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ON THE NILPOTENT MULTIPLIER OF A FREE
PRODUCT

B. MASHAYEKHY

Abstract. In this paper, using a result of J. Burns and G. Ellis
(Math. Z. 226(1997) 405-28), we prove that the c-nilpotent mul-
tiplier (the Baer-invariant with respect to the variety of nilpotent
groups of class at most c, Nc) does commute with the free product
of cyclic groups of mutually coprime order.

1. Introduction and Motivation

I. Schur [12], in 1904, using projective representation theory of
groups, introduced the notion of a multiplier of a finite group. It was
known later that the Schur multiplier had a relation with homology
and cohomology of groups. In fact, if G is a finite group, then

M(G) ∼= H2(G,C∗) and M(G) ∼= H2(G,Z) ,

where M(G) is the Schur multiplier of G, H2(G,C∗) is the second
cohomology of G with coefficient in C∗ and H2(G,Z) is the second
internal homology of G [see 7]. In 1942, H. Hopf [6] proved that

M(G) ∼= H2(G,C∗) ∼=
R ∩ F ′

[R,F ]
,

where G is presented as a quotient G = F/R of a free group F by a
normal subgroup R in F . He also proved that the above formula is
independent of the presentation of G.
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R. Baer [1], in 1945, using the variety of groups, generalized the
notion of the Schur multiplier as follows.

Let V be a variety of groups defined by the set of laws V and let
G be a group with a free presentation 1 −→ R −→ F −→ G −→ 1.
Then the Baer-invariant of G with respect to the variety V is defined
to be

VM(G) :=
R ∩ V (F )

[RV ∗F ]
,

where V (F ) is the verbal subgroup of F with respect to V and

[RV ∗F ] =< v(f1, . . . , fi−1, fir, fi+1, . . . , fn)v(f1, . . . , fi, . . . fn)−1 | r ∈ R,

1 ≤ i ≤ n, v ∈ V, fi ∈ F, n ∈ N > .

It is known that the Baer-invariant of a group G is always abelian
and independent of the choice of the presentation of G. (See C. R.
Leedham-Green and S. McKay [8], from which our notation has been
taken, and H. Neumann [10] for the notion of variety of groups.) Note
that if V is the variety of abelian groups, A, then the Baer-invariant
of G will be

AM(G) =
R ∩ F ′

[R,F ]
,

which is the Schur multiplier of G, M(G). Also if V = Nc is the variety
of nilpotent groups of class at most c ≥ 1, then the Baer-invariant of
the group G with respect to Nc will be

NcM(G) =
R ∩ γc+1(F )

[R, cF ]
,

where γc+1(F ) is the (c+1)-st term of the lower central series of F and
[R,1 F ] = [R,F ] , [R,c F ] = [[R,c−1 F ], F ]. According to J. Burns and
G. Ellis’ paper [2] we shall call NcM(G) the c-nilpotent multiplier of G
and denote it by M (c)(G). It is easy to see that 1-nilpotent multiplier
is actually the Schur multiplier.

Theorem 1.1 Let V be a variety of groups, then VM(−) is a covari-
ant functor from the category of all groups, Groups, to the category of
all abelian groups, Ab.

Proof. See [8] page 107.
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Now with regards to the above theorem, we are going to concentrate
on the relation between the functors, M (c)(−), c ≥ 1, and the free
product as follows.

In 1952, C. Miller [9] proved that M(G) ∼= H(G), where H(G) is
the group of all commutator relations of G, taken modulo universal
commutator relations. He also showed that

Theorem 1.2 (C. Miller [9]) Let G1 and G2 be two arbitrary groups,
then H(G1 ∗G2) ∼= H(G1)⊕H(G2), where G1 ∗G2 is the free product
of G1 and G2.

By the above theorem we can conclude the following corollary.

Corollary 1.3 The Schur multiplier functor, M(−) : Groups −→ Ab,
is coproduct-preserving. (Note that coproduct in Groups is free product
and in Ab is direct sum.)

In view of homology and cohomology of groups, we have the follow-
ing theorem.

Theorem 1.4 Let A be a G-module, then Hn(−, A) , Hn(−, A) are
coproduct-preserving functors from Groups to Ab, for n ≥ 2, i.e

Hn(G1 ∗G2, A) ∼= Hn(G1, A)⊕Hn(G2, A) for all n ≥ 2 ,

Hn(G1 ∗G2, A) ∼= Hn(G1, A)⊕Hn(G2, A) for all n ≥ 2 .

Proof. See [5, page 220]. Note that the above theorem does also
confirm that the functor

M(−) = H2(−,Z) = H2(−,C∗) ,

is coproduct-preserving.
Now, with regards to the above theorems, it seems natural to ask
whether the c-nilpotent multiplier functors M (c)(−), c ≥ 2, are coproduct-
preserving or not. To answer the question, first we state an important
theorem of J. Burns and G. Ellis [2, Proposition 2.13 & Erratum at
http://hamilton.ucg.ie/] which is proved by a homological method.

Theorem 1.5 (J. Burns and G. Ellis [2]) Let G and H be two arbitrary
groups, then there is an isomorphism

M (2)(G∗H) ∼= M (2)(G)⊕M (2)(H)⊕M(G)⊗Hab⊕M(H)⊗Gab⊕Tor(Gab,Hab) ,
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where Gab = G/G′, Hab = H/H ′ and Tor = TorZ
1 .

Now, we are ready to show that the second nilpotent multiplier functor
M (2)(−), is not coproduct-preserving, in general.

Example 1.6 Let D∞ =< a, b|a2 = b2 = 1 >∼= Z2 ∗Z2 be the infinite
dihedral group. Then

M (2)(D∞) 6∼= M (2)(Z2)⊕M (2)(Z2) .

Proof. By Theorem 1.5 we have

M (2)(D∞) = M (2)(Z2 ∗ Z2)

∼= M (2)(Z2)⊕M (2)(Z2)⊕ Z2 ⊗M(Z2)⊕M(Z2)⊗ Z2 ⊕ Tor(Z2,Z2) .

Clearly M (2)(Z2) = 0 = M(Z2) . Also it is well-known that
Tor(Z2,Z2) ∼= Z2 ⊗ Z2

∼= Z2 (see [11]).
Therefore

M (2)(Z2 ∗ Z2) ∼= Z2 ,

but

M (2)(Z2)⊕M (2)(Z2) ∼= 1 .

Hence the result holds. 2

In spite of the above example, using Theorem 1.5, we can show
that the second nilpotent multiplier functor, M (2)(−), preserves the
coproduct of a finite family of cyclic groups of mutually coprime order.

Corollary 1.7 Let {Ci|1 ≤ i ≤ n} be a family of cyclic groups of
mutually coprime order. Then

M (2)(
n∏

i=1

∗Ci) ∼= ⊕
n∑

i=1

M (2)(Ci) ,

where
∏n

i=1
∗Ci is the free product of Ci’s, 1 ≤ i ≤ n.

Proof. We proceed by induction on n. If n = 2, then by Theorem
1.5 and using the fact that the Baer-invariant of any cyclic group is
trivial, we have

M (2)(C1 ∗ C2) ∼= Tor(C1, C2) .

Since C1 and C2 are finite abelian groups with coprime order,
Tor(C1, C2) ∼= C1 ⊗ C2 = 1 (see [11]).
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If n = 3, then similarly we have

M (2)(C1 ∗ C2 ∗ C3) ∼= M (2)(C1 ∗ C2)⊕M (2)(C3)⊕M (1)(C1 ∗ C2)⊗ C3

⊕(C1 ∗ C2)
ab ⊗M (1)(C3)⊕ Tor((C1 ∗ C2)

ab, C3)
∼= Tor(C1 ⊕ C2, C3) ∼= (C1 ⊕ C2)⊗ C3

∼= (C1 ⊗ C3)⊕ (C2 ⊗ C3) = 1 .

Note that M (2)(C1∗C2) = M (2)(C3) = M (1)(C1∗C2) = 1. By a similar
procedure we can complete the induction. 2

2. The Main Result

In this section, we are going to generalize the above corollary to the
variety of nilpotent groups of class at most c, Nc, for all c ≥ 2.

Notation 2.1 Let Ci =< xi|xri
i >∼= Zri

be cyclic group of order
ri , 1 ≤ i ≤ t such that (ri, rj) = 1 for all i 6= j. Put C =

∏t
i=1

∗Ci,
the free product of Ci’s, 1 ≤ i ≤ t, F =

∏t
i=1

∗Fi, where Fi is the free
group on {xi}, 1 ≤ i ≤ t, and S =< xri

i |1 ≤ i ≤ t >F , the normal
closure of {xri

i |1 ≤ i ≤ t} in F . Note that F is free on {x1, . . . xt}. It
is easy to see that the following sequence is exact:

1 −→ S
⊆−→ F

nat−→ C −→ 1 .

Define by induction ρ1(S) = S , ρn+1(S) = [ρn(S), F ]. Now by Theo-
rems 1.2 and 1.5, we have the following corollary.

Corollary 2.2 By the above notation and assumption, we have
(i) S ∩ γ2(F ) = ρ2(S).
(ii) S ∩ γ3(F ) = ρ3(S) and hence ρ2(S) ∩ γ3(F ) = ρ3(S).

Proof. (i) By Corollary 1.3 M(C) = M(
∏t

i=1
∗Ci) ∼= ⊕∑t

i=1 M(Ci) =
1. On the other hand, M(C) ∼= S∩γ2(F )/[S, F ]. Thus S∩γ2(F )/[S, F ]
= 1 and so S ∩ γ2(F ) = [S, F ] = ρ2(S).
(ii) By Corollary 1.7 M (2)(C) = M (2)(

∏t
i=1

∗Ci) ∼= ⊕∑t
i=1 M (2)(Ci) =

1. Also by definition M (2)(C) ∼= S ∩ γ3(F )/[S,2 F ], so S ∩ γ3(F ) =
[S,2 F ] = ρ3(S). Moreover ρ3(S) ⊆ ρ2(S)∩γ3(F ) ⊆ S∩γ3(F ) = ρ3(S)
and hence ρ2(S) ∩ γ3(F ) = ρ3(S). 2

Now we consider the following two technical lemmas.

Lemma 2.3 By the Notation 2.1 ρn(S) ∩ γn+1(F ) = ρn+1(S), for all
n ≥ 1.
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Proof. We proceed by induction on n. The assertion holds for n =
1, 2, by Corollary 2.2.
Now in order to avoid a lot of commutator manipulations, we prove
the result for n = 3 in the special case t = 2. Put x = x1 , y =
x2 , r = r1 , s = r2. So F is free on {x, y} and S =< xr, ys >F .
Let g be a generator of ρ3(S), then

g = [(xr)a1 , ya2 , xa3 ] or [(xr)a1 , ya2 , ya3 ] or [(ys)a1 , xa2 , ya3 ] or [(ys), xa2 , xa3 ] ,

where ai ∈ Z. Clearly modulo ρ4(S) we have

g ≡ [xr, y, x]α or [xr, y, y]α or [ys, x, y]α or [ys, x, x]α , where α ∈ Z .

Now, let z ∈ ρ3(S) ∩ γ4(F ), then z ∈ ρ3(S). By the above fact and
using a collecting process similar to basic commutators (see [3]) we
can obtain the following congruence modulo ρ4(S)

z ≡ [ys, x, y]α1 [y, xr, y]β1 [ys, x, x]α2 [y, xr, x]β2

≡ [y, x, y]sα1+rβ1 [y, x, x]sα2+rβ2 (mod γ4(F )), where αi, βi ∈ Z .

Note that we consider the order on {x, y} as x < y.
Since z ∈ ρ3(S) ∩ γ4(F ) and ρ4(S) ⊆ γ4(F ), we have

[y, x, y]sα1+rβ1 [y, x, x]sα2+rβ2 ∈ γ4(F ) .

It is a well-known fact, by P. Hall [3, 4], that γ3(F )/γ4(F ) is the
free abelian group on {[y, x, y], [y, x, x]}. Therefore we conclude that
sαi + rβi = 0, for i = 1, 2.
By a routine commutator calculation we have

[ys, x, y]α1 [y, xr, y]β1 ≡ [[ys, x]α1 [y, xr]β1 , y] (mod ρ4(S))

[ys, x, x]α2 [y, xr, x]β2 ≡ [[ys, x]α2 [y, xr]β2 , x] (mod ρ4(S)). (∗)
Also

[y, x]sαi+rβi ≡ [ys, x]αi [y, xr]βi ∈ ρ2(S) , for i = 1, 2 (modγ3(F )).

since sαi + rβi = 0 , i = 1, 2, we have

[ys, x]αi [y, xr]βi ∈ ρ2(S) ∩ γ3(F ) , for i = 1, 2 .

By corollary 2.2 (ii) ρ2(S) ∩ γ3(F ) = ρ3(S), thus

[ys, x]αi [y, xr]βi ∈ ρ3(S) , for i = 1, 2 .

Therefore by (∗)

[ys, x, y]α1 [y, xr, y]β1 , [ys, x, x]α2 [y, xr, x]β2 ∈ ρ4(S).
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Hence z ∈ ρ4(S), and then ρ3(S) ∩ γ4(F ) = ρ4(S).
Note that by a similar method we can obtain the result for n, using
induction hypothesis. 2

Lemma 2.4 By the above notation and assumption, S ∩ γn(F ) =
ρn(S), for all n ≥ 1.

Proof. We proceed by induction on n. For n = 1, 2 Corollary 2.2
gives the result. Now, suppose S∩γn(F ) = ρ(S) for a natural number
n. We show that S ∩ γn+1(F ) = ρn+1(S).
Clearly ρn+1(S) ⊆ S∩γn+1(F ), also S∩γn+1(F ) ⊆ S∩γn(F ) = ρn(S),
by induction hypothesis. Therefore by Lemma 2.3

ρn+1(S) ⊆ S ∩ γn+1(F ) ⊆ ρn(S) ∩ γn+1(F ) = ρn+1(S).

Hence the result holds.2
Now, we are ready to show that the c-nilpotent multiplier functors,
NcM(−), preserve the coproduct of cyclic groups of mutually coprime
order, for all c ≥ 1.

Theorem 2.5 By the above notation and assumption,

M (c)(
t∏

i=1

∗Ci) ∼= ⊕
t∑

i=1

M (c)(Ci) = 1 , for all c ≥ 1.

Proof. By Lemma 2.4 and the definition of c-nilpotent multiplier, we
have

M (c)(
t∏

i=1

∗Ci) =
S ∩ γc+1(F )

[S,c F ]
=

S ∩ γc+1(F )
ρc+1(S)

= 1 , for all c ≥ 1 .

On the other hand, since Ci’s are cyclic, M (c)(Ci) = 1, so ⊕
∑t

i=1NcM(Ci)
= 1, for all c ≥ 1. Hence the result holds. 2

Remark. In [2] it can be found some relations between the c-nilpotent
multiplier and the c-isoclinism theory of P. Hall and also the notion of
c-capable groups. Moreover, one may find in [2, page 423] a topological
and also a homological interpretation of the c-nilpotent multiplier.
Thus our result, Theorem 2.5, can be expressed and used in the above
mentioned areas.
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