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ERGODIC THEORETIC CHARACTERIZATION OF
LEFT AMENABLE LAU ALGEBRAS

R. NASR-ISFAHANI

Abstract. This paper deals with the notion of left amenability
for a large class of Banach algebras known as Lau algebras. It
makes a study of left amenability in the framework of ergodicity
considering the antirepresentations of a Lau algebra on a Banach
space.

1. Introduction

Recall that a Lau algebra (the same as F-algebra in Lau [4]) is a
complex Banach algebra A which is the (unique) predual of a W ∗-
algebra M and the identity element u of M is a multiplicative linear
functional on A; see Pier [13]. Note that M need not be unique
[4]. We shall identify the continuous dual A∗ with a fixed W ∗-algebra
whose identity is multiplicative on A.

Example of Lau algebras include the Fourier algebra A(G), the
Fourier-Stieltjes algebra B(G), the group algebra L1(G) of a locally
compact group G, and the measure algebra M(Ω) of a locally compact
semigroup or hypergroup Ω.

The Lau algebra A is called left amenable if for each two-sided Ba-
nach A-module X with a.x = u(a) x (a ∈ A, x ∈ X), every bounded
derivation D : A → X∗ is inner. The notion of left amenability for
Lau algebras was introduced by Lau [4]. In the same paper he ex-
tended several characterizations of amenable locally compact groups
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to left amenable Lau algebras; see also Ghahramani and Lau [3], Lau
[5], Lau and Wong [6], and the recent papers [7]-[10] of t he author.

In this paper, we establish a characterization of left amenable Lau
algebras. In order to find this result, we investigate some relations
between left amenability and ergodic theory.

2. Ergodic antirepresentations

Throughout, let A denote a Lau algebra and let u be the identity
of the dual W ∗-algebra A∗ of A. Also, set

P1(A) = {a ∈ A : ‖ a ‖= u(a) = 1},

and note that P1(A) is the set of all elements a in A that induce
positive functionals on A∗ with norm one [14], 1.5.1 and 1.5.2.

By an antirepresentation T of A on a Banach space X, we shall
mean a norm continuous map T : a 7→ Ta from A into B(X), the
Banach space of all bounded operators on X, such that Tab = TbTa for
all a, b ∈ A. In this case, we put

Xκ = ∩{ kernel (Ta − I) : a ∈ P1(A)},
Xρ = The closure of the span of ∪ { range (Ta − I) : a ∈ P1(A)},
Xσ = Xκ + Xρ, and

Cx = The closure of {Ta(x) : a ∈ P1(A)}.

Note that Xκ and Xρ are closed subspaces of X. By the strong op-
erator topology on B(X), we shall mean the locally convex topology
determined by the family {Px : x ∈ X} of seminorms on B(X), where
Px(S) =‖ S(x) ‖ for all x ∈ X and S ∈ B(X).

We say that an antirepresentation T of A on a Banach space X is
ergodic if there is a net (Eγ)γ∈Γ in B(X) such that

(E1) Eγ(Ta − I) → 0 in the strong operator topology for all a ∈
P1(A),

(E2) Eγ(x) ∈ Cx for all x ∈ X and γ ∈ Γ.

We commence with the following version of the Mean Ergodic The-
orem for Lau algebras which helps us to get a grip on these concepts.
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Theorem 2.1. Let T be an ergodic antirepresentation of A on a Ba-
nach space X with (Eγ)γ∈Γ satisfying (E1) and (E2). Then the following
hold:

(a) ‖ Eγ ‖≤‖ T ‖ for all γ ∈ Γ.
(b) (Eγ(x))γ∈Γ is norm convergent to an element of Xκ ∩Cx for all

x ∈ Xσ. In particular, Eγ(x) → x (resp. 0) for all x ∈ Xκ (resp.
x ∈ Xρ).

(c) Xσ = Xκ ⊕ Xρ, Ta(Xσ) ⊆ Xσ for all γ ∈ Γ, Cx ⊆ Xσ for all
x ∈ Xσ, and Eγ(Xσ) ⊆ Xσ for all γ ∈ Γ.

(d) If P : Xσ → Xκ is the projection associated with the direct sum
Xσ = Xκ ⊕ Xρ, then Eγ(x) → P (x) and Xκ ∩ Cx = {P (x)} for all
x ∈ Xσ.

Proof. (a). This follows from (E2) and the fact that ‖ Ta(x) ‖≤‖ T ‖
for all a ∈ P1(A) and x ∈ X with ‖ x ‖≤ 1.

(b). By (E1), Eγ(y) → 0 for all y ∈ ∪{ range (Ta − I) : a ∈ P1(A)}.
This together with (a) imply that Eγ(xρ) → 0 for all xρ ∈ Xρ.

Now let xκ ∈ Xκ and xρ ∈ Xρ, and put x = xκ + xρ. Then, since
Eγ(xκ) ∈ Cxκ = {xκ}, we conclude that

Eγ(x) = xκ + Eγ(xρ) → xκ ∈ Xκ ∩ Cx.

(c). Xκ ∩Xρ = {0} by (b), and hence Xσ = Xκ ⊕Xρ.
Now, if a, b ∈ P1(A) and x ∈ X, then ba ∈ P1(A) and

Ta(Tb − I)(x) = (Tba − I)(x)− (Ta − I)(x) ∈ Xρ.

This shows that Ta(Xρ) ⊆ Xρ whence Ta(Xσ) ⊆ Xσ.
Fix x ∈ X. To prove Cx ⊆ Xσ, let y ∈ Cx. By definition there is

a net (aδ) in P1(A) such that Taδ
(x) → y. Write x = xκ + xρ, where

xκ ∈ Xκ and xρ ∈ Xρ. Then since Taδ
(Xρ) ⊆ Xρ and Xρ is closed, we

have

y − xκ = lim
δ

Taδ
(x− xκ) = lim

δ
Taδ

(xρ) ∈ Xρ

So we have shown that Cx ⊆ Xσ for all x ∈ Xσ.
Now the last inclusion Eγ(Xσ) ⊆ Xσ follows from (E2).
(d). The first assertion follows from (b). For the second, fix x ∈ Xσ

and note that P (x) ∈ Xκ∩Cx by (b). To prove the converse inclusion,
let y ∈ Xκ ∩ Cx. Then Taδ

(x) → y for some net (aδ) in P1(A), and
therefore

y − x = lim
δ

(Taδ
− I)(x) ∈ Xρ.
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Consequently, P (y − x) = 0 and so y = P (y) = P (x) as required. 2

Theorem above is due to Day [1] and Eberlein [2] for A = L1(Σ) of
a locally compact group or discrete semigroup Σ (cf. [11], Chapter 5).

The second dual A∗∗ of A is a Lau algebra with the first Arens
product defined by the equations

〈F �H, f〉 = 〈F, Hf〉 , 〈Hf, a〉 = 〈H, fa〉 , 〈fa, b〉 = 〈f, ab〉
for all F, H ∈ A∗∗, f ∈ A∗ [4], Proposition 3.2. An element F of A∗∗

(resp. P1(A∗∗)) is called a topological left invariant functional (resp.
mean) on A∗ if a�F = F for all a ∈ P1(A). The set of all topological
left invariant functional (resp. mean) is denoted by TLIF(A∗) (resp.
TLIM(A∗)).

Lemma 2.2. The vector space TLIF(A∗) is spanned by TLIM(A∗).

Proof. Suppose that F is a nonzero element of TLIF(A∗). Then
F ∗ ∈ TLIF(A∗), where F ∗ denotes the adjoint of F . We therefore
may assume that F is self-adjoint. So, there exist unique positive
functionals F+ and F− on A∗ such that

F = F+ − F− and ‖ F ‖=‖ F+ ‖ + ‖ F− ‖
for all a ∈ P1(A) [14], Theorem 1.14.3. Thus a� F+ and a� F− are
positive functionals on A∗, and

‖ F ‖ = ‖ F+ ‖ + ‖ F− ‖=
〈
F+, u

〉
+

〈
F−, u

〉
=

〈
a� F+, u

〉
+

〈
a� F−, u

〉
=‖ a� F+ ‖ + ‖ a� F− ‖ .

This together with a�F = a�F+−a�F− imply that a�F+ = F+

and a � F− = F− [14], Theorem 1.14.3. In particular, TLIM(A∗)
is nonempty because F 6= 0. So, putting M+ =‖ F+ ‖−1 F+ (resp.
M− =‖ F− ‖−1 F−) if F+ 6= 0 (resp. F− 6= 0) and choosing M+

in TLIM(A∗) (resp. M− in TLIM(A∗)) arbitrarily if F+ = 0 (resp.
F− = 0), we see that M+, M− ∈ TLIM(A∗) and F =‖ F+ ‖ M+− ‖
F− ‖ M−. 2

We are now prepared to present the main result of this paper.

Theorem 2.3. The following assertions are equivalent.
(a) A is left amenable.
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(b) Each antirepresentation of A on a Banach space is ergodic.
(c) The antirepresentation T of A on A∗ defined by Ta(f) = fa for

all a ∈ A and f ∈ A∗, is ergodic.

Proof. (a)⇒(b). Let T be an antirepresentation of A on a Banach
space X. Since A is left amenable, there is a net (aγ)γ∈Γ in P1(A)
such that for each a ∈ P1(A), ‖ aaγ − aγ ‖→ 0 [4], Theorem 4.6. So,
if we put Eγ = Taγ for all γ ∈ Γ, then

‖ Eγ(Ta − I) ‖=‖ Taaγ−aγ ‖≤‖ T ‖ ‖ aaγ − aγ ‖→ 0

for all a ∈ P1(A); that is (Eγ)γ∈Γ satisfies (E1). The condition (E2) is
also satisfied because Eγ(x) = Taγ (x) ∈ Cx for all x ∈ X and γ ∈ Γ.

(b)⇒(c). Clear.
(c)⇒(a). Let T be as in (c). Then Tau = ua = u for all a ∈ P1(A).

That is u ∈ (A∗)κ, and hence u /∈ (A∗)ρ by (c) of Theorem 2.1. Using
the Hahn-Banach Theorem, we may find a nonzero element F of A∗∗

such that 〈F, f〉 = 0 for all f ∈ (A∗)ρ. Then F ∈ TLIF(A∗), and
hence there is a topological left invariant mean on A∗ by Lemma 2.2.
Now invoke [4, Theorem 4.1] to conclude that A is left amenable. 2

Suppose that A is two-sided amenable; i.e. there is an element
M ∈ P1(A∗∗) with a � M = M � a = M for all a ∈ P1(A). Then
there is a net (aγ)γ∈Γ in P1(A) such that

‖ aaγ − aγ ‖ + ‖ aγa− aγ ‖→ 0 for all a ∈ P1(A).

So, if we put Eγ = Taγ for all γ ∈ Γ, then as in the above proof Eγ

satisfies the conditions (E1), (E2), and

(E3) (Ta−I)Eγ → 0 in the strong operator topology for all a ∈ P1(A).

Recall from Example 1 of [4] that any commutative Lau algebras is
left (and hence two-sided) amenable; in particular, the Fourier algebra
A(G) and Fourier-Stieltjes algebra B(G) of a locally compact group G
are always two-sided amenable. Also the group algebra L1(G) (resp.
the measure algebra M(G)) is two-sided amenable if and only if it is
left amenable; see 4.1 and 4.2 of [11] or 4.19 of [12]. Therefore, two-
sided amenable Lau algebras A form a large class of Lau algebras such
that for any antirepresentation T of such algebras on a Banach space
X, there is a net (Eγ)γ∈Γ satisfying (E1), (E2), and (E3).
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Theorem 2.1 does not give the closedness of Xσ in X. The following
result shows that Xσ is closed in X if in addition (E3) holds.

Proposition 2.4. Let T be an ergodic antirepresentation of A on a
Banach space X with (Eγ)γ∈Γ satisfying (E1), (E2), and (E3). Then Xσ

is the closed subspace of X consisting of all x ∈ X such that (Eδ(x))
is weakly convergent in X for some subnet (Eδ) of (Eγ).

Proof. Using (a) of Theorem 2.1, (Eγ(x)) is norm (and hence weakly)
convergent in Xκ ∩ Cx ⊆ X for all x ∈ Xσ.

Now, let x ∈ X and suppose that (Eδ(x)) is weakly convergent to
y ∈ X for some subnet (Eδ) of (Eγ). We must show that x ∈ Xσ.
Then y ∈ Cx because Cx is closed in X and Eδ(x) ∈ Cx for all δ. Also,
by (E3), for each a ∈ P1(A) we have

Ta(y) = lim
δ

Ta(Eδ(x)) = lim
δ

[(Ta − I)Eδ(x) + Eδ(x)] = y

whence y ∈ Xκ ∩ Cx. It follows that x = y + (x − y) ∈ Xκ + Xρ =
Xσ. 2

As a consequent of the above proposition, we have the following
result.

Corollary 2.5. Let T , X, and (Eγ) be as in the above proposition.
Then Xσ = X if Cx is weakly compact for all x ∈ X. In particular,
Xσ = X if X is reflexive.

In conclusion, Proposition 2.4 leads us to ask:

Question. Is there a Lau algebra with an ergodic antirepresentation
on a Banach space X such that Xσ is not closed?
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