+
∂2C(w, s)

∂w1∂w2

}(I − C(w, s))−1.

(4.5)

Now note that

Ckj(w, s) =
∫ ∞

0
e−
∑p

i=1
wiρi(k,x)−sx dAkj(x),

and therefore Ckj(0, s) =
∫ ∞

0
e−sx dAkj(x), or C(0, s) = α(s). Also

∂C(w, s)

∂w1

∣∣∣w=0 =
[
−
∫ ∞

0
ρ1(k, x) e−sx dAkj(x)

]
, (4.6)

and

∂2C(w, s)

∂w1∂w2

∣∣∣w=0 =
[∫ ∞

0
ρ1(k, x)ρ2(k, x) e−sx dAkj(x)

]
. (4.7)

Moreover

Ej(w, s) =
∫ ∞

0
e−
∑p

i=1
wiρi(k,x)−sx Aj(x)dx,

giving that Ej(0, s) =
1− αj(s)

s
or ED(0, s) =

I − αD(s)

s
.
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Also

∂Ej(w, s)

∂w1

∣∣∣w=0 = −
∫ ∞

0
ρ1(k, x) e−sx Aj(x)dx, (4.8)

and

∂2Ej(w, s)

∂w1∂w2

∣∣∣w=0 =
∫ ∞

0
ρ1(k, x)ρ2(k, x) e−sx Aj(x)dx. (4.9)

Similar to one dimensional case, it follows from (4.6)-(4.9) that

∂C(w, s)

∂w1

∣∣∣w=0 = −B0
1 + s B1

1 + ◦(s) (4.10)

∂2C(w, s)

∂w1∂w2

∣∣∣w=0 = B0
12 − s B1

12 + ◦(s) (4.11)

∂ED(w, s)

∂w1

∣∣∣w=0 = −Θ0
D:1 + s Θ1

D:1 + ◦(s) (4.12)

∂2ED(w, s)

∂w1∂w2

∣∣∣w=0 = Θ0
D:12 − s Θ1

D:12 + ◦(s) (4.13)

Therefore (4.4) together with (4.10) and (4.11) implies that

∂2σ(w, s)

∂w1∂w2

ED(w, s)
∣∣∣w=0 = (I − α(s))−1{

(−B0
1 + s B1

1 + ◦(s))(I − α(s))−1(−B0
2 + s B1

2 + ◦(s))
+(−B0

2 + s B1
2 + ◦(s))(I − α(s))−1(−B0

1 + s B1
1 + ◦(s))

+(B0
12 − s B1

12 + ◦(s)) } (I − α(s))−1 (I − αD(s))

s
.

(4.14)

From (4.4), (4.10) and (4.12) it follows that,

∂σ(w, s)

∂w1

∂ED(w, s)

∂w2

∣∣∣w=0 = (I − α(s))−1(−B0
1 + s B1

1 + ◦(s))

(I − α(s))−1(−Θ0
D:2 + s Θ1

D:2 + ◦(s)),

(4.15)

and by (2.1) and (4.13),

σ(w, s)
∂2ED(w, s)

∂w1∂w2

∣∣∣w=0 = (I−α(s))−1(Θ0
D:12− s Θ1

D:12+◦(s)). (4.16)
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Using the Keilson’s approximation of (I − α(s))−1 , and substituting
(4.14)-(4.16) in (4.3) imply that as s −→ 0,

∂2φ(0, w, s)

∂w1∂w2

∣∣∣w=0 e

= { 1

s3
H1(B

0
1H1B

0
2 + B0

2H1B
0
1) +

1

s2
H0(B

0
1H1B

0
2 + B0

2H1B
0
1)

+
1

s2
H1(B

0
1H0B

0
2 + B0

2H0B
0
1 −B0

1H1B
1
2 −B0

2H1B
1
1 −B1

1H1B
0
2

−B1
2H1B

0
1 + B0

1H1Θ
0
D:2 + B0

2H1Θ
0
D:1 + B0

12) } e + ◦( 1

s2
).

giving the result.

Corollary 4.17. Let ρ = (ρ1 , ...,ρp), then as t −→∞, the asymp-

totic covariance matrix of Z(t) = (Z1(t), ...,Zp(t)) is given by

Σ(t) = W0 t + W1 t2 + ◦(t),

where

W1:rs = p′(0) { H1(B
0
rH1B

0
s + B0

sH1B
0
r )−H1B

0
rP(0)H1B

0
s } e ,

W0:rs = p′(0) [ H0(B
0
rH1B

0
s + B0

sH1B
0
r )

+H1(B
0
rH0B

0
s + B0

sH0B
0
r −B0

rH1B
1
s −B0

sH1B
1
r

−B1
rH1B

0
s −B1

sH1B
0
r + B0

rH1Θ
0
D:s + B0

sH1Θ
0
D:r + B0

rs)

−H1B
0
rP(0)(H0B

0
s −H1B

1
s + H1Θ

0
D:s)

−(H0B
0
r −H1B

1
r + H1Θ

0
D:r)P(0)H1B

0
s ] e ,

and P(0) = e p′(0).

Corollary 4.18. Let Zρ(t) be a one-dimensional reward process cor-
responding to a reward function ρ(k, x), then

V ar(Zρ(t) ) = p′(0)
(
U0 t + U1 t2

)
e + ◦(t) , t −→∞,

where

U1 = 2H1B
0H1B

0 −H1B
0P(0)H1B

0 ,
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U0 = 2H0B
0H1B

0

+2H1 ( B0H0B
0 −B0H1B

1 −B1H1B
0 + B0H1Θ

0
D )

+H1B
∗ −H1B

0P(0)(H0B
0 −H1B

1 + H1Θ
0
D)

−(H0B
0 −H1B

1 + H1Θ
0
D)P(0)H1B

0 ,

and

B∗ =

[∫ ∞

0
ρ

2
(k, x)Akj(dx)

]
.

Example 1.(continued ): Here we show that the analyses performed
in preceding sections can be implemented and are useful to exploit the
partial observations of stochastic systems. Calculations give

B0
11 =

 0 0 0
0.45 0 0.02
6.4 2.5 0

 , B0
12 =

 0 0 0
4.5 0 0.313
2.7 7.6 0

 ,

B0
22 =

 0 0.176 0.044
4.5 0 0.5
9 2.25 0


and then corollary 4.17, gives that as t −→∞,

Σ(t) =

[
0.0421 1.9613
1.9613 91.358

]
t2 +

[
0.519 15.093
15.093 −358.3

]
t + + ◦ (t).

5. A Renewal Theory Approach

In this section we use the renewal theory to obtain Σ(t) for a more
general function ρr(k, x), rather than analytic functions. By condi-
tioning on the first renewal epoch, in the univariate case, we obtain
that

EiZ(t) = (1− Ai(t))ρ(i, t) +
∑
j∈N

∫ t

0
Aij(dx){ρ(i, x) + EjZ(t− x)}

= (1− Ai(t))ρ(i, t) +
∫ t

0
Ai(dx)ρ(i, x)

+
∑
j∈N

∫ t

0
Aij(dx)EjZ(t− x)

= g(i, t) +
∑
j∈N

∫ t

0
Aij(dx)EjZ(t− x),
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where Ei is the conditional expectation given J (0) = i. The above
equation has the form f = g + A ? f, with

g(i, t) = (1− Ai(t))ρ(i, t) +
∫ t

0
Ai(dx)ρ(i, x) ,

and has the solution

EiZ(t) =
∑
j∈N

∫ t

0
Rij(dx)g(j, t− x) , (5.1)

which provides a formula for EiZ(t), the behavior of EiZ(t), t −→
∞ is completely specified in [12]. In the multivariate case, by condi-
tioning on the first renewal epoch one obtains that

EiZr(t)Zs(t)

= (1−Ai(t))ρr (i, t)ρs(i, t)

+
∑
j∈N

∫ t

0
Aij(dx)Ej {ρr (i, x) + Zr(t− x) }{ρs(i, x) + Zs(t− x) }

= (1−Ai(t))ρr (i, t)ρs(i, t) +
∫ t

0
Ai(dx)ρr (i, x)ρs(i, x)

+
∑
j∈N

∫ t

0
Aij(dx){ρr (i, x) EjZs(t− x) + ρs(i, x) EjZr(t− x) }

+
∑
j∈N

∫ t

0
Aij(dx)EjZr(t− x)Zs(t− x)

= grs(i, t) +
∑
j∈N

∫ t

0
Aij(dx)EjZr(t− x)Zs(t− x).

The equation given above is a Markov renewal equation with

grs(i, t) = (1−Ai(t))ρr (i, t)ρs(i, t) +
∫ t

0
Ai(dx)ρr (i, x)ρs(i, x)

+
∑
j∈N

∫ t

0
Aij(dx) {ρr (i, x) EjZs(t− x) + ρs(i, x) EjZr(t− x) }

and has the solution

EiZr(t)Zs(t) =
∑
j∈N

∫ t

0
Rij(dx)grs(j, t− x) . (5.2)

The Σ(t) and its asymptotic behavior may be specified by using (5.1),
(5.2) and the Markov Renewal Limit Theorems(due to Cinlar). We
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expect the exact analysis to be hard and interesting and can be the
basis of a further study.
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