ON THE NILPOTENT MULTIPLIER OF A FREE PRODUCT

B. MASHAYEKHY

Abstract

In this paper, using a result of J. Burns and G. Ellis (Math. Z. 226(1997) 405-28), we prove that the c-nilpotent multiplier (the Baer-invariant with respect to the variety of nilpotent groups of class at most c, \mathcal{N}_{c}) does commute with the free product of cyclic groups of mutually coprime order.

1. Introduction and Motivation

I. Schur [12], in 1904, using projective representation theory of groups, introduced the notion of a multiplier of a finite group. It was known later that the Schur multiplier had a relation with homology and cohomology of groups. In fact, if G is a finite group, then

$$
M(G) \cong H^{2}\left(G, \mathbf{C}^{*}\right) \quad \text { and } \quad M(G) \cong H_{2}(G, \mathbf{Z})
$$

where $M(G)$ is the Schur multiplier of $G, H^{2}\left(G, \mathbf{C}^{*}\right)$ is the second cohomology of G with coefficient in \mathbf{C}^{*} and $H_{2}(G, \mathbf{Z})$ is the second internal homology of G [see 7]. In 1942, H. Hopf [6] proved that

$$
M(G) \cong H^{2}\left(G, \mathbf{C}^{*}\right) \cong \frac{R \cap F^{\prime}}{[R, F]}
$$

where G is presented as a quotient $G=F / R$ of a free group F by a normal subgroup R in F. He also proved that the above formula is independent of the presentation of G.

[^0]R. Baer [1], in 1945, using the variety of groups, generalized the notion of the Schur multiplier as follows.

Let \mathcal{V} be a variety of groups defined by the set of laws V and let G be a group with a free presentation $1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$. Then the Baer-invariant of G with respect to the variety \mathcal{V} is defined to be

$$
\mathcal{V} M(G):=\frac{R \cap V(F)}{\left[R V^{*} F\right]}
$$

where $V(F)$ is the verbal subgroup of F with respect to \mathcal{V} and

$$
\begin{gathered}
{\left[R V^{*} F\right]=<v\left(f_{1}, \ldots, f_{i-1}, f_{i} r, f_{i+1}, \ldots, f_{n}\right) v\left(f_{1}, \ldots, f_{i}, \ldots f_{n}\right)^{-1} \mid r \in R,} \\
1 \leq i \leq n, v \in V, f_{i} \in F, n \in \mathbf{N}>
\end{gathered}
$$

It is known that the Baer-invariant of a group G is always abelian and independent of the choice of the presentation of G. (See C. R. Leedham-Green and S. McKay [8], from which our notation has been taken, and H. Neumann [10] for the notion of variety of groups.) Note that if \mathcal{V} is the variety of abelian groups, \mathcal{A}, then the Baer-invariant of G will be

$$
\mathcal{A} M(G)=\frac{R \cap F^{\prime}}{[R, F]}
$$

which is the Schur multiplier of $G, M(G)$. Also if $\mathcal{V}=\mathcal{N}_{c}$ is the variety of nilpotent groups of class at most $c \geq 1$, then the Baer-invariant of the group G with respect to \mathcal{N}_{c} will be

$$
\mathcal{N}_{c} M(G)=\frac{R \cap \gamma_{c+1}(F)}{\left[R,{ }_{c} F\right]}
$$

where $\gamma_{c+1}(F)$ is the $(c+1)$-st term of the lower central series of F and $\left[R,{ }_{1} F\right]=[R, F], \quad\left[R,{ }_{c} F\right]=\left[\left[R,_{c-1} F\right], F\right]$. According to J. Burns and G. Ellis' paper [2] we shall call $\mathcal{N}_{c} M(G)$ the c-nilpotent multiplier of G and denote it by $M^{(c)}(G)$. It is easy to see that 1-nilpotent multiplier is actually the Schur multiplier.

Theorem 1.1 Let \mathcal{V} be a variety of groups, then $\mathcal{V} M(-)$ is a covariant functor from the category of all groups, \mathcal{G} roups, to the category of all abelian groups, $\mathcal{A} b$.

Proof. See [8] page 107.

Now with regards to the above theorem, we are going to concentrate on the relation between the functors, $M^{(c)}(-), c \geq 1$, and the free product as follows.

In 1952, C. Miller [9] proved that $M(G) \cong H(G)$, where $H(G)$ is the group of all commutator relations of G, taken modulo universal commutator relations. He also showed that

Theorem 1.2 (C. Miller [9]) Let G_{1} and G_{2} be two arbitrary groups, then $H\left(G_{1} * G_{2}\right) \cong H\left(G_{1}\right) \oplus H\left(G_{2}\right)$, where $G_{1} * G_{2}$ is the free product of G_{1} and G_{2}.

By the above theorem we can conclude the following corollary.
Corollary 1.3 The Schur multiplier functor, $M(-): \mathcal{G}$ roups $\longrightarrow \mathcal{A} b$, is coproduct-preserving. (Note that coproduct in \mathcal{G} roups is free product and in $\mathcal{A} b$ is direct sum.)

In view of homology and cohomology of groups, we have the following theorem.

Theorem 1.4 Let A be a G-module, then $H^{n}(-, A), H_{n}(-, A)$ are coproduct-preserving functors from \mathcal{G} roups to \mathcal{A}, for $n \geq 2$, i.e

$$
\begin{aligned}
H^{n}\left(G_{1} * G_{2}, A\right) \cong H^{n}\left(G_{1}, A\right) \oplus H^{n}\left(G_{2}, A\right) & \text { for all } n \geq 2 \\
H_{n}\left(G_{1} * G_{2}, A\right) \cong H_{n}\left(G_{1}, A\right) \oplus H_{n}\left(G_{2}, A\right) & \text { for all } n \geq 2
\end{aligned}
$$

Proof. See [5, page 220]. Note that the above theorem does also confirm that the functor

$$
M(-)=H_{2}(-, \mathbf{Z})=H^{2}\left(-, \mathbf{C}^{*}\right)
$$

is coproduct-preserving.
Now, with regards to the above theorems, it seems natural to ask whether the c-nilpotent multiplier functors $M^{(c)}(-), c \geq 2$, are coproductpreserving or not. To answer the question, first we state an important theorem of J. Burns and G. Ellis [2, Proposition 2.13 \& Erratum at http://hamilton.ucg.ie/] which is proved by a homological method.

Theorem 1.5 (J. Burns and G. Ellis [2]) Let G and H be two arbitrary groups, then there is an isomorphism

$$
M^{(2)}(G * H) \cong M^{(2)}(G) \oplus M^{(2)}(H) \oplus M(G) \otimes H^{a b} \oplus M(H) \otimes G^{a b} \oplus \operatorname{Tor}\left(G^{a b}, H^{a b}\right),
$$

where $G^{a b}=G / G^{\prime}, H^{a b}=H / H^{\prime}$ and Tor $=$ Tor $_{1}^{\mathbf{Z}}$.
Now, we are ready to show that the second nilpotent multiplier functor $M^{(2)}(-)$, is not coproduct-preserving, in general.

Example 1.6 Let $D_{\infty}=<a, b \mid a^{2}=b^{2}=1>\cong \mathbf{Z}_{2} * \mathbf{Z}_{2}$ be the infinite dihedral group. Then

$$
M^{(2)}\left(D_{\infty}\right) \not \neq M^{(2)}\left(\mathbf{Z}_{2}\right) \oplus M^{(2)}\left(\mathbf{Z}_{2}\right)
$$

Proof. By Theorem 1.5 we have

$$
M^{(2)}\left(D_{\infty}\right)=M^{(2)}\left(\mathbf{Z}_{2} * \mathbf{Z}_{2}\right)
$$

$\cong M^{(2)}\left(\mathbf{Z}_{2}\right) \oplus M^{(2)}\left(\mathbf{Z}_{2}\right) \oplus \mathbf{Z}_{2} \otimes M\left(\mathbf{Z}_{2}\right) \oplus M\left(\mathbf{Z}_{2}\right) \otimes \mathbf{Z}_{2} \oplus \operatorname{Tor}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right)$.
Clearly $M^{(2)}\left(\mathbf{Z}_{2}\right)=0=M\left(\mathbf{Z}_{2}\right)$. Also it is well-known that $\operatorname{Tor}\left(\mathbf{Z}_{2}, \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2} \otimes \mathbf{Z}_{2} \cong \mathbf{Z}_{2}$ (see [11]).
Therefore

$$
M^{(2)}\left(\mathbf{Z}_{2} * \mathbf{Z}_{2}\right) \cong \mathbf{Z}_{2}
$$

but

$$
M^{(2)}\left(\mathbf{Z}_{2}\right) \oplus M^{(2)}\left(\mathbf{Z}_{2}\right) \cong 1
$$

Hence the result holds.
In spite of the above example, using Theorem 1.5, we can show that the second nilpotent multiplier functor, $M^{(2)}(-)$, preserves the coproduct of a finite family of cyclic groups of mutually coprime order.

Corollary 1.7 Let $\left\{C_{i} \mid 1 \leq i \leq n\right\}$ be a family of cyclic groups of mutually coprime order. Then

$$
M^{(2)}\left(\prod_{i=1}^{n}{ }^{*} C_{i}\right) \cong \oplus \sum_{i=1}^{n} M^{(2)}\left(C_{i}\right)
$$

where $\prod_{i=1}^{n}{ }^{*} C_{i}$ is the free product of C_{i} 's, $1 \leq i \leq n$.
Proof. We proceed by induction on n. If $n=2$, then by Theorem 1.5 and using the fact that the Baer-invariant of any cyclic group is trivial, we have

$$
M^{(2)}\left(C_{1} * C_{2}\right) \cong \operatorname{Tor}\left(C_{1}, C_{2}\right)
$$

Since C_{1} and C_{2} are finite abelian groups with coprime order, $\operatorname{Tor}\left(C_{1}, C_{2}\right) \cong C_{1} \otimes C_{2}=1$ (see [11]).

If $n=3$, then similarly we have

$$
\begin{gathered}
M^{(2)}\left(C_{1} * C_{2} * C_{3}\right) \cong M^{(2)}\left(C_{1} * C_{2}\right) \oplus M^{(2)}\left(C_{3}\right) \oplus M^{(1)}\left(C_{1} * C_{2}\right) \otimes C_{3} \\
\oplus\left(C_{1} * C_{2}\right)^{a b} \otimes M^{(1)}\left(C_{3}\right) \oplus \operatorname{Tor}\left(\left(C_{1} * C_{2}\right)^{a b}, C_{3}\right) \\
\cong \operatorname{Tor}\left(C_{1} \oplus C_{2}, C_{3}\right) \cong\left(C_{1} \oplus C_{2}\right) \otimes C_{3} \cong\left(C_{1} \otimes C_{3}\right) \oplus\left(C_{2} \otimes C_{3}\right)=1 .
\end{gathered}
$$

Note that $M^{(2)}\left(C_{1} * C_{2}\right)=M^{(2)}\left(C_{3}\right)=M^{(1)}\left(C_{1} * C_{2}\right)=1$. By a similar procedure we can complete the induction.

2. The Main Result

In this section, we are going to generalize the above corollary to the variety of nilpotent groups of class at most c, \mathcal{N}_{c}, for all $c \geq 2$.

Notation 2.1 Let $C_{i}=<x_{i} \mid x_{i}^{r_{i}}>\cong \mathbf{Z}_{r_{i}}$ be cyclic group of order $r_{i}, 1 \leq i \leq t$ such that $\left(r_{i}, r_{j}\right)=1$ for all $i \neq j$. Put $C=\prod_{i=1}^{t}{ }^{*} C_{i}$, the free product of C_{i} 's, $1 \leq i \leq t, F=\prod_{i=1}^{t}{ }^{*} F_{i}$, where F_{i} is the free group on $\left\{x_{i}\right\}, 1 \leq i \leq t$, and $S=<x_{i}^{r_{i}} \mid 1 \leq i \leq t>^{F}$, the normal closure of $\left\{x_{i}^{r_{i}} \mid 1 \leq i \leq t\right\}$ in F. Note that F is free on $\left\{x_{1}, \ldots x_{t}\right\}$. It is easy to see that the following sequence is exact:

$$
1 \longrightarrow S \xrightarrow{\subseteq} F \xrightarrow{\text { nat }} C \longrightarrow 1
$$

Define by induction $\rho_{1}(S)=S, \rho_{n+1}(S)=\left[\rho_{n}(S), F\right]$. Now by Theorems 1.2 and 1.5 , we have the following corollary.

Corollary 2.2 By the above notation and assumption, we have
(i) $S \cap \gamma_{2}(F)=\rho_{2}(S)$.
(ii) $S \cap \gamma_{3}(F)=\rho_{3}(S)$ and hence $\rho_{2}(S) \cap \gamma_{3}(F)=\rho_{3}(S)$.

Proof. (i) By Corollary 1.3 $M(C)=M\left(\prod_{i=1}^{t}{ }^{*} C_{i}\right) \cong \oplus \sum_{i=1}^{t} M\left(C_{i}\right)=$ 1. On the other hand, $M(C) \cong S \cap \gamma_{2}(F) /[S, F]$. Thus $S \cap \gamma_{2}(F) /[S, F]$ $=1$ and so $S \cap \gamma_{2}(F)=[S, F]=\rho_{2}(S)$.
(ii) By Corollary $1.7 M^{(2)}(C)=M^{(2)}\left(\prod_{i=1}^{t}{ }^{*} C_{i}\right) \cong \oplus \sum_{i=1}^{t} M^{(2)}\left(C_{i}\right)=$ 1. Also by definition $M^{(2)}(C) \cong S \cap \gamma_{3}(F) /\left[S,_{2} F\right]$, so $S \cap \gamma_{3}(F)=$ $\left[S,{ }_{2} F\right]=\rho_{3}(S)$. Moreover $\rho_{3}(S) \subseteq \rho_{2}(S) \cap \gamma_{3}(F) \subseteq S \cap \gamma_{3}(F)=\rho_{3}(S)$ and hence $\rho_{2}(S) \cap \gamma_{3}(F)=\rho_{3}(S)$.
Now we consider the following two technical lemmas.
Lemma 2.3 By the Notation $2.1 \rho_{n}(S) \cap \gamma_{n+1}(F)=\rho_{n+1}(S)$, for all $n \geq 1$.

Proof. We proceed by induction on n. The assertion holds for $n=$ 1,2 , by Corollary 2.2.
Now in order to avoid a lot of commutator manipulations, we prove the result for $n=3$ in the special case $t=2$. Put $x=x_{1}, y=$ $x_{2}, r=r_{1}, s=r_{2}$. So F is free on $\{x, y\}$ and $S=<x^{r}, y^{s}>^{F}$.
Let g be a generator of $\rho_{3}(S)$, then
$g=\left[\left(x^{r}\right)^{a_{1}}, y^{a_{2}}, x^{a_{3}}\right]$ or $\left[\left(x^{r}\right)^{a_{1}}, y^{a_{2}}, y^{a_{3}}\right]$ or $\left[\left(y^{s}\right)^{a_{1}}, x^{a_{2}}, y^{a_{3}}\right]$ or $\left[\left(y^{s}\right), x^{a_{2}}, x^{a_{3}}\right]$, where $a_{i} \in \mathbf{Z}$. Clearly modulo $\rho_{4}(S)$ we have $g \equiv\left[x^{r}, y, x\right]^{\alpha}$ or $\left[x^{r}, y, y\right]^{\alpha}$ or $\left[y^{s}, x, y\right]^{\alpha}$ or $\left[y^{s}, x, x\right]^{\alpha}$, where $\alpha \in \mathbf{Z}$. Now, let $z \in \rho_{3}(S) \cap \gamma_{4}(F)$, then $z \in \rho_{3}(S)$. By the above fact and using a collecting process similar to basic commutators (see [3]) we can obtain the following congruence modulo $\rho_{4}(S)$

$$
\begin{gathered}
z \equiv\left[y^{s}, x, y\right]^{\alpha_{1}}\left[y, x^{r}, y\right]^{\beta_{1}}\left[y^{s}, x, x\right]^{\alpha_{2}}\left[y, x^{r}, x\right]^{\beta_{2}} \\
\equiv[y, x, y]^{s \alpha_{1}+r \beta_{1}}[y, x, x]^{s \alpha_{2}+r \beta_{2}}\left(\bmod \gamma_{4}(F)\right), \text { where } \alpha_{i}, \beta_{i} \in \mathbf{Z} .
\end{gathered}
$$

Note that we consider the order on $\{x, y\}$ as $x<y$.
Since $z \in \rho_{3}(S) \cap \gamma_{4}(F)$ and $\rho_{4}(S) \subseteq \gamma_{4}(F)$, we have

$$
[y, x, y]^{s \alpha_{1}+r \beta_{1}}[y, x, x]^{s \alpha_{2}+r \beta_{2}} \in \gamma_{4}(F) .
$$

It is a well-known fact, by P. Hall [3, 4], that $\gamma_{3}(F) / \gamma_{4}(F)$ is the free abelian group on $\{[y, x, y],[y, x, x]\}$. Therefore we conclude that $s \alpha_{i}+r \beta_{i}=0$, for $i=1,2$.
By a routine commutator calculation we have

$$
\begin{gather*}
{\left[y^{s}, x, y\right]^{\alpha_{1}}\left[y, x^{r}, y\right]^{\beta_{1}} \equiv\left[\left[y^{s}, x\right]^{\alpha_{1}}\left[y, x^{r}\right]^{\beta_{1}}, y\right] \quad\left(\bmod \rho_{4}(S)\right)} \\
{\left[y^{s}, x, x\right]^{\alpha_{2}}\left[y, x^{r}, x\right]^{\beta_{2}} \equiv\left[\left[y^{s}, x\right]^{\alpha_{2}}\left[y, x^{r}\right]^{\beta_{2}}, x\right] \quad\left(\bmod \rho_{4}(S)\right) .} \tag{*}
\end{gather*}
$$

Also

$$
[y, x]^{s \alpha_{i}+r \beta_{i}} \equiv\left[y^{s}, x\right]^{\alpha_{i}}\left[y, x^{r}\right]^{\beta_{i}} \in \rho_{2}(S), \text { for } i=1,2\left(\bmod \gamma_{3}(F)\right)
$$

since $s \alpha_{i}+r \beta_{i}=0, i=1,2$, we have

$$
\left[y^{s}, x\right]^{\alpha_{i}}\left[y, x^{r}\right]^{\beta_{i}} \in \rho_{2}(S) \cap \gamma_{3}(F), \text { for } i=1,2 .
$$

By corollary 2.2 (ii) $\rho_{2}(S) \cap \gamma_{3}(F)=\rho_{3}(S)$, thus

$$
\left[y^{s}, x\right]^{\alpha_{i}}\left[y, x^{r}\right]^{\beta_{i}} \in \rho_{3}(S), \text { for } i=1,2 .
$$

Therefore by $(*)$

$$
\left[y^{s}, x, y\right]^{\alpha_{1}}\left[y, x^{r}, y\right]^{\beta_{1}} \quad, \quad\left[y^{s}, x, x\right]^{\alpha_{2}}\left[y, x^{r}, x\right]^{\beta_{2}} \in \rho_{4}(S) .
$$

Hence $z \in \rho_{4}(S)$, and then $\rho_{3}(S) \cap \gamma_{4}(F)=\rho_{4}(S)$.
Note that by a similar method we can obtain the result for n, using induction hypothesis.

Lemma 2.4 By the above notation and assumption, $S \cap \gamma_{n}(F)=$ $\rho_{n}(S)$, for all $n \geq 1$.

Proof. We proceed by induction on n. For $n=1,2$ Corollary 2.2 gives the result. Now, suppose $S \cap \gamma_{n}(F)=\rho(S)$ for a natural number n. We show that $S \cap \gamma_{n+1}(F)=\rho_{n+1}(S)$.
Clearly $\rho_{n+1}(S) \subseteq S \cap \gamma_{n+1}(F)$, also $S \cap \gamma_{n+1}(F) \subseteq S \cap \gamma_{n}(F)=\rho_{n}(S)$, by induction hypothesis. Therefore by Lemma 2.3

$$
\rho_{n+1}(S) \subseteq S \cap \gamma_{n+1}(F) \subseteq \rho_{n}(S) \cap \gamma_{n+1}(F)=\rho_{n+1}(S)
$$

Hence the result holds.
Now, we are ready to show that the c-nilpotent multiplier functors, $\mathcal{N}_{c} M(-)$, preserve the coproduct of cyclic groups of mutually coprime order, for all $c \geq 1$.

Theorem 2.5 By the above notation and assumption,

$$
M^{(c)}\left(\prod_{i=1}^{t} C_{i}\right) \cong \oplus \sum_{i=1}^{t} M^{(c)}\left(C_{i}\right)=1, \text { for all } c \geq 1 .
$$

Proof. By Lemma 2.4 and the definition of c-nilpotent multiplier, we have

$$
M^{(c)}\left(\prod_{i=1}^{t} C_{i}\right)=\frac{S \cap \gamma_{c+1}(F)}{\left[S,_{c} F\right]}=\frac{S \cap \gamma_{c+1}(F)}{\rho_{c+1}(S)}=1, \text { for all } c \geq 1 .
$$

On the other hand, since C_{i} 's are cyclic, $M^{(c)}\left(C_{i}\right)=1$, so $\oplus \sum_{i=1}^{t} \mathcal{N}_{c} M\left(C_{i}\right)$ $=1$, for all $c \geq 1$. Hence the result holds.

Remark. In [2] it can be found some relations between the c-nilpotent multiplier and the c-isoclinism theory of P . Hall and also the notion of c-capable groups. Moreover, one may find in [2, page 423] a topological and also a homological interpretation of the c-nilpotent multiplier. Thus our result, Theorem 2.5, can be expressed and used in the above mentioned areas.

References

[1] R. Baer, Representations of groups as quotient groups, I-III Trans. Amer. Math. Soc. 58 (1945), 295-419.
[2] J. Burns and G. Ellis, On the nilpotent multipliers of a group. Math. Z. 226 (1997), 405-28 (Erratum at G. Ellis' homepage http://hamilton.ucg.ie/).
[3] M. Hall, The Theory of Groups, Macmillan, New York 1959.
[4] P. Hall, Nilpotent Groups. Canad. Math. Congress, Univ. of Alberta 1957. Queen Mary College Math. Notes, London 1970.
[5] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, G.T.M. Vol. 4 Springer-Verlag, 1971.
[6] H. Hopf, Fundamental gruppe und zweite bettische gruppe, Comment. Math. Helvetici 14 (1942), 257-309.
[7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Vol. 2, Oxford Univ. Press, London, 1987.
[8] C. R. Leedham-Green and S. McKay, Baer-invariant, isologism, varietal laws and homology, Acta Math. 137 (1976), 99-150.
[9] C. Miller, The second homology group of a group; relation among commutators, Proc. Amer. Math. Soc. 3 (1952), 588-95.
[10] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin, 1967.
[11] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.
[12] I. Schur, Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.

Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran

E-mail: mashaf@math.um.ac.ir
and
Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

```
e-mail: bmashayekhyf@yahoo.com
```


[^0]: This research was in part supported by a grant from IPM. MSC(2000): Primary 20E06; Secondary 20F12, 20J10
 Keywords: Nilpotent multiplier, Baer-invariant, Free product Received:15 June 2001, Revised:8 December 2002
 (C) 2002 Iranian Mathematical Society.

