α-VALUATIONS OF SPECIAL CLASSES OF QUADRATIC GRAPHS

"To the memory of Jaromir Abrham (1931-1997)"

Kourosh Eshghi
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran
eshghi@sharif.edu

Abstract

It is shown that the quadratic graph $\mathrm{Q}(5,4 \mathrm{k})$ (consisting of 5 cycles of length 4 k) has an α-valuation (a stronger form of the graceful valuation) for every positive integer k. Furthermore, additional results are obtained from the main theorem of this paper.

1. BASIC DEFINITIONS

Let $G=(V, E)$ be a graph with $m=|V|$ vertices and $n=|E|$ edges. By the term graph, we mean an undirected finite graph without loops or multiple edges. All parameters in this paper are positive integers. A graceful valuation (or β-valuation) of a graph $G=(V, E)$ is a one-toone mapping Ψ of the vertex set $V(G)$ into the set $\{0,1,2, \ldots, n\}$ with

[^0]this property: If we define, for any edge $e=\{u, v\} \in E(G)$, the value $\Psi^{\bullet}(e)=|\Psi(u)-\Psi(v)|$ then Ψ^{\bullet} is a one-to-one mapping of the set $E(G)$ onto the set $\{1,2, \ldots, n\}$.

A graph is called graceful if it has a graceful valuation. An α valuation (or α-labeling) of a graph $G=(V, E)$ is a graceful valuation of G which satisfies the following additional condition: There exists a number $\gamma(0 \leq \gamma \leq|E(G)|)$ such that, for any edge $\epsilon \in E(G)$ with end vertices $u, v \in V(G), \min [\Psi(u), \Psi(v)] \leq \gamma<\max [\Psi(u), \Psi(v)]$.

The concept of a graceful valuation and of an α-valuation were introduced by Rosa [7]. Rosa proved that, if G is graceful and if all vertices of G are of even degree, then $|E(G)| \equiv 0$ or $3(\bmod 4)$. This implies that if G has an α-valuation and if all vertices of G are of even degrees, then $|E(G)| \equiv 0(\bmod 4)(G$ is bipartite). In [7] it is also shown that these conditions are also sufficient if G is a cycle. The symbol Cm will denote a cycle on m vertices. Abrham and Kotzig [2] proved that Rosa's condition is also sufficient for 2 -regular graphs with two components.

A snake is a tree with exactly two vertices of degree 1. In [7], it was proved that every snake has an α-valuation. A snake with n edges will be denoted by P_{n}.

A detailed history of the graph labeling problem and related results appears in Gallian [4,5]. One of the results of Abrham and Kotzig should be mentioned here: If G is a 2 -regular graph on n vertices and n edges which has a graceful valuation Ψ then there exists exactly one number $x(0<x<n)$ such that $\Psi(v) \neq x$ for all $v \in V(G)$; this number x is referred to as the missing value of the graceful valuation[2].
A quadratic graph $Q(r, s)$ is a graph with r components, each of which is an s-cycle.

Here are some of the results published in the references:

1. A $Q(1, s)$-graph (i.e. an s-cycle) is graceful if and only if $s \equiv 0$ or $3(\bmod 4)$. It has an α-valuation if and only if $s \equiv 0(\bmod$ 4) $[7]$.
2. A $Q(2, s)$-graph has an α-valuation if and only if s is even and $s>2[6]$.
3. A $Q(3,4 k)$-graph has an α-valuation for each $k>1$. The $Q(3,4)$-graph does not have an α-valuation but it is graceful [6].
4. A $Q(r, 3)$-graph is graceful if and only if $r=1$. A $Q(r, 5)$-graph is not graceful for any r [6].
5. A $Q(r, 4)$-graph has an α-valuation [6].

2. TRANSFORMATIONS OF LABELING OF A GRAPH

The transformations presented below are used extensively in this paper.

2.1 Transformation Type 1

Lemma 1: (Abrham \& Kotzig [1]) Let r be a non-negative integer and let s be an odd integer, $s=2 k+1$. Then P_{s} has an α-valuation Ψ with endpoints labeled w and z that satisfies the conditions $z-w=k+1$ and $w=r .(w . l . o . g .$, we assume that $w<z$.)

Suppose that we have two series of vertex labels as follows where $0 \leq$ $n, n+k \leq 2 r$ and $2 r+1 \leq m, m+k<4 r+1$ and $|4 r+1-(m+n+k)| \leq 1$:

Figure 1: Arrangement of vertex labels in transformation type 1
We apply the transformation type 1 to the vertex labels $(n, n+1, n+$ $2, \ldots, n+k-2, n+k-1, n+k)$ and $(m, m+1, m+2, \ldots, m+k-$ $2, m+k-1, m+k)$ by choosing the vertices w^{\prime} and z^{\prime} as end points in the following steps:
Step1: First we modify the vertex labels as follows:

1) From each label ($n, n+1, n+2, \ldots, n+k-2, n+k-1, n+k)$ subtract n;
2) From each label ($m, m+1, m+2, \ldots, m+k-2, m+k-1, m+k)$ subtract $m-(k+1)$

Step2: According to Lemma 1, we construct an α-valuation for the snake $P_{2 k+1}$ on the new labels, with end vertices having labels w and z such that $0 \leq w \leq k$ and $k+1 \leq z \leq 2 k+1$ and $z-w=k+1$.

Step3: Now if we modify again the new values to the original values in the following way:

1) Add n to each new label $(0,1,2, \ldots, k-2, k-1, k)$;
2) Add $m-(k+1)$ to each new value $(k+1, k+2, \ldots, 2 k-1,2 k, 2 k+$ 1);

Then the end vertices of $P_{2 k+1}$ will be labeled $w^{\prime}=w+n$ and $z^{\prime}=z+m-$ $(k+1)$ and the edge values will be $m-n-k, m-n-k+1, \ldots, m-n+k$.

2.2 Transformation Type 2

Lemma 2: (Abrham \& Kotzig [1]) Let r be a non-negative integer and let s be an even integer, $s=2 k$. Then P_{s} has an α-valuation Ψ with endpoints labeled w and z that satisfies the conditions $z+w=k$ and $w=r .(w . l . o . g .$, we assume that $w<z$.)

Suppose that we have two series of vertex labels as follows where $0 \leq$ $n, n+k \leq 2 r$ and $2 r+1 \leq m, m+k-1<4 r$ and $|4 r+1-(m+n+k)| \leq 1:$

Figure 2: Arrangement of vertex labels in transformation type 2

We apply the transformation type 2 to the vertex labels ($n, n+1, n+$ $2, \ldots, n+k-2, n+k-1, n+k$) and ($m, m+1, m+2, \ldots, m+k-2, m+k-1$) by choosing the vertices w^{\prime} and z^{\prime} as end points in the following steps: Step1: First we modify the vertex labels as follows:

1) From each label $(n, n+1, n+2, \ldots, n+k-2, n+k-1, n+k)$ subtract n;
2) From each label $(m, m+1, m+2, \ldots, m+k-2, m+k-1)$ subtract $m-(k+1)$

Step2: According to Lemma 2, we construct an α-valuation for the snake $P_{2 k}$ on the new labels, with end vertices having labels w and z such that $0 \leq w<(k / 2)<z \leq k$ and $z+w=k$.

Step3: Now if we transform again the new values to the original values in the following way:

1) Add n to each new label $(0,1,2, \ldots, k-2, k-1, k)$;
2) Add $m-(k+1)$ to each new value $(k+1, k+2, \ldots, 2 k-1,2 k)$;

Then the end vertices of $P_{2 k}$ will be labeled $w^{\prime}=w+n$ and $z^{\prime}=z$ and the edge values will be $m-n-k, m-n-k+1, \ldots, m-n+k-1$.

3. BASIC THEOREM

Theorem 1: The quadratic graph $Q(5,4 k)$ has an α-valuation for all $k \geq 1$.

Proof: The missing value of the α-valuation of this graph is 5 k . Now let us assume $k \geq 5$. The vertices of the first $C_{4 k}$ will be $[8 k, 12 k, 8 k+$ $1,12 k-1,8 k+2,12 k-2, \ldots, 9 k-1,11 k+1,9 k+1,11 k, 9 k+2,11 k-$ $1, \ldots, 10 k-1,10 k+2,10 k, 10 k+1]$; this yields the edge values $4 k, 4 k-$ $1,4 k-2,4 k-3, \ldots, 2 k+2,2 k+1,2 k, \ldots, 3,2,1$. Next we will describe the labeling of the second $C_{4 k}$. The successive vertices will be labeled
as follows:
$[14 k+1,6 k, 14 k, 6 k+1, \ldots, 13 k+3,7 k-2,13 k+2,7 k-1,13 k, 7 k, \ldots, 12 k+$ $2,8 k-2,12 k+1,8 k-1]$. The edge labels of this $C_{4 k}$ will be then $8 k+1,8 k, 8 k-1, \ldots, 6 k+5,6 k+4,6 k+3,6 k+2,6 k+1,6 k, \ldots, 4 k+$ $4,4 k+3,4 k+2$.
The third $C_{4 k}$ will be labeled in three stages as follows:
I. Form the snake $(6 k-1,14 k+2,6 k-2,14 k+3,6 k-3, \ldots, 5 k+$ $2,15 k-1,5 k+1,15 k, 5 k-1,15 k+1,5 k-2,15 k+2, \ldots, 16 k-$ $3,4 k+2,16 k-2,4 k+1)$. The values of the edges are then $8 k+3,8 k+4,8 k+5,8 k+6, \ldots, 10 k-3,10 k-2,10 k-1,10 k+$ $1, \ldots, 12 k-5,12 k-4,12 k-3$.
II. Join the vertex labeled $6 k-1$ to the vertex labeled $16 k-1$ to generate the edge labeled $10 k$.
III. Form another snake in such a way that its vertices are labeled as follows: $(16 k-1,4 k-1,16 k+2,4 k-2,16 k, 4 k+1)$. The resulting values of the edges of this snake are then $12 k-1,12 k, 12 k+$ $2,12 k+3,12 k+4$.

Now we construct the fourth cycle $C_{4 k}$ according to the following stages:
a) The edge labels $12 k+1$ and $12 k+5$ are generated by joining the following pairs of vertices respectively: $4 k$ and $16 k+1 ; 4 k-4$ and $16 k+1$.
b) Apply transformation type 2 to the vertex labels ($3 k-2,3 k-$ $1,3 k, \ldots, 4 k-5,4 k-4,4 k-3)$ and $(16 k+3,16 k+4,16 k+$ $5, \ldots, 17 k, 17 k+1$) by choosing the two vertices $3 k-1$ and $4 k-4$ as end vertices. The corresponding edge values of this transformation will be $12 k+6,12 k+7,12 k+8, \ldots, 14 k+2,14 k+$ 3.
c) The edges labeled $14 k+4$ and $14 k+5$ are obtained by joining the following pairs of vertices respectively: $3 k-1$ and $17 k+3$; $4 k$ and $18 k+5$.
d) Construct the snake $(17 k+3,3 k-3,17 k+4,3 k-4,17 k+5,3 k-$ $5, \ldots, 18 k, 2 k, 18 k+1,2 k-1,18 k+5)$. The corresponding edge labels will then be $14 k+6,14 k+7,14 k+8, \ldots, 16 k, 16 k+1,16 k+$ $2,16 k+6$.

Finally the last cycle $C_{4 k}$ will be constructed as follows when $k \geq 14$ and $k \neq 22$:

1. The edges labeled $12 k-2,4 k+1,8 k+2$ and $16 k+3$ are obtained by connecting the following pairs of vertices respectively: $k+3$ and $13 k+1 ; 9 k$ and $13 k+1 ; 9 k$ and $17 k+2 ; k-1$ and $17 k+2$.
2. Construct the snake $(18 k+2,2 k-2,18 k+3,2 k-4,18 k+4,2 k-$ $5,18 k+6,2 k-6,18 k+7,2 k-3)$. This yields the edge labels $16 k+4,16 k+5,16 k+7, \ldots, 16 k+13$.
3. The edge labeled $16 k+14$ is obtained by joining the two vertex labels $2 k-3$ and $18 k+11$ together.
4. Apply transformation type 1 to the vertex labels $(k+4, k+$ $5, \ldots, 2 k-8,2 k-7)$ and $(18 k+8,18 k+9,18 k+10,18 k+$ $11, \ldots, 19 k-4,19 k-3$) by using the two vertices $k+7$ and $18 k+11$ as end points. This transformation generates the edge labels $16 k+15,16 k+16, \ldots, 18 k-8,18 k-7$.
5. Connect the following pairs of vertices to each other to obtain the edges labeled $18 k-6$ and $18 k-5$ respectively: 8 and $18 k+$ $2 ; k+7$ and $19 k+2$.
6. Construct the snake $(19 k-2, k+2,19 k-1, k+1,19 k, k, 19 k+$ $1, k-1$). The resulting values of the edges are then $18 k-4,18 k-$ $3, \ldots, 18 k+2$.
7. The edge labeled $18 k+3$ is obtained by joining the two vertices $k+3$ and $19 k+6$.
8. Construct the snake $(19 k+2, k-2,19 k+3, k-3,19 k+4, k-$ $4,19 k+5, k-5,19 k+6)$. The edge labels $18 k+4,18 k+5,18 k+$ $6, \ldots, 18 k+11$ are generated by this snake.
9. Connect the two vertices $k-14$ and $19 k-2$ to each other to generate the edge label $18 k+12$.
10. Finally apply transformation type 2 to the vertex labels $(0,1,2, \ldots$, $8, \ldots, k-14, \ldots, k-6)$ and $(19 k+7,19 k+8, \ldots, 20 k-1,20 k)$ by considering the two vertices 8 and $k-14$ as end vertices. The rest of the edge values will be generated by this transformation and the last $C_{4 k}$ will be completed.

The construction of an α-valuation of the last $C_{4 k}$ when $5 \leq k \leq 13$ or $k=22$ has been given in the Table 1 as follows:

k	The construction of the fifth cycle $C_{4 k}$ in the graph $\mathrm{Q}(5,4 \mathrm{k})$
5	$[45,66,8,92,7,94,6,96,5,97,3,98,2,99,1,100,0,93,4,87]$
	$\begin{aligned} & {[54,79,9,120,0,119,1,118,2,117,3,116,4,110,10,111,8,112,7,114,6,115,} \\ & 5,104] \end{aligned}$
7	$\begin{aligned} & {[63,92,10,129,12,128,8,130,5,135,4,136,3,137,2,138,1,139,0,140,11,} \\ & 132,9,133,7,134,6,121] \end{aligned}$
8	$\begin{aligned} & {[72,105,11,160,0,159,1,158,2,157,3,156,4,155,5,151,9,152,8,153,6,} \\ & 154,13,150,10,148,12,147,14,146,7,138] \end{aligned}$
9	$\begin{aligned} & {[81,118,12,176,4,175,5,178,2,177,3,180,0,179,1,170,10,171,9,172,7,} \\ & 173,6,174,15,169,11,168,13,166,14,165,16,164,8,155] \end{aligned}$
	$[90,131,13,197,3,196,4,199,2,198,0,200,1,192,17,187,14,186,15,184$, $16,183,18,182,8,193,7,194,6,195,5,188,12,189,11,190,10,191,9,172]$
	$\begin{aligned} & {[99,144,14,218,2,219,1,220,0,215,5,216,4,217,3,212,7,213,6,214,15,} \\ & 206,13,207,12,208,11,209,19,205,16,204,17,202,18,201,20,200,8,211, \\ & 9,210,10,189] \end{aligned}$
	$\begin{aligned} & {[108,157,15,230,6,234,7,233,8,218,22,219,20,220,19,222,18,223,21,} \\ & 227,13,226,14,225,16,224,17,237,3,236,4,235,5,240,0,239,1,238,2, \\ & 231,10,232,9,228,12,229,11,206] \end{aligned}$
	$\begin{aligned} & {[117,170,16,256,4,255,5,258,2,257,3,260,0,259,1,250,19,242,18,243,} \\ & 17,244,15,245,23,241,20,240,21,238,22,237,24,236,8,252,7,253,6, \\ & 254,11,249,10,251,9,246,14,247,13,248,12,223] \end{aligned}$
	$\begin{aligned} & {[198,287,25,430,10,429,11,432,8,431,9,426,14,427,13,428,12,423,17,} \\ & 424,16,425,15,440,0,439,1,438,2,437,3,436,4,435,5,434,6,433,7,398, \\ & 42,399,40,400,39,402,38,403,41,407,34,406,35,405,36,404,37,411,30, \\ & 410,31,409,32,408,33,415,26,414,27,413,28,412,29,419,22,418,23,417, \\ & 24,416,18,422,19,421,20,420,21,376] \end{aligned}$

Table 1: The construction of the fifth cycle $C_{4 k}$ in the graph $\mathrm{Q}(5,4 \mathrm{k})$,

$$
5 \leq k \leq 13, k=22
$$

For $1 \leq k \leq 4$, the successive vertices of each cycle of $\mathrm{Q}(5,4 \mathrm{k})$ will be labeled according to the following table:

k	The construction of an α-valuation of Q ($5,4 \mathrm{k}$)
1	$[0,18,1,20],[2,16,4,17],[3,14,9,19],[6,13,7,15],[8,11,10,12]$
	$\begin{aligned} & {[0,37,4,33,8,39,1,40],[2,36,18,27,5,35,3,38],[6,34,7,31,11,30,9,32],} \\ & {[12,29,15,25,14,26,13,28],[16,24,17,23,19,22,20,21]} \end{aligned}$
3	$\begin{aligned} & {[0,60,4,53,27,40,6,54,7,58,1,59],[2,57,12,49,8,52,9,51,5,55,3,56],} \\ & {[10,50,11,47,17,44,16,45,14,46,13,48],[18,43,23,37,22,38,21,39,20,} \\ & 41,19,42],[24,36,25,35,26,34,28,33,29,32,30,31] \end{aligned}$
	$[0,80,5,74,4,70,36,53,7,75,3,76,2,78,1,79],[6,77,16,65,12,68,13,67$, $10,69,11,71,9,72,8,73],[14,66,15,63,23,58,22,59,21,60,19,61,18,62$, $17,64],[24,57,31,49,30,50,29,51,28,52,27,54,26,55,25,56],[32,48,33$, $47,34,46,35,45,37,44,38,43,39,42,40,41]$

Table 2: The construction of an α-valuation of $\mathrm{Q}(5,4 \mathrm{k})$ for $1 \leq k \leq 4$

4. THE STANDARD VALUATIONS OF $C_{4 k}$

Definition 1: The standard α-valuation of $C_{4 k}$ are given by any of the following sequence of values of the consecutive vertices of $C_{4 k}$:
a) $[4 k, 0,4 k-1,1,4 k-2,2, \ldots, k-2,3 k+1, k-1,3 k, k+1,3 k-$ $1, k+2,3 k-2, \ldots, 2 k+2,2 k-1,2 k+1,2 k]$ with missing value $x=k$.
b) $[0,4 k, 1,4 k-1,2,4 k-2, \ldots, k-2,3 k+2, k-1,3 k-1, k+$ $1,3 k, k+2,3 k-1, \ldots, 2 k-2,2 k+2,2 k, 2 k+1]$ with missing value $x=k$.
c) $[4 k, 0,4 k-1,1,4 k-2,2, \ldots, k-2,3 k+1, k-1,3 k-1, k, 3 k-$ $2, \ldots, 2 k+1,2 k-2,2 k, 2 k-1]$ with missing value $x=3 k$.
d) $[0,4 k, 1,4 k-1,2,4 k-2, \ldots, k-2,3 k+2, k-1,3 k+1, k, 3 k-$ $1, k+1, \ldots, 2 k-2,2 k+1,2 k-1,2 k]$ with missing value $x=3 k$.

In Figure 3 one of the standard α-valuations of C_{12} has been shown:

Figure 3: A standard α-valuation of C_{12}
If we suppose that $k_{1}+k_{2}+\cdots+k_{n}=k$ and there is an α-valuation for the graph $C_{4 k_{1}} \cup C_{4 k_{2}} \cup \cdots \cup C_{4 k_{n}}$ then in a standard α-valuation of $C_{4 k}$, we can replace $C_{4 k}$ by $C_{4 k_{1}} \cup C_{4 k_{2}} \cup \cdots \cup C_{4 k_{n}}$ with its α-valuation and the resulting graph will again have an α-valuation. For example an α-valuation of C_{12} in Figure 3 is replaced by an α-valuation of $2 C_{6}$ in Figure 4:

Figure 4: An α-valuation of $2 C_{6}$
Definition 2: The graph $C_{4 k}$ has a standard valuation (or standard labeling) if the values of the vertices of $C_{4 k}$ can be generated from a standard α-valuation of $C_{4 k}$ differ by a constant factor.

For example C_{12} in the α-valuation of $C_{12} \cup C_{20}$ shown in Figure 5 has a standard valuation because it can be generated from a standard α-valuation of C_{12} that differs by a constant factor 10 :

Figure 5: An α-valuation of $C_{12} \cup C_{20}$

If a graph $C_{4 k}$ has a standard valuation it can be replaced by any α-valuation of $C_{k_{1}} \cup C_{k_{2}} \cup \cdots \cup C_{k_{n}}$ where $k_{1}+k_{2}+\cdots+k_{n}=k$ by considering the constant factor. For instance the standard valuation of C_{12} in Figure 5 can be replaced by an α-valuation of $2 C_{6}$ to form an α-valuation of $2 C_{6} \cup C_{20}$ if we increase the values of the α-valuation $2 C_{6}$ in Figure 4 by constant factor i.e. 10 :

Figure 6: An α-valuation of $C_{12} \cup C_{20}$
Theorem 2: The following graphs have α-valuations:
a) $\bigcup_{i=1}^{n} C_{4 k_{i}} \cup Q(4,4 k)$ if $k=\sum_{i=1}^{n} k_{i}$ and $k_{n}+k_{n-1}+\cdots+k_{i+2}+$ $k_{i+1} \leq k_{i}$ for $i=1,2,3, \ldots, n-1$.
b) $\bigcup_{i=1}^{n} 2 C_{4 k_{i}} \cup Q(3,4 k)$ if $k=\sum_{i=1}^{n} k_{i}$ and $k_{n}+k_{n-1}+\cdots+k_{i+2}+$ $k_{i+1} \leq k_{i}$ for $i=1,2,3, \ldots, n-1$.
c) $\bigcup_{i=1}^{n} C_{4 k_{i}} \cup \bigcup_{j=1}^{t} C_{4 p_{j}} \cup Q(3,4 k)$ if $k=\sum_{i=1}^{n} k_{i}=\sum_{j=1}^{t} p_{j}$ and $k_{n}+k_{n-1}+\cdots+k_{i+2}+k_{i+1} \leq k_{i}$ and $p_{t}+p_{t-1}+\cdots+p_{j+2}+p_{j+1} \leq$ p_{j} for $i=1,2,3, \ldots, n-1$ and $j=1,2, \ldots, t-1$.
d) $\bigcup_{i=1}^{n}\left(C_{4 k_{i}} \cup C_{4 p_{j}}\right) \cup C_{4 k_{n}} \cup Q(4,4 k)$ if $k=k_{n}+\sum_{i=1}^{n}\left(k_{i}+p_{i}\right)$ and $k_{i}=2 k_{i+1}+p_{i+1}$ for $i=1,2,3, \ldots, n-1$.

Proof: We know that in construction of α-valuation of $\mathrm{Q}(5,4 \mathrm{k})$; at least two cycles $C_{4 k}$ have standard α-valuation. In order to obtain the different parts of the theorem 2, we replace these two standard valuations with other graphs as follows:
a) Consider one of the standard valuation of $C_{4 k}$. First we replace it by $C_{4 k_{1}} \cup C_{4 l_{1}} ; l_{1} \leq k_{1} ; k=k_{1}+l_{1}$. Then since $C_{4 l_{1}}$ still has a standard
valuation [1], we are able to replace it again by $C_{4 k_{2}} \cup C_{4 l_{2}} ; l_{2} \leq k_{2} ; l_{1}=$ $k_{2}+l_{2}$. In next stages we continue to replace each $C_{4 l_{i}}$ by $C_{4 k_{i+1}} \cup C_{4 l_{i+1}}$; $l_{i+1} \leq k_{i+1} ; l_{i}=k_{i+1}+l_{i+1}$ for $i=2,3, \ldots, n-2 ; k_{n}=l_{n-1}$.
b) We apply the replacement procedure of part (a) for both $C_{4 k}$ which have standard valuations in α-valuation of $\mathrm{Q}(5,4 \mathrm{k})$.
c) The proof of this part is similar to part (b) except that each standard valuation $C_{4 k}$ has been replaced by different disjoint unions of graphs in such a way that their components are not necessarily isomorphic.
d) Consider one of the standard valuation of $C_{4 k}$. First we replace it by $2 C_{4 k_{1}} \cup C_{4 p_{1}} ; k=p_{1}+2 k_{1}$; we know at least one of $C_{4 k_{1}}$ has a standard valuation [3]. Thus we replace $C_{4 k_{1}}$ in the next step by $2 C_{4 k_{2}} \cup C_{4 p_{2}}, k_{1}=p_{2}+2 k_{2}$. In next stages, we repeat the replacement $C_{4 k_{i}}$ by $2 C_{4 k_{i+1}} \cup C_{4 p_{i+1}}, k_{i}=p_{i+1}+2 k_{i+1} ; i=1,2,3, \ldots, n-1$.

References

[1] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, Discrete Math., 150 (1996) 3-15.
[2] J. Abrham and A. Kotzig, On the missing value in graceful numbering of a 2-regular graph, Cong. Numer., 65 (1988) 261-266.
[3] K. Eshghi, Existence and construction of α-labeling of 2-regular graphs with three components, Ph.D. Thesis, University of Toronto, 1997.
[4] J. A. Gallian, A survey: recent results, conjectures and open problems on labeling graphs, J. Graph Theory, 13 (1989) 491-504.
[5] J. A. Gallian, A guide to the graph labeling zoo, Discrete Appl. Math., 49 (1994) 213-229.
[6] A. Kotzig, β-valuations of quadratic graphs with isomorphic components, Utilitas Math., 7 (1975) 263-279.
[7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris (1967) 349-355.

[^0]: ${ }^{0}$ MSC (2000): 05C78
 ${ }^{0}$ Keywords: Graphing labeling, Graceful valuations, α-valuation
 ${ }^{0}$ Received: 26 January, 2001; Revised: 6 November, 2001
 ${ }^{0}$ The author is partially supported by Sharif University of Technology Grant No. 717

