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Abstract: It is shown that each function f in a model subspace
Ko of H? (R) can be extended to C. The extension to the up-
per half plane is in H? (C4) and the extension to the lower half
plane is in © H?(C_). We also show that f is analytic at each
point of the real line where © is analytic. Finally, we completely

T

characterize Ke for @(x) = ¢'% and for © being a meromorphic

Blaschke product.

1. Introduction

Let f be an analytic function in the upper half plane C;, = {z € C : &

2> 0) Lot |yl = ([ 1 inlde) " and || £l = sup,so £
for 0 < p < oo. The Hardy space H?(C,) consists of all f’s with

O MSC(2000): Primary: 30D50, Secondary: 30B40

® Keywords: argument, harmonic conjugate, Hilbert transform, Lipschitz
function.

9 Received: 2 May, 2001; Revised: 10 January,2002

®This research was supported by NSERC (Canada) and FCAR (Québec).



44 Javad Mashreghi

|| fll; < co. The Hardy space H*(C; ) consists of all bounded analytic
functions in the upper half plane. In this case || f|lo = sup,ec, [f(2)]-
For 0 < p < 1, H?(Cy ) with the distance || f — g |2 is a complete metric
space. For 1 < p < oo, H?(C, ), || - ||, is a Banach space. In particular,
H?*(Cy), || - |2 is a Hilbert space. Finally, H>*(C, ) is a Banach algebra
[9, pages 70-74].

For each f € H?(C,), and for almost all 2 € R, lirén_w f(z) ex-
ists. Denoting this limit by f(z), we have f € LP(R), and furthermore,
I fll, = || fllerr). In the preceding limit, z is required to tend to z
from within sectors of opening < 180° having vertex at x, and symmet-
ric about the vertical line passing through z. We frequently say that
f(z) — f(z) as z tends to & non-tangentially [4, page 6].

X

Therefore, there is a canonical correspondence between H?(C, ) and a
subspace of L’(R), denoted by HP(R). The space HP(R) can also be
independently defined as the set of all f € LP(R), with (as a distribution)
f(x) = 0 for < 0. The two definitions are equivalent [7, page 172]. The
Hardy spaces HP(C_) are defined similarly. The functions in H?(C_)
live in the lower half plane and the family of their boundary values, as
functions on R, is precisely the space m. See also Chapter 11 of [4].

The function ©® € H*(R) is said to be inner if |O(z)| = 1 for
almost all 2 € R. For each inner function ©, the set @ H*(R)is a closed
subspace of the Hilbert space H*(R) [9, pages 79-80]. Now we are able

to introduce our hero.

Definition The model space K¢ is the orthogonal complement of
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© HXR) in HX(R).

In this paper we study the model space Kg corresponding to the
inner function ©. In Section 2 we briefly discuss the role of model
subspaces in operator theory. In Section 3 an analytic description of
Ko is given. This new formulation, which is obtained using Hilbert
space characteristic of H?(R), can be exploited to define Kg in the
Hardy space H?(R). This representation also enables us to extend each
function in Kg to the whole complex plane. In Section 4 we extend an
f € Kg to C. This extension has three fundamental properties. First,
1,1121—»@' f(z) = f(z) for almost all 2 € R. In these limit, z is allowed
to tend to z non-tangentially from either half plane. Second, f as a
function defined in the upper half plane is in H*(C,). Third, f as a
function defined in the lower half plane is in ®@ H*(C_). Therefore, f
is at least analytic in the upper half plane and is meromorphic in the
lower half plane. Furthermore, in Section 5 we show that f is already
analytic wherever @ is on the real line. Finally in Sections 6 and 7
we completely characterize K¢ corresponding to ©(z) = €°” and for ©
being a meromorphic Blaschke product. In these two cases, and only for

them, each f € Kg is analytic on the whole real line.

2. Link to operator theory

In this section we explain the origin of model subspaces of H*(R). Let
f € H*R). By the Fourier-Plancherel theorem, if we write

Fe(h) = /_JJVV =N P (1) dt,

then, as N — oo, the fy(A) tend in L2(R) to a function f()), called the
Fourier-Plancherel transform of f. We can characterize an f € H*(R)
in terms of its Fourier-Plancherel transform. A function f € L*(R)
is in H*(R) if and only if f(/\) = 0 for almost every A < 0 [9, page

131]. Therefore, there is a canonical isomorphism between H*(R) and
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L?((0,00) ). Based on the preceding observation, a function f € L*(R)
is in H2(R) if and only if f(\)= 0 for almost every A > 0.
Let 6 > 0. Then the map T

HR) —  H*R)
f(t) = exp(idt) f(1),

is called a forward shift operator on H*(R). Since for each f € H*(R)

e

()N =Ff(A=6). AeR,

T shifts the spectrum of f forward by é units. Beurling in his classical
paper [2] characterized the invariant subspaces of H*(R) for the forward

shift operators.

Beurling’s theorem: A closed subspace of H*(R) is invariant un-
der Ts, for each § > 0, if and only if it is of the form © H*(R) for some

iner function ©.

The adjoint of a forward shift operator, Ty, is called a backward shift

operator. By direct verification, one verifies that 77 is defined by

rom={ " 0y
for f € H*(R) [6]. Therefore, T; shifts the spectrum of f backward by
6 units, and then chops off the negative part of what is thus obtained.
In a Hilbert space, a closed subspace M is invariant under a bounded
operator T if and only if M* is invariant under T* [5, page 40]. There-
fore according to the Beurling’s theorem, A closed subspace of H*(R)
is invariant under 7§ for each ¢ > 0 if and only if it is the orthogo-
nal complement of @ H*(R) for some inner function ©. Therefore, the
subspaces K¢ are precisely those which are invariant under T} for each

6 > 0. That is why some authors call the Kg a coinvariant subspace of
H*R).
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3. Analytic description of Kg

Let O be an inner function for the upper half plane. Then ©® H*(R)is a
closed subspace of the Hilbert space H*(R). According to the notation
introduced before, the orthogonal complement of @ H*(R) in H*(R) is
denoted by Kg. The following lemma gives an analytic description of
Ko which can be used as the definition of it in all Hardy spaces H?(R),
0<p<oo.

Theorem 3.1. For each inner function®

Ko = HXR) n © H2(R).

Proof. Uses the properties @ € H* and © © = 1. By definition,
Jf € Ko if and only if f € H*(R) and

| 1@ 80y gle) de =0
for each g € H*(R). Thus, f € Kg if and only if f € H*(R)

© f=) _
/_00(9(36) g(z)de =0

for each g € H*(R). This condition is equivalent to é € H*(R). There-

fore f € Ko if and only if f € H*(R) and also f € © H*(R). m

4. Extension to upper and lower half planes

Let h € L*(R). Then the Poisson integral formula

(o] 93
Ph(z):l/ B2 hya,  -ec\R,

S F—E
gives an extension of h to the upper and to the lower half planes. It
can be shown that h € H*(R) if and only if Py, as a function defined in

the upper half plane, is in H*(C, ). Similarly, h € H?(R) if and only if
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Py, as a function defined in the lower half plane, is in H*(C_) [12]. An
f € Ko belongs in particular to H*(R). Therefore it has an extension
f(2) to the upper half plane, belonging to H*(C, ) and given there by

the formula

f(2) = Ps(2) for z€ C;.

An inner function © can be (formally) extended to the lower half plane

by putting

for z € C_. The extension of an f € Kg to the lower half plane is indirect
(depending on ©). For such an f we have @ f € H2(R) by Theorem 3.1,
so, by the preceding observation, O f has an analytic extension to the

lower half plane, equal there to

L B em i a= py), sec

T Joo |2 —t)?
We then define the extension of f € Kg to C_ by putting
f(2) =0(2) P5(2) for z€C_,
with ©(z) defined as above in C_. This extension is at least meromorphic

in the lower half plane.

Remark: We have liin O(z) = O(z) and lirén f(z) = f(z) for al-
most all z € R. In these limits, z is allowed to tend to  non-tangentially

from either half plane.

With above definitions, Theorem 3.1 yields the following characteriza-

tion of Kg.

Theorem 4.1. The space Kg consists precisely of the functions
f € L*(R) with extension to the upper half plane belonging to H*(Cy, )

and whose extension to the lower half plane makes ) € H*(C.).

For further applications of this result see [8].
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5. Analytic continuation along R

A function f € Kg can be continued analytically across intervals of R
on which O is analytic. This result has important consequences in char-

acterizing elements of Kz when B is a meromorphic Blaschke product.

Theorem 5.1. If O is analytic in a neighborhood of the interval
(a,b) C R then any f € Ko is also analytic there.

Proof. By Theorem 4.1, f and é are respectively holomorphic in
the upper and lower half planes. Without loss of generality, suppose O is
holomorphic inside the rectangle { z; a < Rz < b, =2 < Sz < 2}. Thus

f=0- L is also analytic inside that rectangle except possibly on (a, ),
and for almost all z € R, llilmo f(z+1iy) exists. Choose a, § € (a,b) such
y nd

that this is true for z = a and for z = 3.

With ¢ > 0, let us take the paths

r = [Oé—|—l,Oé—Z]U[a—l,ﬁ—l]U[ﬁ—l,ﬁ—Fl]U[ﬁ—|—l,0&—|—l],
I'. [ +ie,a —ie|U [a—ie, B —ie] U [ —ie, B+ ic) U [ + ie, a + ig],

each oriented counterclockwise. For each point z inside I', let g(z) =
1

2—/ g(—o d¢. Then gis holomorphic inside I'. By the Cauchy integral
T Jr( — 2

formula,
1
o2 = 1)+ 5 [ I g

for ¢ < |¥z] < 2. Since f is bounded on the vertical segments through
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a and 3,
lim f(C) dC =0 and lim J(©) d¢ = 0.
=0 Jlatie,a—ic] C - =0 J[g—ic ftic] C_ z

On the horizontal segments

/[a &d@r ) e = /( f(t —ie) f(t,—l_ig))dt.

—iepoic] C — 2 tic,atic] C — 2 t—ic—2z t4ic—z
{ { ) {
Both u and M converge in L*(dt) norm to £ ), as
W€ —z t4 16—z t— 2z
e — 0. Thus
lim f(©) dc + f(©) dc =0,
=0 Jla—ie,f—ic] C—z [B4ic,a+ic] (—z

Hence ¢ = f in the lower and in the upper part of the interior of I.
Therefore, f is holomorphic on (a, ). Since @ and 3 can be taken as

close to @ and to b as we want, f is holomorphic on (a,b). m

6. Paley-Wiener spaces as model subspaces

Let ¢ > 0. Then, O(z) = exp(io z) is an entire inner function. In this
case, the functions f(z) € K¢ differ by the factor €7%/? from those in a

Paley-Wiener space.

Theorem 6.1. Let 0 > 0. Then f € K i-e if and only if [ is an
entire function of exponential type, square integrable on the real line,
with

1 ' 1 '

—Uglimsupwgo and Oglimsupwga

y—~400 Y Yy——00 |y|
Proof. Since O(z) = exp(io z) is analytic across R, each f € K. ice
is also analytic there. Furthermore, f € H*(C,) and é € H*(C.)
imply that f is analytic on C; and also on C_, that f € L*(R), and

besides that the support of the Fourier-Plancherel transform of f is a
subset of [0,0]. Thus f € L'(R) N L*(R), and for cach z = z € R,
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flz) = / f(t) e“'dt. By the uniqueness theorem for analytic func-
0

tions, equality holds everywhere. Therefore f is an entire function of

exponential type with the indicated growth conditions on the imaginary

axis. The if part is an easy consequence of the celebrated Paley-Wiener

theorem. m

The following Corollary is an immediate consequence of the Paley-Wiener
representation of entire functions of exponential type and the preced-
ing theorem. The indicated representation, by itself, shows that each
[ € K. ise is an entire function of exponential type which is square inte-
grable on the real line. The representation, moreover, restricts the rate

of growth of f along the imaginary axis.

Corollary 6.2. Fach [ € K s« has the representation
Je = [ do e
0
, where f € L2(0,0).

7. The model space Kpg

Let {z;}x>1 be a sequence of complex numbers in the upper half plane

i Z— 2 , ' i—z
C,. Let by(z) = '™ - “" where ay is so chosen that " - E>

Z — Zg ’L—gk_

K
0. The rational function Bg = H by is called a finite Blaschke product

k=1
for the upper half plane; By is analytic at each point of the real line
o oS
and | Bg(z)| = 1 for z € R. The relation 2&2 < 00 s a
k=1 | %k —I_ t |

necessary and sufficient condition for the uniform convergence of By
on compact sets, disjoint from the closure of {z;; k > 1}, to a non-
zero analytic function B = H b, = Klim Byg, and we call B an infinite

k=1
Blaschke product for the upper half plane [9, page 120]. Furthermore,

| B(z)| < 1 for z € Cy. Therefore, by Fatou’s theorem [9, page 57],
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for almost all € R, Egix B(z) exists. Denoting that limit by B(z)
(wherever it exists), one has | B(z)| = 1 almost everywhere [9, page 66].
A Blaschke sequence in the upper half plane, {z;}, has no accumulation
point on the real line if and only if klirglo |zx| = oo. Here, since the z
stay away from zero, a necessary and sufficient condition for the uniform

convergence of Bx to B on compact sets disjoint from {z;; k > 1} is

Sz
that Z | |k2 < 00. In this case, B is a meromorphic function with poles
2k
k=1
at the z;. For this reason, it is called a meromorphic Blaschke product.

The function B is analytic at each point of R, and | B(z)| =1 for z € R.
Let us multiply B by a constant of modulus one to get B(0) = 1. Then

for each z different from all the z;,
B(z) =] (Z_k . Z—Zk)‘
k=1 %k

To emphasize legitimacy of repetition, let {2; }x>1 be a distinct sequence

in the upper half plane with z;, — oo and let {m;}r>1 be a sequence

e . > my %Zk

of positive integers. Suppose that Z P < oo. Then B(z) =
2k
k=1

[e) _ my

Z 22—z
H (—k . i ) is a meromorphic Blaschke product.
e 2 zZ— Zp

Theorem 7.1. The space Kg consists precisely of the meromorphic

functions f with poles of order at most my at the z,, such that f €

H?*(Cy) and also % € H*(C.).

Proof. Let f € Kg. Then by Theorem 4.1, f and % are respectively

analytic in the upper and lower half planes. Hence f = B - = is a
meromorphic function in the lower half plane, with poles of order at
most my, at the z;. Finally, by Theorem 5.1, f is analytic at each point
of the real line. If, on the other hand, f € H*(C, ) and % € H*(C.),
then at least f € L*(R). Thus f € Kz by Theorem 4.1. m

The following result is an easy consequence of Theorem 7.1. It can also
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be shown that Kp is actually the closed subspace of H*(R) generated

1
by the elements ——— with 1 < /{; < m; and k£ > 1.
(z — 2 )%

Corollary 7.2. For each £;, 1 < 0, < my and k > 1, we have
1

(Z — Zp )Zk
The following result gives a complete description of Kg when B is a
finite Blaschke product.

€ Kg.

Corollary 7.3. Let B be the finite Blaschke product
K (z—a\™
B =] ( L ) .

Then Kpg consists precisely of the linear combinations of the simple frac-

1
tions W, where 1 < k< K and 1 < {; < my. Thus f € Kg if
Z — Zp )k
and only if
P(z
(2) ”

- Hf:l( Z = 2]‘7 )mk 7

where P is a polynomial of degree mq + - - -+ mg — 1.

Every meromorphic Blaschke product can be represented as

26
B(z)= —= for z€C,
()= 53 1
where E' is an entire function with zeros at the z; [13]. The order of z;
as a zero of F is the same as its order as a pole of B. In the general case,
F is not necessarily of exponential type. In the following we write F*(z)

for E(Z). This observation enables us to give another characterization

of ](B .

Theorem 7.4 The space Kg consists precisely of functions of the
form %, where [ is an entire function with both 5 € H*(Cy) and

f

J 2
<€ HY(C),
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Proof. Let g € Kg. Then by Theorem 7.1, g is a meromorphic
function with poles of order at most m; at the z,. Hence g F is an

entire function, where F is the entire function furnished by before. Put

S f _ 9
f=gFE. Then =€ H?*(C,), and - g€ H?*(C_). On the

other hand, if f satisfies these conditions, then % € Kp by Theorem
7.1.m

The preceding result enables us to characterize the minimal majorant
for K when B is a meromorphic Blaschke product with zeros in a Stoltz

domain [8].
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