EXTENDING FUNCTIONS IN THE MODEL SUBSPACES OF $H^2(\mathbb{R})$ TO \mathbb{C}

Javad Mashreghi

Département de mathématiques et de statistique Université Laval Québec,
QC Canada G1K 7P4.
Javad.Mashreghi@mat.ulaval.ca

Abstract: It is shown that each function f in a model subspace K_Θ of $H^2(\mathbb{R})$ can be extended to \mathbb{C}. The extension to the upper half plane is in $H^2(\mathbb{C}_+)$ and the extension to the lower half plane is in $\Theta H^2(\mathbb{C}_-)$. We also show that f is analytic at each point of the real line where Θ is analytic. Finally, we completely characterize K_Θ for $\Theta(x) = e^{ix}$ and for Θ being a meromorphic Blaschke product.

1. Introduction

Let f be an analytic function in the upper half plane $\mathbb{C}_+ = \{z \in \mathbb{C} : \Im z > 0\}$. Let $\|f\|_p = \left(\int_{\infty}^{\infty} |f(x+iy)|^p \, dx \right)^{1/p}$ and $\|f\|_p = \sup_{y>0} \|f_y\|_p$ for $0 < p < \infty$. The Hardy space $H^p(\mathbb{C}_+)$ consists of all f’s with

6 MSC(2000): Primary: 30D50, Secondary: 30B40

6 Keywords: argument, harmonic conjugate, Hilbert transform, Lipschitz function.

6 Received: 2 May, 2001; Revised: 10 January, 2002

6 This research was supported by NSERC (Canada) and FCAR (Québec).
The Hardy space $H^\infty(\mathbb{C}_+)$ consists of all bounded analytic functions in the upper half plane. In this case $\|f\|_\infty = \sup_{z \in \mathbb{C}_+} |f(z)|$. For $0 < p < 1$, $H^p(\mathbb{C}_+)$ with the distance $\|f - g\|_p^p$ is a complete metric space. For $1 \leq p < \infty$, $H^p(\mathbb{C}_+)$, $\| \cdot \|_p$ is a Banach space. In particular, $H^2(\mathbb{C}_+)$, $\| \cdot \|_2$ is a Hilbert space. Finally, $H^\infty(\mathbb{C}_+)$ is a Banach algebra [9, pages 70-74].

For each $f \in H^p(\mathbb{C}_+)$, and for almost all $x \in \mathbb{R}$, $\lim_{z \to x, z \in \mathbb{C}_+} f(z)$ exists. Denoting this limit by $f(x)$, we have $f \in L^p(\mathbb{R})$, and furthermore, $\|f\|_p = \|f\|_{L^p(\mathbb{R})}$. In the preceding limit, z is required to tend to x from within sectors of opening $< \theta$ having vertex at x, and symmetric about the vertical line passing through x. We frequently say that $f(z) \to f(x)$ as z tends to x non-tangentially [4, page 6].

Therefore, there is a canonical correspondence between $H^p(\mathbb{C}_+)$ and a subspace of $L^p(\mathbb{R})$, denoted by $H^p(\mathbb{R})$. The space $H^p(\mathbb{R})$ can also be independently defined as the set of all $f \in L^p(\mathbb{R})$, with (as a distribution) $\hat{f}(x) = 0$ for $x < 0$. The two definitions are equivalent [7, page 172]. The Hardy spaces $H^p(\mathbb{C}_-)$ are defined similarly. The functions in $H^p(\mathbb{C}_-)$ live in the lower half plane and the family of their boundary values, as functions on \mathbb{R}, is precisely the space $\overline{H^p(\mathbb{R})}$. See also Chapter 11 of [4].

The function $\Theta \in H^\infty(\mathbb{R})$ is said to be inner if $|\Theta(x)| = 1$ for almost all $x \in \mathbb{R}$. For each inner function Θ, the set $\Theta H^2(\mathbb{R})$ is a closed subspace of the Hilbert space $H^2(\mathbb{R})$ [9, pages 79-80]. Now we are able to introduce our hero.

Definition The model space K_Θ is the orthogonal complement of
Extending functions in the ...

$\Theta H^2(\mathbb{R})$ in $H^2(\mathbb{R})$.

In this paper we study the model space K_Θ corresponding to the inner function Θ. In Section 2 we briefly discuss the role of model subspaces in operator theory. In Section 3 an analytic description of K_Θ is given. This new formulation, which is obtained using Hilbert space characteristic of $H^2(\mathbb{R})$, can be exploited to define K_Θ in the Hardy space $H^2(\mathbb{R})$. This representation also enables us to extend each function in K_Θ to the whole complex plane. In Section 4 we extend an $f \in K_\Theta$ to \mathbb{C}. This extension has three fundamental properties. First, $\lim_{z \to x} f(z) = f(x)$ for almost all $x \in \mathbb{R}$. In these limit, z is allowed to tend to x non-tangentially from either half plane. Second, f as a function defined in the upper half plane is in $H^2(\mathbb{C}_+)$, Third, f as a function defined in the lower half plane is in $\Theta H^2(\mathbb{C}_-)$. Therefore, f is at least analytic in the upper half plane and is meromorphic in the lower half plane. Furthermore, in Section 5 we show that f is already analytic wherever Θ is on the real line. Finally in Sections 6 and 7 we completely characterize K_Θ corresponding to $\Theta(x) = e^{ix}$ and for Θ being a meromorphic Blaschke product. In these two cases, and only for them, each $f \in K_\Theta$ is analytic on the whole real line.

2. Link to operator theory

In this section we explain the origin of model subspaces of $H^2(\mathbb{R})$. Let $f \in H^2(\mathbb{R})$. By the Fourier-Plancherel theorem, if we write

$$\hat{f}_N(\lambda) = \int_{-N}^{N} e^{-it\lambda} f(t) \, dt,$$

then, as $N \to \infty$, the $\hat{f}_N(\lambda)$ tend in $L^2(\mathbb{R})$ to a function $\hat{f}(\lambda)$, called the Fourier-Plancherel transform of f. We can characterize an $f \in H^2(\mathbb{R})$ in terms of its Fourier-Plancherel transform. A function $f \in L^2(\mathbb{R})$ is in $H^2(\mathbb{R})$ if and only if $\hat{f}(\lambda) = 0$ for almost every $\lambda < 0$ [9, page 131]. Therefore, there is a canonical isomorphism between $H^2(\mathbb{R})$ and
$L^2((0, \infty))$. Based on the preceding observation, a function $f \in L^2(\mathbb{R})$ is in $H^2(\mathbb{R})$ if and only if $\hat{f}(\lambda) = 0$ for almost every $\lambda > 0$.

Let $\delta > 0$. Then the map T_δ

$$H^2(\mathbb{R}) \mapsto H^2(\mathbb{R})$$

$$f(t) \mapsto \exp(i\delta t) f(t),$$

is called a forward shift operator on $H^2(\mathbb{R})$. Since for each $f \in H^2(\mathbb{R})$

$$\widehat{T_\delta (f)}(\lambda) = \hat{f}(\lambda - \delta), \quad \lambda \in \mathbb{R},$$

T_δ shifts the spectrum of f forward by δ units. Beurling in his classical paper [2] characterized the invariant subspaces of $H^2(\mathbb{R})$ for the forward shift operators.

Beurling’s theorem: A closed subspace of $H^2(\mathbb{R})$ is invariant under T_δ, for each $\delta > 0$, if and only if it is of the form $\Theta H^2(\mathbb{R})$ for some inner function Θ.

The adjoint of a forward shift operator, T_δ^*, is called a backward shift operator. By direct verification, one verifies that T_δ^* is defined by

$$\widehat{T_\delta^* (f)}(\lambda) = \begin{cases} f(\lambda + \delta), & \text{if } \lambda > 0, \\ 0, & \text{if } \lambda < 0 \end{cases}$$

for $f \in H^2(\mathbb{R})$ [6]. Therefore, T_δ^* shifts the spectrum of f backward by δ units, and then chops off the negative part of what is thus obtained. In a Hilbert space, a closed subspace M is invariant under a bounded operator T if and only if M^\perp is invariant under T^* [5, page 40]. Therefore according to the Beurling’s theorem, A closed subspace of $H^2(\mathbb{R})$ is invariant under T_δ^* for each $\delta > 0$ if and only if it is the orthogonal complement of $\Theta H^2(\mathbb{R})$ for some inner function Θ. Therefore, the subspaces K_Θ are precisely those which are invariant under T_δ^* for each $\delta > 0$. That is why some authors call the K_Θ a coinvariant subspace of $H^2(\mathbb{R})$.
3. Analytic description of K_Θ

Let Θ be an inner function for the upper half plane. Then $\Theta H^2(\mathbb{R})$ is a closed subspace of the Hilbert space $H^2(\mathbb{R})$. According to the notation introduced before, the orthogonal complement of $\Theta H^2(\mathbb{R})$ in $H^2(\mathbb{R})$ is denoted by K_Θ. The following lemma gives an analytic description of K_Θ which can be used as the definition of it in all Hardy spaces $H^p(\mathbb{R})$, $0 < p \leq \infty$.

Theorem 3.1. For each inner function Θ

\[K_\Theta = H^2(\mathbb{R}) \cap \Theta \overline{H^2(\mathbb{R})}. \]

Proof. Uses the properties $\Theta \in H^\infty$ and $\Theta \overline{\Theta} = 1$. By definition, $f \in K_\Theta$ if and only if $f \in H^2(\mathbb{R})$ and

\[\int_{-\infty}^{\infty} f(x) \overline{\Theta(x)} g(x) \, dx = 0 \]

for each $g \in H^2(\mathbb{R})$. Thus, $f \in K_\Theta$ if and only if $f \in H^2(\mathbb{R})$

\[\int_{-\infty}^{\infty} \frac{f(x)}{\Theta(x)} \overline{g(x)} \, dx = 0 \]

for each $g \in H^2(\mathbb{R})$. This condition is equivalent to $\frac{f}{\Theta} \in \overline{H^2(\mathbb{R})}$. Therefore $f \in K_\Theta$ if and only if $f \in H^2(\mathbb{R})$ and also $f \in \Theta \overline{H^2(\mathbb{R})}$. \[\square \]

4. Extension to upper and lower half planes

Let $h \in L^2(\mathbb{R})$. Then the Poisson integral formula

\[P_h(z) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|z-t|^2}{|z-t|^2} h(t) \, dt, \quad z \in \mathbb{C} \setminus \mathbb{R}, \]

gives an extension of h to the upper and to the lower half planes. It can be shown that $h \in H^2(\mathbb{R})$ if and only if P_h, as a function defined in the upper half plane, is in $H^2(\mathbb{C}_+)$ Similarly, $h \in \overline{H^2(\mathbb{R})}$ if and only if
P_b, as a function defined in the lower half plane, is in $H^2(\mathbb{C}_-)$ [12]. An $f \in K_\Theta$ belongs in particular to $H^2(\mathbb{R})$. Therefore it has an extension $f(z)$ to the upper half plane, belonging to $H^2(\mathbb{C}_+)$ and given there by the formula

$$f(z) = P_f(z) \text{ for } z \in \mathbb{C}_+.$$

An inner function Θ can be (formally) extended to the lower half plane by putting

$$\Theta(z) = \frac{1}{\Theta(\overline{z})}$$

for $z \in \mathbb{C}_-$. The extension of an $f \in K_\Theta$ to the lower half plane is indirect (depending on Θ). For such an f we have $\overline{\Theta} f \in H^2(\mathbb{R})$ by Theorem 3.1, so, by the preceding observation, $\overline{\Theta} f$ has an analytic extension to the lower half plane, equal there to

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|3z|}{|z-t|^2} \overline{\Theta(t)} f(t) \, dt = P_{\overline{\Theta} f}(z), \quad z \in \mathbb{C}_-.$$

We then define the extension of $f \in K_\Theta$ to \mathbb{C}_- by putting

$$f(z) = \Theta(z) P_{\overline{\Theta} f}(z) \text{ for } z \in \mathbb{C}_-,$$

with $\Theta(z)$ defined as above in \mathbb{C}_-. This extension is at least meromorphic in the lower half plane.

Remark: We have $\lim_{z \to x} \Theta(z) = \Theta(x)$ and $\lim_{z \to x} f(z) = f(x)$ for almost all $x \in \mathbb{R}$. In these limits, z is allowed to tend to x non-tangentially from either half plane.

With above definitions, Theorem 3.1 yields the following characterization of K_Θ.

Theorem 4.1. The space K_Θ consists precisely of the functions $f \in L^2(\mathbb{R})$ with extension to the upper half plane belonging to $H^2(\mathbb{C}_+)$ and whose extension to the lower half plane makes $\frac{f}{\Theta} \in H^2(\mathbb{C}_-)$.

For further applications of this result see [8].
5. Analytic continuation along \mathbb{R}

A function $f \in K_\Theta$ can be continued analytically across intervals of \mathbb{R} on which Θ is analytic. This result has important consequences in characterizing elements of K_B when B is a meromorphic Blaschke product.

Theorem 5.1. If Θ is analytic in a neighborhood of the interval $(a, b) \subset \mathbb{R}$ then any $f \in K_\Theta$ is also analytic there.

Proof. By Theorem 4.1, f and $\frac{f}{\Theta}$ are respectively holomorphic in the upper and lower half planes. Without loss of generality, suppose Θ is holomorphic inside the rectangle $\{ z; a < Rz < b, -2 < \Im z < 2 \}$. Thus $f = \Theta \cdot \frac{f}{\Theta}$ is also analytic inside that rectangle except possibly on (α, β), and for almost all $x \in \mathbb{R}$, $\lim_{|y| \to 0} f(x + iy)$ exists. Choose $\alpha, \beta \in (a, b)$ such that this is true for $x = \alpha$ and for $x = \beta$.

With $\varepsilon > 0$, let us take the paths

$\Gamma = [\alpha + i, \alpha - i] \cup [\alpha - i, \beta - i] \cup [\beta - i, \beta + i] \cup [\beta + i, \alpha + i],$

$\Gamma_z = [\alpha + i\varepsilon, \alpha - i\varepsilon] \cup [\alpha - i\varepsilon, \beta - i\varepsilon] \cup [\beta - i\varepsilon, \beta + i\varepsilon] \cup [\beta + i\varepsilon, \alpha + i\varepsilon],$

each oriented counterclockwise. For each point z inside Γ, let $g(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$. Then g is holomorphic inside Γ. By the Cauchy integral formula,

$g(z) = f(z) + \frac{1}{2\pi i} \int_{\Gamma_z} \frac{f(\zeta)}{\zeta - z} d\zeta$

for $\varepsilon < |\Re z| < 2$. Since f is bounded on the vertical segments through
\[\alpha \text{ and } \beta, \]
\[\lim_{\varepsilon \to 0} \int_{[\alpha + i\varepsilon, \alpha - i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0 \quad \text{and} \quad \lim_{\varepsilon \to 0} \int_{[\beta - i\varepsilon, \beta + i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0. \]

On the horizontal segments
\[\int_{[\alpha - i\varepsilon, \beta - i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta + \int_{[\beta + i\varepsilon, \alpha + i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \int_{\alpha}^{\beta} \left(\frac{f(t - i\varepsilon)}{t - i\varepsilon - z} - \frac{f(t + i\varepsilon)}{t + i\varepsilon - z} \right) \, dt. \]

Both \(\frac{f(t - i\varepsilon)}{t - i\varepsilon - z} \) and \(\frac{f(t + i\varepsilon)}{t + i\varepsilon - z} \) converge in \(L^2(dt) \) norm to \(\frac{f(t)}{t - z} \), as \(\varepsilon \to 0 \). Thus
\[\lim_{\varepsilon \to 0} \int_{[\alpha - i\varepsilon, \beta - i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta + \int_{[\beta + i\varepsilon, \alpha + i\varepsilon]} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0. \]

Hence \(g \equiv f \) in the lower and in the upper part of the interior of \(\Gamma \). Therefore, \(f \) is holomorphic on \((\alpha, \beta) \). Since \(\alpha \) and \(\beta \) can be taken as close to \(a \) and to \(b \) as we want, \(f \) is holomorphic on \((a, b) \). \(\blacksquare \)

6. Paley-Wiener spaces as model subspaces

Let \(\sigma > 0 \). Then, \(\Theta(x) = \exp(i \sigma x) \) is an entire inner function. In this case, the functions \(f(x) \in K_\Theta \) differ by the factor \(e^{i\sigma x^2/2} \) from those in a Paley-Wiener space.

Theorem 6.1. Let \(\sigma > 0 \). Then \(f \in K_{e^{i\sigma x}} \) if and only if \(f \) is an entire function of exponential type, square integrable on the real line, with

\[-\sigma \leq \limsup_{y \to +\infty} \log \frac{|f(iy)|}{y} \leq 0 \quad \text{and} \quad 0 \leq \limsup_{y \to -\infty} \frac{\log |f(iy)|}{|y|} \leq \sigma. \]

Proof. Since \(\Theta(x) = \exp(i \sigma x) \) is analytic across \(\mathbb{R} \), each \(f \in K_{e^{i\sigma x}} \) is also analytic there. Furthermore, \(f \in H^2(\mathbb{C}_+) \) and \(\frac{f}{\Theta} \in H^2(\mathbb{C}_-) \) imply that \(f \) is analytic on \(\mathbb{C}_+ \) and also on \(\mathbb{C}_- \), that \(f \in L^2(\mathbb{R}) \), and besides that the support of the Fourier-Plancherel transform of \(f \) is a subset of \([0, \sigma]\). Thus \(\hat{f} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \), and for each \(z = x \in \mathbb{R} \),
Extending functions in the ...

\[f(z) = \int_0^\sigma \hat{f}(t) e^{itz} \, dt. \]

By the uniqueness theorem for analytic functions, equality holds everywhere. Therefore \(f \) is an entire function of exponential type with the indicated growth conditions on the imaginary axis. The if part is an easy consequence of the celebrated Paley-Wiener theorem.

The following Corollary is an immediate consequence of the Paley-Wiener representation of entire functions of exponential type and the preceding theorem. The indicated representation, by itself, shows that each \(f \in K_{\sigma, \infty} \) is an entire function of exponential type which is square integrable on the real line. The representation, moreover, restricts the rate of growth of \(f \) along the imaginary axis.

Corollary 6.2. Each \(f \in K_{\sigma, \infty} \) has the representation

\[f(z) = \int_0^\sigma \hat{f}(t) e^{itz} \, dt \]

, where \(\hat{f} \in L^2(0, \sigma) \).

7. The model space \(K_B \)

Let \(\{z_k\}_{k \geq 1} \) be a sequence of complex numbers in the upper half plane \(\mathbb{C}_+ \). Let \(b_k(z) = e^{i\alpha_k} \cdot \frac{z - z_k}{z - \overline{z}_k} \), where \(\alpha_k \) is so chosen that \(e^{i\alpha_k} \cdot \frac{i - z_k}{i - \overline{z}_k} \geq 0 \). The rational function \(B_K = \prod_{k=1}^K b_k \) is called a *finite Blaschke product* for the upper half plane; \(B_K \) is analytic at each point of the real line and \(|B_K(x)| = 1 \) for \(x \in \mathbb{R} \). The relation \(\sum_{k=1}^{\infty} \frac{3z_k}{|z_k + i|^2} < \infty \) is a necessary and sufficient condition for the uniform convergence of \(B_K \) on compact sets, disjoint from the closure of \(\{z_k; k \geq 1\} \), to a non-zero analytic function \(B = \prod_{k=1}^{\infty} b_k = \lim_{K \to \infty} B_K \), and we call \(B \) an *infinite Blaschke product* for the upper half plane [9, page 120]. Furthermore, \(|B(z)| < 1 \) for \(z \in \mathbb{C}_+ \). Therefore, by Fatou's theorem [9, page 57],
for almost all $x \in \mathbb{R}$, $\lim_{z \to x} B(z)$ exists. Denoting that limit by $B(x)$ (wherever it exists), one has $|B(x)| = 1$ almost everywhere [9, page 66]. A Blaschke sequence in the upper half plane, $\{z_k\}$, has no accumulation point on the real line if and only if $\lim_{k \to \infty} |z_k| = \infty$. Here, since the z_k stay away from zero, a necessary and sufficient condition for the uniform convergence of B_K to B on compact sets disjoint from $\{z_k; k \geq 1\}$ is that $\sum_{k=1}^{\infty} \frac{|\Im z_k|}{|z_k|^2} < \infty$. In this case, B is a meromorphic function with poles at the \bar{z}_k. For this reason, it is called a *meromorphic Blaschke product*. The function B is analytic at each point of \mathbb{R}, and $|B(x)| = 1$ for $x \in \mathbb{R}$. Let us multiply B by a constant of modulus one to get $B(0) = 1$. Then for each z different from all the \bar{z}_k,

$$B(z) = \prod_{k=1}^{\infty} \left(\frac{\bar{z}_k}{z_k} \cdot \frac{z - z_k}{\overline{z - z_k}} \right).$$

To emphasize legitimacy of repetition, let $\{z_k\}_{k \geq 1}$ be a distinct sequence in the upper half plane with $z_k \to \infty$ and let $\{m_k\}_{k \geq 1}$ be a sequence of positive integers. Suppose that $\sum_{k=1}^{\infty} \frac{m_k \Im z_k}{|z_k|^2} < \infty$. Then $B(z) = \prod_{k=1}^{\infty} \left(\frac{\bar{z}_k}{z_k} \cdot \frac{z - z_k}{\overline{z - z_k}} \right)^{m_k}$ is a meromorphic Blaschke product.

Theorem 7.1. The space K_B consists precisely of the meromorphic functions f with poles of order at most m_k at the \bar{z}_k, such that $f \in H^2(\mathbb{C}_+)$ and also $\frac{f}{B} \in H^2(\mathbb{C}_-)$.

Proof. Let $f \in K_B$. Then by Theorem 4.1, f and $\frac{f}{B}$ are respectively analytic in the upper and lower half planes. Hence $f = B \cdot \frac{f}{B}$ is a meromorphic function in the lower half plane, with poles of order at most m_k at the \bar{z}_k. Finally, by Theorem 5.1, f is analytic at each point of the real line. If, on the other hand, $f \in H^2(\mathbb{C}_+)$ and $\frac{f}{B} \in H^2(\mathbb{C}_-)$, then at least $f \in L^2(\mathbb{R})$. Thus $f \in K_B$ by Theorem 4.1.

The following result is an easy consequence of Theorem 7.1. It can also
be shown that K_B is actually the closed subspace of $H^2(\mathbb{R})$ generated by the elements $\frac{1}{(x - z_k)^{\ell_k}}$ with $1 \leq \ell_k \leq m_k$ and $k \geq 1$.

Corollary 7.2. For each ℓ_k, $1 \leq \ell_k \leq m_k$ and $k \geq 1$, we have

$$\frac{1}{(z - z_k)^{\ell_k}} \in K_B.$$

The following result gives a complete description of K_B when B is a finite Blaschke product.

Corollary 7.3. Let B be the finite Blaschke product

$$B(z) = \prod_{k=1}^{K} \left(\frac{z - z_k}{z - \bar{z}_k} \right)^{m_k}.$$

Then K_B consists precisely of the linear combinations of the simple fractions $\frac{1}{(z - z_k)^{\ell_k}}$, where $1 \leq k \leq K$ and $1 \leq \ell_k \leq m_k$. Thus $f \in K_B$ if and only if

$$f(z) = \frac{P(z)}{\prod_{k=1}^{K} (z - z_k)^{m_k}},$$

where P is a polynomial of degree $m_1 + \cdots + m_K - 1$.

Every meromorphic Blaschke product can be represented as

$$B(z) \approx \frac{\overline{E(z)}}{\overline{E(\overline{z})}} \text{ for } z \in \mathbb{C},$$

where E is an entire function with zeros at the z_k [13]. The order of z_k as a zero of E is the same as its order as a pole of B. In the general case, E is not necessarily of exponential type. In the following we write $E^*(z)$ for $\overline{E(\overline{z})}$. This observation enables us to give another characterization of K_B.

Theorem 7.4 The space K_B consists precisely of functions of the form $\frac{f}{E^*}$, where f is an entire function with both $\frac{f}{E} \in H^2(\mathbb{C}_+)$ and $\frac{f}{E^*} \in H^2(\mathbb{C}_-)$.

Proof. Let $g \in K_B$. Then by Theorem 7.1, g is a meromorphic function with poles of order at most m_k at the z_k. Hence gE is an entire function, where E is the entire function furnished by before. Put $f = gE$. Then $\frac{f}{E} = g \in H^2(\mathbb{C}_+)$, and $\frac{f}{B} = g \in H^2(\mathbb{C}_-)$. On the other hand, if f satisfies these conditions, then $\frac{f}{E} \in K_B$ by Theorem 7.1.

The preceding result enables us to characterize the minimal majorant for K_B when B is a meromorphic Blaschke product with zeros in a Stoltz domain [8].

References

