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Introduction.

As it is known, in solving many applied problems, usually there appears
the necessity of finding the solution of the Cauchy problem for the ordi-
nary differential equations. For this aim either one or multi-step meth-
ods or their combinations are used. One of the basic questions for their
using is in determination of their accuracy. This question is answered in
the work of N.S.Bakhvalov, for the explicit stable k-step method with
the constant coefficients for k& < 10 (see [1]) and in Dahlquist’s work for
the implicit stable k-step method with the constant coefficients and for
the stable explicit method, when k is arbitrary. As k-step method is
applied to the numerical solution of the first order ODE, but for the nu-
merical solution of ODE of second order usually it is used k-step method
with the second derivative. The maximal accuracy of the stable k-step
method with the second derivative is determined in [3]. This result was
obtained in [4] by different ways. Note that the k-step methode with
the second derivative, as the numerical method for the solution of the

ODE is investigated by many authors (see, for example [5], [6]).

Works, devoted to the numerical solution of ODE of orders more
than 2 are considerably few. So the k-step Obrechkoff’s method which
can be used, as the numerical method for solving any order ODE is

investigated here.

The k-step Obrechkoff’s method with the constant coefficients may

be written as:
k r ) k ) )
Zaiyn+i = Zh] Zﬁy)%ﬁi- (1)
i=0 ji=1 =0

This method for r = 2 was investigated in [7] and maximal value of the
degree for the A-stable methods is found there. It is evident that the

method (1) can be applied for determination of numerical solution of
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the problem:

(v) (2)

y(i):f<x7y7y’,,,,,y(j_1)), (j:l,?,...,T),
(v=1,...,5-1).

y(%) = ymy(v)(%) = yov

It is easy to show, that if 7 > 1, then for determination of the
numerical solution of the problem (2), any method of the type (1) can
be used and in this case it is necessary to define the solution of the system
of the difference equations (hence using some methods for the calculation
y(z),y"(x),...,y9"Y(z) on the point z,,(m > 0)). Convergence and
effectiveness of such methods are investigated in [8].

In order to determine the maximal accuracy of the stable method,
which is obtained from (1) all over again, one can define the maximal

accuracy of the method (1), regardless of its stability.

1. The maximal value of the degree of the k-step Obrechkoff’s
method.

Usually the concept of the accuracy of a multistep method is concerned

with the concept of its order.

Definition 1. The method (1) is said to have the degree p, if for

any smooth function y(z),

aiy(z +ih) = S W BTy D@ + hi)| = O(h*Y), h— 0.
=0 i=t (1.1)

It is not difficult to define, that the maximal order of the accuracy for
the method (1), coincides with the maximal value of its degree p (see,
for exam. [2], [3]). Therefore we shall make busy ourselves with the
determination of the maximal value of the degree p, both for stability
and for nonstability method, which is received from (1). Consider the

next lemma.
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Lemma. Let y(z) be a sufficiently smooth function. Then for im-

plementing relation (1.1), the necessary and sufficient condition is the

ollowing:
J g
{Zf:o a; =0 ; Zf 0 & — Z] 122 0 (]Z] 1)vﬁ(v+1_]) , (v=1,...,7),
k _ irt! () _
Zz 0 (T+l)' Z] 1 ZZ 0 (T+l ])vﬁ'] ’ (l - 17 <oy P T)' (1‘2)

For the proof of this lemma, it is suflicient to use the following ex-

pansions in (1.1)

ya + i) = y@)+ 3 P00y 4oy,

1
p .

(])($_|_Zh _y(y) _|_Z( (v-l-]) )—|—O(h”‘j+1)), (j=1,2,...,p)
v=1

and linear independence of the system 1,h,h%, ..., A",

The number of equations in (1.2) is equal to p + 1, but the number
of unknowns is equal to (r + 1)(k+ 1). In order for the system (1.2) to
have the non-trivial solution, it must be p+ 1 < rk +r+ k + 1. Hence,
p<r(k+1)+k—1. From here it follows that pp., = r(k+1)+k — 1.

But the methods with the maximal orders usually are nonstable.

Definition 2. The formula (1) is called stable, if the modulus of

roots of the polynomial
k
= Z a; N
i=0

does not exceed 1, and that the roots of modulus 1 (one) are simple.

The method is called stable, if the corresponding formula is stable.

Prior to defining the maximal value of the degree for the stable
method, which is received from (1), we shall consider the natural condi-
tions, that we put on coefficients of the formula (1). Suppose that the
coefficients of the formula (1) satisfy the following assumptions every-

where.
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A. The coefficients ai,ﬁy) (i=0,...,k;j=1,...,7) are real and
'y # 0.

B. The characteristic polynomials p(A) and

k

s(N) =S B0N, (j=1,...,r)

14
i=0

have no common factor.

C. The degree of formula (1) satisfies the condition p > r and
v (1) #0,if 14(1) =---=1,_1(1) = 0, otherwise (1) # 0 and
pzr.

The necessity of the condition A is evident. Consider, the proof of
the necessity of the assumptions B.
Assume that the polynomials v;(A) and p(A) have a common factor,

degree of which is not less than 1 (one). Then we can write
V(E) (p"(E)ya = Y_ Wi (E)yi)) =0, (1.3)
j=1

where p(A) = P(A)p"(A); v(A) = v(A)wi(A), (j=1,...,7), but Eis
the operator defined by

FEy, = Ynq1 OT Ey(w) = y($ + h)

From (1.3) we have
PEyn =3 W (E)S. (1.4)
j=1

It follows from here, that the formula (1) as a difference equation
with the order k is equivalent to the difference (1.4) with the order
ki, where ky < k, i.e. to the difference equation with the lower order.
Consequently, for the determination of unique solution of the difference

equation (1), it is sufficient to assign the initial values on the first k;
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points. But, as it is known, in this case the solution of difference equation
of order k > k¢, will be nonunique. The contradiction, which has been
obtained, demonstrates the necessity of the condition B.

Now let us prove the necessity of the condition C. Suppose, that the
method which is determined by the formula (1) is convergent. Then we

can write
|Ynti — y(x)] — 0 when h — 0 (& = o + nh), (1.5)

here y(x) is exact and y, is approximate values of the solution of problem
(2), calculated by the method, which is determined from the formula (1).
If we substitute (1.5) in (1), then we will have

sl | X el <2 foul + OCh), (16)

Taking this into account y(z) # 0 and going over to the limit in
(1.6) when h — 0, we obtain: p(1) = 0. From the p(1) = 0 we can write
p(A) = (A =1)p'(A). Then from (1) we receive

§/(E) (o1 — 0i) — hn(E)yl = O(h?). (L.7)

Summarizing (1.7) over 7 from 0 to n, we have

PE) s — ) = 1 (E)S ol + O(h). (1.8)

i=0

Put F, = 3 hy; and consider y,y; — y(2), yi — y(o).

=0
Foy —>/ y'(s)ds (i=0,1,....k).

Hence

Consequently p'(1) = v4(1).
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For ¢»(A) = 1 taking into account in the correlation (1.3)

p(A) = p(1)+p' (A -1)+ %,0”(1)(A -7+ 0(A-1)),
ri(A) =n(1)+ (DA = 1)+ O((A = 1)%),
va(A) = 15(1) + O(A = 1).

1

. h
and p(1) =0, p'(1) = 11(1), and also % =y + % + O(h*) we

can write

%p//(l) (yi+2 —Yin Yiv1 — Yi

L B 2 1) — o) — b (sa(0) = 50 ) o = 00,
Hence
(0L = 9 = 241 (sLas = ) = h{20n(1) = (D) + 5" (Dot = o) = O,

Summing up the last correlation over ¢ from 0 to n, we obtain

(p"(1) = 20y () (wiyy — wh) = (20a(1) — 11 ( Zhyz — —,0 YW1 — o)+ O(h).
(1.10)

Going over to the limit in (1.10), when A — 0, we have
(1) =20 () (2) = 1) = (2e1) = (1)) [ 9(5)ds. (1.11)
Hence
p'(1) = 20(1) + 205(1) — 1 (1). (1.12)

Taking into account that p’(1) = v1(1), the correlation (1.12) can be

written in the next form:

p(1) 4 /(1) = 20,(1) + 20(1). (1.13)
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Using the expansion

PN = p(1)+ p(DA = 1)+ 3" (DA = 1)+ 29" (1= 1P+ O((A = 1)),

(M) = (D) +ur (A -1)+ %Vi’(l)(A D+ 0((A=1)),

va(A) = wo(1) + (DA = 1) + O ((A = 1)%),
(A)
)

=
>
1
X

in the next expression
p(E)y: — hvn(E)y, — Wus(EYy! — Fuy(E)y! = O(h)  (1.14)

we receive

/ ho, Yit2 — Yi+1 Yiy1 — yz)
WV — s 2701 _
P(W)(Yirr = vi) + 50" )( - -

h2 " Yivz — Yit2 Yitas — Yig1 Yie1 — Ui
+ () ( o pRE T S )
L (1)(y TN
:th(l)yZ + hyl(l)(yi+1 — yl) + 7]/1 (1) ( +2 - +1 +1h )

+ R us(L)y! + BV (g — o) + BPes(L)y)” + O(h7).
If we use p/(1) = v1(1) and correlation (1.13), then we can write
P+ 3p(1) + /(1) = 307 (1) + B4 (1) + 6u4(1) + 6u(1).(1.15)

Note, that by realizations of the correlations (1.13) and (1.15) we
can obtain p = 2 and p = 3, respectively.

It is obvious, that if we continue this process, before using in (1.14)
the expansion of ylm, then we will receive correlation similar to (1.13)
and (1.15), from which the relation p = r will follow.

Note, that for the receiving of above mentioned correlation we can
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pmn = LA S -y,
yl(A)+§uj(A)(1nA) Ap WAS CiA=1Y +0((A=1)F), A —1,
here

|M3

7 —|— 1

If the last condition is satlsﬁed then the formula (1) will have the
degree equal to p.

The second part of the assumption C, is concerned with the fact that
if 14(A) # 0 and (1) = 0, then as it is obvious from the (1.9), method
will be divergent, which contradicts to the assumption.

But if we consider the case v1(A) = 0,15(A) # 0, and v5(1) = 0 then
as it is obvious from (1.11) convergence of the considered method will be
absent, since values of the function y/(z) are involved into the method.
Other cases may be explained by analogy.

Note, that when the second part of the assumptions (' is not realized,
then the method will be nonstable, what proves validity of the above
given reasons.

Frequently there arises the necessity to find relation between k and r,
i.e. between order of the k-step method (1) and order of the derivatives
of the function y(z), used in (1). For the determination of the relation

between k and r, the formula can be written in the next form:

k r k
Z%%H = Z 6jhj Zﬁy)yﬁm (1.16)
=0 ji=1

i=0
here é;(j = 1,...,7) takes values 0 (zero) or 1 (one).

It is clear that if 6; = 0, then the method, which is determined by
the formula (1.16) cannot be stable. Therefore the notion of [-stability
introduced by G.Dahlquist will be used (see [3 p.19]),for é; = 6, = --- =
61 =0and 6, = 1.
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Definition 3. Formula (1.16) is said to be [-stable, if the roots of
polynomials p(A) are located within or on the unit circle and there is

not multiple root on the unit circle, except A = 1 multiplicity to [.

The method is called [-stable, if the corresponding formula is [-stable.

Relation between k& and r may be written in the next form:

! r
Z ok>r or k> —/——.
j=1 ! Z]’:l 6]’
If we consider the case §; = 0 and 6, # 0 then we receive well-

known method of Shtermer. In this case & > 2. Now, we can consider
the maximal value of degree for the stable methods, received from the

correlation (1).

2. The maximal value of degree for the stable k-step

Obrechkoff’s method.

For the investigation of the maximal value of degree for the stable k-
step Obrechkoff’s method, consider in general form, i.e. not taking into
account property of explicitly of the considered method, which imposes
some limitation on coefficients ﬁ,(cl) (I=1,...,7). In general, property
of explicitly for formula (1) depends on its application. In particular, if
the formula (1) is applied to numerical solution of problem (2), then for
j = r formula will be explicit by ﬁkr) = 0 but for 7 = 1 formula will be
explicit by ﬁ,(cl) =0,(I=1,...,7).

Suppose, that |3"|+ |8 +---+]8{”| # 0 and we shall now prove

a theorem, by which relation between p, k, and r can be determined.

Theorem 1. Suppose, that the formula (1) has the degree p, stable
ap #0. Then

(k4 1)r+1 by even k and odd r,
<
b= (k4 1)r by odd k and even r.
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There exists stable formula with the degree p = (k+ 1)r + 1 in the case,
when k is even and r is odd, but with the degree p = (k+1)r in the other

cases, for arbitrary k.

Proof. Taking into account condition of theorem 1, we can write

=S Wp(EWD ~ CRPYE (R —0).  (2.1)

Consider the special case and we put y(z) = exp(z) (see [2]). Denote
by the 7 = exp(h). Then correlation (2.1) may be written in the next

form:

r

Z_:V] YInT)Y ~ C(r =1 (1 —1). (2.2)

Replacing by

G- 0 T T -1

1 J 9 p—k+1
ZS ( Z+1) NC(—) , 2 — 00.
z
From here we can write

R(z) (111 zj 1)_1 - 51(z) — ZT:Sj(Z) (111 z i_ 1)j_1 ~ C (g)p_k , 2 — 00.

=2 (2.3)

Considering the following equalities

21N\ 2 & (2t z+1
(1112—1) =57 2 peen T (i > 0), I oy = 2] 2%+ 1"

1=0 =0

o —(2i+1)
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in (2.3), then we have

5 00 ' r—1 9 p—k
R(z) (5 - Zuziﬂz_(z“’l)) = 51(2) = 2" A, Sui(z) ~ C (‘) » & 00,
i=0

v=l : (2.4)

where

A > ezic1 Cgls)+12_(28+1) for v=20-1,
DD e for v=20(CY >0, m > 0).

Let the coefficients of the formula (1) satisfy the condition A, B and

C, then we can write a;, =0, as p(1) = 0.

If the condition of stability from the polynomial p()) carries over to

the polynomial R()), then we have:
1. R(z) has not roots with the positive real parts.

2. R(z) does not have the multiple roots on the imaginary axis
The coefficient a;_, # 0, as p'(1) # 0.

It is clear, that the left-hand side of the relation (2.4) may be written

in the next form:

00 r—1 S
z ; ]
R(z) (5 B ZN%HZ_(ZZH)) = 5i(z) - ZQUAUSUH(Z) = ZCZ'Z_Z‘
=0 v=1 i=1
(*)

It is easy to determine, that to prove the theorem 1, it will be nec-
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essary to investigate consistency of the next system:

1
b = ~ap
k 2% 1
1
b§€1_)1 + 2051)19;@2) = 5%

1
bggl_)z + 2051)522_)1 + 22C§1)b23) = §ak—3 — Mi1Qp—1,

1
bg—)?’ n 2051)()22_)2 n QCél)bf) + 22051)1’5@3—)1 1 2301())2)();64) — 5%_4 — o,

(2.5)
[ [51-1
b2 DT b 27 D Ol
v=0 v=0
(-1 B (-1
+ 2% Z Céz)q-?,b(z?w + 27t Z CéE?])b(z’;) = - Z Aoy 412041
v=1 ’U:[%] v=0
with the following system C; = Cy =+ -+ = Cp_1ypyrg1 = 0.

The system (2.5) is received from the (*) by the comparison coeffi-
cients of the linearly independent system 2/ (j =0,...,k).

Note, that the system (2.5) may be consistent, since the number of
the equations and unknowns are identical. (It is not difficult to prove,
that the system (2.5) is consistent). Therefore we will investigate the

system C; = (5 = -+ = C_1)pqr41 = 0, which can be written in the
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next form:
[y
(1) p(2) 2 (1) 5(3) 3 (2) (4)
2202v+1 —I_ 2 Z 02v+2 2vu+41 —I_ 2 ZC2U+1
5= 55”
—|— QT 1 Z sz+1 - Z aZvM2v+17
_(r 2) v=0
2
[E4)-1 (5] [
(1) 7(2) 2 (1) 1(3) 3 (2) (4
2 02v+3b2v+1 —I_ 2 Z C(21)+2b —I_ 2 Z 02v+3b2v+1 —I_ e
v=0 v=0 v=0
fk,r (et1)
() g
+2770 Y Chinby) = — Y. Gagafizegs,
v:('r—3) v=0
2
(=6 (x,1-1+0")
- 2 - 2
(1) (2) 2 (1) (3)
2 Zo sz+l+§l(3) b2v+gl(3) t2 Zo sz+l+1—§{3) b2v+1—§l(3) ..
v= v
(&;:l);ﬁl(‘l)) ([ ]) [(k+‘£ ] 51(3)_5123)
. r—1 5 (r) _
. Zo Coipe®Pavpe = ; Dov el Havpiee>
v= v=
(621;4'1_&1(1)1) (§£13+1+1 ‘51(1)1)
2 2
. (1) (2) 2 (1) (3)
2 Zo sz+l+1+§l(§’r) b +E, +2% Zo sz+l+2—§l(j”r)1 b2v+1—§l(j”r)1 T
v= v
(&i l)+1+1 gl(i)l) [(k+&l+1 ] 5(3) (3)
(2D r) e
. r—1 . 2 [—
+2 Z% sz+l+2—§l(j”r)1 b2v+l—§l(jr)1 . Cove® Fovtipreel,
v= v=

The system which is received for & = 2¢ may be divided upon two
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subsystems. The first of them can be written in the next form:

k (k 2)
2 Z CiD b 4 22 Z Chilyabss + -
(k—2)

4+ o0t Z sz+1b(2:; = Z oy oy 41,
v=0

(e=2)
1 b2 4 92, (1) (3)
Z Cl) e bs) +2 Z: O e+
Skr (k=2)
(5 S 2
-4 2 Z sz+l+§(4) bzv — Z azvu2v+l+2+§(ﬁ”) .
v:(T%2 v=0

The second subsystem can be written in the next form:

G2 E
2 30 O + 2 3 O
v=0 @
o4 2r-l Z sz+2b(22 = - Z 2y 412043,
v=0
o) E
2 Z ;1)+l+2 £® (2%)+1 + 27 ZC;)-I—Hl—E(a) b(S) +
ng)T v=0 @
SR LAY C;E)%-:;+1 §<4>b(3) == A2v+1 -y 1149

v= r—3 v=0
-2

15
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where
o (PRI EE 2 es
kv — v . .
(2] — [“H] 1 2[8),  v=2j-1,
(1) _ (4] =[]+ 2[5, v=21-1,
kv — v "
[ -5+ 2[5, v=2j,
+2] [t
v =[]
T +r, & 5 1
5(4)_ 51(4?37 TIQm(0§j<k), " fk,va ?JIQTL,
+j = 1 —fl(izv r=2m — 1, ko ™ ](;27 v =921 — 1.

If we prove, that the system (2.6) or (2.7) is not consistent, then we shall
receive that the above mentioned system is not consistent.

Consider the first subsystem. In the system (2.6) number of the
equations will be equal to 2i7 + 7 — ¢ + 1, if we assume r = 2j. It is
not difficult to show, that in this case number of the unknowns will be
equal to 275 + 7 —1. It is easy to show, that the system for as, =0 (n =
0,...,k—1), will be consistent and in this case it has the trivial solution.

Now consider the second subsystem. In the considered case number
of the equations in the system (2.7) is equal to 2ij + j — 7, but number
of the unknowns is equal to 2¢5 + 7 — ¢ — 1. If we consider, that a;_; =
as—1 # 0, then we shall receive, that the system (2.7) is not consistent.

Really, if we solve the system (2.7), then we have:

(k—2) (k—2)

2 2
V3 Z Aoi41fb2it3 + V5 Z Aoiq1floits + -
1=0 =0
(k=2)
2
T Viga—e® Z Agig1flo; gy e = 0.
=0

It should be noted that all the nonzero coefficients a; (¢ =0,...,k—

1) have identical sign.
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The received relation we write in the next form:

(k=2)

> aspp(i) =0,
i=0

here

. L 14+ 2\ 7!
(i) = / $22+2¢l_1_5(ra)(x) <7r2 +1n? : ) dz,
-1

— T

1_e®
¢1—1—§£3’)($) =7+ 52’ + o 71+2—§5‘°’)$l e

By the following notation
Fi(z) = a12° 4+ aza* + - + a_ 12",

it can be written

1 1 -1
/ Fe(2)$_y_go (@) <7r21n2 1+—$) dz = 0.
-1 T

— X

Hence, using parity of the integrant functions and the mean-value

theorem we have
/0E Fe@)d,,_co(e)da =0 or Fi(¢) /j Gy ()de = 0.
If we denote by the
P (2) = F(a)Y_ _o(a); ®h(2) =¥, ()
and consider F(§) # 0, then we shall have
®,(£) = 0; @5() = P2(&1).

Then using Rolle’s theorem we obtain, that the polynomial ¢l_1_§(3) (z)
by ®,(&) # 0 has [ 41— £ roots, what is impossible. If ®,(£) = 0 then

granting ®,(0) = 0 we can write

3
/ ¢1_1_§£3)($)d$ =0.
0
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Then
13

[ )= Bl = [ Ee - €06, _go(w)de =0

0

Hence, it follows that ®3(&) £ 0 (®4(z) = (v — £)¢l_1_g£3)($)) or

¢
/0 (x =, _w(x)de = 0.

If ®5(z) # 0, then we have, that the function (v — {)¢,_, _.@(«) has
[—1—¢3) roots and consequently the system (17) is not consistent. But

if ®5(€) = 0, then using the relation Fj(z) — Fi(§) = FL(&)(z — &) +
Fé/(nz)(w _25)

and above described procedure, then we can write

®4() # 0 (®4() = (2=6)"¢_y_o()) or /()g(w—f)zlbl_l_g(ra)(x)dx = 0.

Carrying on by the above-described scheme, we have
3
/ (¢ =" _o(x)dz =0 (v=0,1,2,....k)
0

or ®,(§) # 0. Here ®i(x) = (z — "_,_ @ (x). If ©(§) # 0 then
system (2.7) is not consistent. But if ®,({) = 0, then using the last

relation we can write

¢
/0 e(e)__w(x)de =0,

where o(2) polynomial of the degree which cannot be more than k.
Obviously, that the received correlation was put on any limitation
to coefficients v; (5 = 3,5,...,0 + 2 — £?)) which inadmissible, since
they are determined by the solving system (2.7). Particularly, if r = 2,
then we have [ — 1 — £ = k. Naturally in this connection we may
put ¢(z) = (). It is clear, that the received relation is not correct.
Obviously, that the functions Fj(z) and ¢(2) has the different properties
and therefore they can not coincide. Consequently, the system (2.7) is

not consistent. Hence we received, that p—k < rk+r—korp <r(k+1).
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But if we suppose, that as; 4, changes its sign, then maybe F(£) = 0.
Naturally in this connection the system (2.7) may be consistent.

Suppose, that &k = 2¢ and » = 27 — 1. In this case number of the
equations in the systems (2.6) and (2.7) coincides and equals to 2ij +
Jj — 2i. It is clear, that the system (2.6) may has the trivial solution.
Hence one must they consistent it.

Therefore consider the second system, in which the number of the
unknowns is equal to 2ij + j — 2¢ — 1. Consequently, the system (2.7) is
not consistent, since the number of the equation in that system is equal

to 215 + j — 2¢. Thus we received
p—k<l+l=rk+r—k+1or p<r(k+1)+1

Note, that in the case £ = 27 and r = 2j the last equation in the
system (2.6) received as the coefficient 2=+ since [ is even. Therefore
the indicated equation can be written in next form:

201})

B 20 b 4

+3

In this case the last equation of the system (2.7) can be written in

the following form:
20507 + 201005 + ..

Now consider the case, when k = 2¢ — 1, that is k£ is odd. Suppose,
that r = 2j. Then the number of the equations in the system (2.6) will
be equal to 2i5 — ¢+ 1. But number of the unknowns is equal to 2¢5 — 1.
Taking into account, that as._, # 0 can be predicated, then the system
(2.6) is not consistent. In this case we may show, that the system (2.7)

will be consistent. Consequently,
p—k<l or p<(k+1)r

Using above mentioned scheme we can prove, that also in the case,

when k£ =2i — 1 and r = 2j — 1, the system (2.6) is not consistent, but
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the system (2.7) is consistent. Consequently,

p<(k+1)r

After the combination of all the above-mentioned cases, we receive

statement of the theorem. m

Thus, we take for granted the theorem 1. Now consider the case,
when 8Y) = 0 (j = 1(1)r), that is investigate the formula, used in
the problem (2), which is explicit for all the values of the parameter j.
The maximal value for the degree of the stable explicit method may be

established by the next theorem.

Theorem 2. Suppose, that the formula (1) is stable for ﬁ](cj) =
0 (j=1,...,7), has the degree p and o, # 0. Then p < rk. There exist
stable formulas with the degree p = vk for the arbitrary k.

Proof. Taking here exactly the same way, as in theorem 1, we receive

the systems similar to the systems (2.6) and (2.7). m

It should be noted, that these systems can not have trivial solution,
since in this connection it is received, that the unknowns ﬁ}” (i =
0,....,k—1, 1 <j <r)for every fixed j can be determined from the
system, which consists of the k4 1 equations. It may be proved, that in
this case these systems will not be consistent. Consider the case k = 21.

Then the system similar to the systems (2.6) and (2.7) can be written
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in the next form:

=2)
S 2 3 AL
v=0
Shr 2
g2t Z Céﬁib({;) = - Z Aoy fh2v 415

r—2

v= 3

(2.8)
1 2 1 3
2 chv)-l—l+1 ( ) + 22 Z Cév)-l—l+2 (2v)+1 —I_ e
(&SC z)+12_‘5z(i)1) (k—2) 2)
r—1 () _
o v:g CZU+I+1+51(1)1 2v+£(4) - Z Groflaetitss
where [ = (r — 1)k. The second system has the following form:
203, Cibupablus +2° Z oty +
k22
+277h Z sz+2b(22 = Z Aoy +1f2v+1,
v_(r 3) v=0
(2.9)
(k;2) %
2- Z Cézl;)-|-1+1b(2?+1 + 2% Z Cézl;)+1b(3) +...
=0 v=0
(‘55:,1);‘51(4)) (:-2)
= [%] r
o ‘I’ 2 L. Z C; _I_;_I_E(zl) b(Z )+§(4) Z Aoy 12y 4141 -
(r=3) v=0

v= 3

In the system (2.8) number of the equations is equal to (r — 1) ¢ +
1, but the number of the unknowns is independent of the property of
parity of r and equals to (r — 1)i. Consequently, the system (2.8) is not

consistent.
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In the system (2.9) number of the equalities is equal to (7 — 1)i, but
number of the unknowns equals to (r—1)i—1, since one of the unknowns

is determined by the coefficient z°. Hence, it follows that
p—k<l or p<kr (I==Fkr-1).

This theorem for & = 2¢ — 1 is proved analogously to the case k = 2.
If we apply the theorem to formula (1.16), then we shall receive the

following theorem.

Theorem 3. Suppose that the formula (1.16) is stable, has the
degree p and oy, #0. Then

p< (k—l'l)zr:éj—l'lv (pmax:(k—l'l)zr:éj—l'l)'

j=1 ji=1
There exists stable formula with the degree p = ppayx for k = 21

and v = 2v — 1, but in other cases there exists stable formula with the
degree p = pmax — 1 and does not exist stable formula with the degree
P > Pmax — 1.

It is not difficult to determine, that if there exists stable formula
with the degree p > (k + 1)r + 1, then it must be in the class of the
forward-jumping formulas.

Really, if we consider forward-jumping formula in the next form:

k—m r ) k ) )
Z QiYnyi = Zh] Z@(])%(Qm (2.10)
1=0 j=1 =0

then the theorem 1 can be formulated in the next form:

Theorem 4. Suppose, that the formula (2.10) is stable, has the
degree p and oy _,, 0. Then

p<(k+1)r+m.

There exist stable forward-jumping formulas with the degree p = (k+
Dr4+m-—1fork=2i>3m,r=2j andk—m=2v—-1.
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In other cases there exist stable forward-jumping formulas with the
degree p = (k + 1)r + m for k > 3m if the property parity of k and m
15 identical and for k> 3m + 1 if the property parity of k and m is not
identical.

Proof. Behaving here in exactly the same way, as in theorem 1 and
multiplying the polynomial p(7) and v(7) to (%(z — 1))k_m, we receive

the next system, consistency of which is questionable

(k m) (k=m+1)
m [—=]-1
S A8+ 2 Z Céillb@)wz > LA+
v=1 v=0
ﬁk m,T (k—2m)]
T+ 2" ! Z 02v+1b(2:) - Z Aoy oy 41,
v_(T22) v=0
m [E=gtb] (5
1 1 2 1 3
ng)Z)ﬁl(c—)m+v + 2 Z Cév)-I—Bb(v)+1+22 Z Cév)-I—Zb( ) —I_ e
v=1 v=—1 v=0
Sk—m,r [(k—7;+1)]_1
+ 277 ! Z sz+2b(2:; = - Z Aoy41 2043,
v=0
§k—m,l 621) ,1
Santer B R 3 LKt
f)ml (Bt o g
- (13D, (r
2 Z sz+lb( == Z Qopge®Hoptipe®
v:w v=0
p— m1+1 621)m1+1
1 1 2 : 1 3
Z dg)l-l—l)ﬁ](ﬂ—)m‘H) + 2 Z Cév)-l-l-l-l ( )+22 Z Cév)-l-l-l-lb( ) +.
v=1 v_—— v__(1—21)
622_)m1+1 (& e - €D~
s 2rt Z sz+l+1b(2:; = Z 2v+§l(3) H2v+,+1+5(3) >

v=0

2
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where | = 2m+kr—k+r—1. This system is divided into two subsystems.

The first of them for k£ = 2¢ and r = 2§ can be written in the next form:
m [=gtb]
Z dg)l)ﬁl(cl—)m+v —I_ Z C§v+1b(2)+22 Z C§v+2b(2?))+1 —I_

k—m k—m ]

2 Z Ol = — D asufous,
v_2 v=0
(2.11)
m (=gt
S A8, +2 Z CLLbE+27 Y Céilmbéill ...
v=1 p=_ =1 1) p=_ =1 1)
(k m) [(k 2’”)]
‘I’QT ! Z C2v+lb — Z aZv,u2v+l-
I 7‘+1 v=0

Number of the equations in the system (2.11) is equal to 2¢j—i+j+m.
But number of the unknowns depends on parity k — m. If k — m = 2n,
then number of the unknowns is equal to 2¢5 — 7 + 7 + m.

Consequently, the system (2.11) may be consistent. But if £ — m =
2n — 1, then quantity of the unknowns in the system (2.11) is equal to
2t — i+ j + m — 1. It is obvious, that the system (2.11) can not have
the trivial solution, since in this connection ﬁk myo =0 (v =1,...,m).
It may be proved, that the mentioned system has not trivial solution
(which identically different from zero). Consequently, the system (2.11)

is not consistent. Then we have
p—k+m<2m+4rk—k+r—1 or p<(k+1lr+m-—1.

If we consider the case k = 27 and r = 25 — 1, then the last equation

in the system (2.11) can be written in the next form.

S dHIAY L+ 20+



On the maximal degree of ... 25

In this case number of unknowns in the system (2.11) for k —m = 2n
or for k —m = 2n — 1 is equal to 225 + j — 2¢ + m — 1, but the number
of equation is equal to 2ij + 7 — 21+ m + 1.

As it was proved above, here we can prove, that the system (2.11) is

not consistent. Consequently,
p—k+m<Il+1 or p<(k+41)r+m.

Now consider the case £ = 27 and r = 2j, when the system (2.11)

is consistent. In this case the second subsystem is written in the next

form:
m e ! [¢5™]
D AP+ D Okt Y Ol
) [:’::“) -1 v_[?’“++”]—1
427 Z sz+3b2v+1 = Z Aoy +1H20+3,
v=0
(2.12)
m [E=gta]-1 [E52]
S 42 Y a2 Y Ot
SENY) p=— =1
[Ml [@]—1
ot 21 Z sz+lb(22+1 = - Z Aoy 1 H2u 4142 -
—_l=rl v=0

Number of the equations m the system (2.12) for k —m = 2n is equal
to 2ij+j—1+m, but number of the unknowns is equal to 2¢5+j—i+m—1.
We can prove, that the system (2.12) in this case is not consistent.
Hence, it follows that

p<(k+1)r+m.

Now consider the case, when the systems (2.11) and (2.12) are consis-
tent. In order for the consistency of the systems (2.11) and (2 12) to be

followed by consistency of the initial system, the unknowns ﬁk m+v(v =
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1,...,m), found from these systems, must be equal to each other, in gen-
eral this question depends on parity k and m. If k and m are even or
odd simultaneously, then degree of the stable forward-jumping formula

has the maximal value for k& > 3m otherwise for k > 3m + 1. m

Consider the case, when in the system (1.16) 6, = 0. It is clear, that
the formula (1.16) can not be stable. Because in this case we use the
notation of 2-stability. If to consider the case 6; = 6 =---=6_1 =0
and é; # 0, then we use the notation of [-stability. It is not difficult
to prove, that there exists [-stable method determined by the formula

(1.16). For this aim consider the next theorem.

Theorem 5. Let the formula (1.16) has the degree p, is [-stable,
ap # 0 and 6 = --- = 6y = 0,6, = 0. Then there exists l-stable
formula with the degree p = (&; + --- 4 6,)(k + 1)+ [ in the case, when
k=21, r=25,l=2vork =2i,r=2j—1,v=21—1. In the other cases
there exist [-stable formulas with the degree p = (8;+- - -+6, )(k+1)+1—1.

Under solving some problems, it is useful to determine beforehand
the sign of the coefficients ﬁ](cj)(j = 1,...,7), and also the relation be-
tween them. For example, in using of two sided methods, just as in
construction of the new methods having Obrechkofl’s type there arises
the question on determination of the sign of some coefficients. For this

aim consider the next theorem.

Theorem 6. Suppose, that the formula (1) is stable, has the degree

p, which got a maximal value and oy, > 0. Then
B = (=17 > 0, |8V > 187 (m= 1, =1 =1, ).

But if B # 0,870 = o= BT =0, BT £ 0, then
BB <0 and [B7] > 18TV
Let gV = B\ = - = U™ = 0 and 8 £ 0. Then 8y > 0.
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As it is obvious from the formulation of the theorem 6, here the
maximal value of the degree for formula (1) is taken, in every considered

cases. For example, p., = 5 in the case r = 2,k = 2 and ﬁ,(cl) = 0.

Note. Below we reduced some concrete methods constructed by

author several times

_ 12yn - h(fn+2 - 8fn+1 - 5fn)
Ynt1 = 12

(r=1k=2,p=23)

(local trun. err.h*y(Y/24 + O(h%)),

_ 8yn+1 —I_ 11yn _h(fn+3 - 24fn+2 - 57fn+1 - 10fn

n —_ :1716‘:3, 25
Yn+2 19 57 (r p="5)

(local trun. err. — 11h5y(9 /3420 + O(h7)),

(41641 — 103y,) | h(157 foys + 11232 fpn + 8451, — 2830f,)
Int2 = 313 25353
h2(11 _1 2
_ P(Ugnys + 630%;51 557gn11 + 929,) (r=2.k=3.p=9)

(local trun. err.103Ay(") /212965200 + O(h'')),
here g(z,y) = fi(z,y) + fy(z,v)f(2,9),y' = f(z,y).

It is noted, that there are concrete methods for which theorem 6 is
correct in the case, when the value of the degree of the stable methods
is less than maximal.

Obrechkoff’s method that is the formula (1.16), in more general form

was investigated for » = 2 and arbitrary k&, in [9].
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