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ERGODIC THEORETIC CHARACTERIZATION OF
LEFT AMENABLE LAU ALGEBRAS

R. NASR-ISFAHANI

ABSTRACT. This paper deals with the notion of left amenability
for a large class of Banach algebras known as Lau algebras. It
makes a study of left amenability in the framework of ergodicity
considering the antirepresentations of a Lau algebra on a Banach
space.

1. Introduction

Recall that a Lau algebra (the same as F-algebra in Lau [4]) is a
complex Banach algebra A which is the (unique) predual of a W*-
algebra M and the identity element u of M is a multiplicative linear
functional on A; see Pier [13]. Note that M need not be unique
[4]. We shall identify the continuous dual A* with a fixed W*-algebra
whose identity is multiplicative on A.

Example of Lau algebras include the Fourier algebra A(G), the
Fourier-Stieltjes algebra B(G), the group algebra L'(G) of a locally
compact group G, and the measure algebra M (2) of a locally compact
semigroup or hypergroup (2.

The Lau algebra A is called left amenable if for each two-sided Ba-
nach A-module X with a.z = u(a) x (a € A, z € X), every bounded
derivation D : A — X* is inner. The notion of left amenability for
Lau algebras was introduced by Lau [4]. In the same paper he ex-
tended several characterizations of amenable locally compact groups

MSC(2000): Primary 43A07; Secondary 46H05, 47A35.
Keywords: Lau algebra, Left amenable, Ergodic antirepresentation
Received: 17 December 2000, Revised: 6 November 2002
(© 2002 Iranian Mathematical Society.
29



30 Nasr-Isfahani

to left amenable Lau algebras; see also Ghahramani and Lau [3], Lau
[5], Lau and Wong [6], and the recent papers [7]-[10] of t he author.

In this paper, we establish a characterization of left amenable Lau
algebras. In order to find this result, we investigate some relations
between left amenability and ergodic theory.

2. Ergodic antirepresentations

Throughout, let A denote a Lau algebra and let u be the identity
of the dual W*-algebra A* of A. Also, set

P(A) ={ae A: | al=ula) =1},

and note that P;(A) is the set of all elements a in A that induce
positive functionals on A* with norm one [14], 1.5.1 and 1.5.2.

By an antirepresentation T of A on a Banach space X, we shall
mean a norm continuous map 7' : a +— T, from A into B(X), the
Banach space of all bounded operators on X, such that T}, = T,T, for
all a,b € A. In this case, we put

X N{ kernel (T, — I) : a € Pi(A)},

X, The closure of the span of U { range (T, — I) : a € P1(A)},
X, = X,+X,, and

C, = The closure of {T,(x):a € P(A)}.

Note that X, and X, are closed subspaces of X. By the strong op-
erator topology on B(X), we shall mean the locally convex topology
determined by the family {P, : € X'} of seminorms on B(X), where
P.(S) = S(z) || for all z € X and S € B(X).

We say that an antirepresentation 7" of A on a Banach space X is
ergodic if there is a net (E,),ep in B(X) such that

(&) E(T, — I) — 0 in the strong operator topology for all a €
Pl (A)>

(&) Ey(x) € Cy for all z € X and v € T

We commence with the following version of the Mean Ergodic The-
orem for Lau algebras which helps us to get a grip on these concepts.
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Theorem 2.1. Let T be an ergodic antirepresentation of A on a Ba-
nach space X with (E, )~ er satisfying (£1) and (E;). Then the following
hold:

(@) | By || T | for all 7 €T

(b) (Ey(z))er is norm convergent to an element of X, N C, for all
v € X,. In particular, E,(z) — x (resp. 0) for all v € X, (resp.
reX,).

(c) Xo =X ®X,, T,(X,) C X, forallyeT, C, C X, for all
r e X,, and E(X,) C X, for ally€T.

(d) If P : X, — X, is the projection associated with the direct sum
Xo = X ® X, then E,(x) — P(z) and X, NCy = {P(x)} for all
r € X,.

Proof. (a). This follows from (&) and the fact that || T,(x) [|<|| T ||
for all a € P;(A) and x € X with || z |[|< 1.

(b). By (&), E4(y) — 0 for all y € U{ range (T, — I) : a € Pi(A)}.
This together with (a) imply that E,(z,) — 0 for all z, € X,,.

Now let z, € X, and z, € X,, and put x = x, + x,. Then, since
E.(z,) € Cy, = {z.}, we conclude that

E. (z)=2,+ E,(z,) — x, € X, NC,.

(c). X. N X,={0} by (b), and hence X, = X,, ® X,.
Now, if a,b € P;(A) and x € X, then ba € P;(A) and

To(Ty — )(x) = (Tha — I)(2) = (Ta = I)(x) € X,

This shows that 7,(X,) C X, whence T,(X,) C X,.

Fix x € X. To prove C, C X,, let y € C,. By definition there is
a net (as) in P;(A) such that T,,(z) — y. Write z = x, + z,, where
z, € X, and z, € X,. Then since T,,(X,) C X, and X, is closed, we
have

Y— Xy = lign Tos(x — x)) = lign Tos(z,) € X,

So we have shown that C, C X, for all z € X,.

Now the last inclusion E.(X,) C X, follows from (&).

(d). The first assertion follows from (b). For the second, fix z € X,
and note that P(z) € X, NC, by (b). To prove the converse inclusion,
let y € X, NC,. Then T,,(x) — y for some net (as) in P;(A), and
therefore

y—x = lign (Toy — I)(x) € X,,.
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Consequently, P(y — z) =0 and so y = P(y) = P(x) as required. O

Theorem above is due to Day [1] and Eberlein [2] for A = L'(X) of
a locally compact group or discrete semigroup 3 (cf. [11], Chapter 5).

The second dual A** of A is a Lau algebra with the first Arens
product defined by the equations

(FOH,f)=(F.Hf), (Hfa)=(H fa), (fa,b)=(f ab)
for all F, H € A**, f € A* [4], Proposition 3.2. An element F of A**
(resp. P(A*)) is called a topological left invariant functional (resp.
mean) on A* if a® F = F for all a € P;(.A). The set of all topological

left invariant functional (resp. mean) is denoted by TLIF(A*) (resp.
TLIM(A")).

Lemma 2.2. The vector space TLIF(A*) is spanned by TLIM(A*).

Proof. Suppose that F' is a nonzero element of TLIF(A*). Then
F* € TLIF(A*), where F* denotes the adjoint of F. We therefore
may assume that F' is self-adjoint. So, there exist unique positive
functionals F'* and F~ on A* such that

F=F'—F and [ F|=[F"[+][F |
for all @ € Pi(A) [14], Theorem 1.14.3. Thus a ® F* and a ® F~ are
positive functionals on A*, and
[FI = FS N+ 1 F = (FFu) + (Fou)
= <a®F+,u>+<a®F_,u> =|la@Ft ||+ |a®F | .

This together with a ® F = a® F" —a® F~ imply that a ® F* = F*
and a ©@ F~ = F~ [14], Theorem 1.14.3. In particular, TLIM(.A*)
is nonempty because F' # 0. So, putting M+ =|| F* ||7* F* (resp.
M~ =|| F~ |7 F7) if F* # 0 (resp. F~ # 0) and choosing M
in TLIM(A*) (resp. M~ in TLIM(A*)) arbitrarily if F© = 0 (resp.

F~ =0), we see that Mt M~ € TLIM(A*) and F =| F* | M*— ||
F~|| M—. O

We are now prepared to present the main result of this paper.

Theorem 2.3. The following assertions are equivalent.

(a) A is left amenable.
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(b) Each antirepresentation of A on a Banach space is ergodic.
(c) The antirepresentation T of A on A* defined by T,(f) = fa for
alla € A and f € A*, is ergodic.

Proof. (a)=-(b). Let T be an antirepresentation of A on a Banach
space X. Since A is left amenable, there is a net (a,),er in P;(A)
such that for each a € P,(A), | aa, — a, ||— 0 [4], Theorem 4.6. So,
if we put £, =T, forall v €', then

I Ey(Ta = D) [|[=]l Taay—a., [I<IIT I I @0y = ay [|—= 0

for all a € P(A); that is (E,),er satisfies (&). The condition (&) is
also satisfied because E,(z) =T, (v) € C, forall z € X and vy € T".

(b)=(c). Clear.

(c)=(a). Let T be as in (¢). Then T,u = ua = u for all a € P;(A).
That is u € (A*),, and hence u ¢ (A*), by (c) of Theorem 2.1. Using
the Hahn-Banach Theorem, we may find a nonzero element F' of A**
such that (F,f) = 0 for all f € (A*),. Then F € TLIF(A*), and
hence there is a topological left invariant mean on A* by Lemma 2.2.
Now invoke [4, Theorem 4.1] to conclude that A is left amenable. O

Suppose that A is two-sided amenable; i.e. there is an element
M e P(A*) witha® M = M ©®a = M for all a € P;(A). Then
there is a net (a,),er in P;(A) such that

| aay —ay || + || aya —a, || = 0 forall ae P(A).

So, if we put £, =T, for all v € T, then as in the above proof £,
satisfies the conditions (&), (&), and

(&) (IT,—I)E, — 0 in the strong operator topology for all a € P;(A).

Recall from Example 1 of [4] that any commutative Lau algebras is
left (and hence two-sided) amenable; in particular, the Fourier algebra
A(G) and Fourier-Stieltjes algebra B(G) of a locally compact group G
are always two-sided amenable. Also the group algebra L'(G) (resp.
the measure algebra M (G)) is two-sided amenable if and only if it is
left amenable; see 4.1 and 4.2 of [11] or 4.19 of [12]. Therefore, two-
sided amenable Lau algebras A form a large class of Lau algebras such
that for any antirepresentation 7' of such algebras on a Banach space
X, there is a net (E,),er satisfying (£1), (&), and (&s).



34 Nasr-Isfahani

Theorem 2.1 does not give the closedness of X, in X. The following
result shows that X, is closed in X if in addition (€3) holds.

Proposition 2.4. Let T' be an ergodic antirepresentation of A on a
Banach space X with (E.)er satisfying (&1), (&2), and (E3). Then X,
is the closed subspace of X consisting of all x € X such that (Es(x))
is weakly convergent in X for some subnet (Es) of (E,).

Proof. Using (a) of Theorem 2.1, (E,(z)) is norm (and hence weakly)
convergent in X, NC, C X for all z € X,.

Now, let x € X and suppose that (Es(z)) is weakly convergent to
y € X for some subnet (Ejs) of (E,). We must show that z € X,.
Then y € C, because C,, is closed in X and Es(x) € C, for all . Also,
by (&), for each a € P(A) we have

Tu(y) = lim Tu(Bs(x) = lim [(T, — Ey(x) + Es(x)] =y

whence y € X, N C,. It follows that v = y + (z —y) € X, + X, =
X,. O

As a consequent of the above proposition, we have the following
result.

Corollary 2.5. Let T', X, and (E,) be as in the above proposition.
Then X, = X if C, is weakly compact for all x € X. In particular,
X, = X if X is reflexive.

In conclusion, Proposition 2.4 leads us to ask:

Question. Is there a Lau algebra with an ergodic antirepresentation
on a Banach space X such that X, is not closed?
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