ON THE RESTRICTION OF CHARACTERS OF SPECIAL LINEAR GROUPS OF DIMENSION THREE

V. DABBAGHIAN

Communicated by Jamshid Moori

Abstract

Let G be the special linear group $\operatorname{SL}(3, q)$, where q is power of a prime p. Here, we show that χ_{P} has a linear constituent with multiplicity one for each irreducible character χ and Sylow p-subgroup P of G. Furthermore, if $\operatorname{cf}(G)$ is the vector space of class functions of G, we show that the restriction of a subset of irreducible characters of G on P is a basis for the vector space of class functions defined on P spanned by $\left\{\phi_{P} \mid \phi \in \operatorname{cf}(G)\right\}$.

1. Introduction

Steinberg asserts, in particular, that for any finite Chevalley group G, each nonprincipal linear character of a maximal unipotent subgroup H (a Sylow p-subgroup where p is the characteristic of G) of G is a constituent of χ_{H} with multiplicity at most 1 for every irreducible character χ of G [8 , Theorem 49]. Moreover, in an earlier work, Gel'fand and Graev [2] showed the same results for groups SL (n, q) for arbitrary n with a particular attention to the case $n=3$. If q is a power of a prime p, by constructing the primitive central idempotents of the complex group algebra $\mathbb{C} G=\mathbb{C S L}(3, q)$, Guzel [3] shows that the restriction of χ to a Sylow p-subgroup of G has a linear constituents with multiplicity 1, for

[^0]each irreducible character χ of G. This result has been referred by the author of this manuscript in [1] without any details.

Here, we provide another explicit proof of this result by using values of the irreducible characters of G on p-elements and writing them down as integral linear combinations of some specific characters.
Theorem 1.1. Let $G=\operatorname{SL}(3, q)$, where $q>2$ is a power of a prime p. Let P be a Sylow p-subgroup of G. Then, for all irreducible characters χ of G, there exists a linear character φ of P such that $\left\langle\chi_{P}, \varphi\right\rangle=1$.

In the following section, we describe the structure of conjugacy classes and irreducible characters of G and their restrictions to the Sylow p subgroup P. Section 3 contains the proof of Theorem 1.1. Finally, in section 4 we conclude that a subset of restricted irreducible characters of G on P is a basis for the vector space of class functions defined on P and spanned by $\left\{\phi_{P} \mid \phi \in \operatorname{cf}(G)\right\}$, where $\operatorname{cf}(G)$ is the vector space of class functions of G.

2. Structure of characters

The special linear group $G=\mathrm{SL}(3, q)$, where q is a power of a prime p, of dimension 3 over the finite field $\mathbb{F}_{q}=\operatorname{GF}(q)$, is the set of all nonsingular 3×3 matrices with determinant 1 .

Let LT (a, b, c) denote a 3×3 lower triangular matrix with diagonal entries being 1 and the entries at the positions $(2,1),(3,1)$ and $(3,2)$ being a, b and c, respectively. The set P of all matrices LT (a, b, c) with $a, b, c \in \mathbb{F}_{q}$ is a Sylow p-subgroup of G of order q^{3}. We use the character values of G restricted to P to show that for each irreducible character χ of G there exists a linear character φ of P such that $\left\langle\chi_{P}, \varphi\right\rangle=1$.

The conjugacy classes and the character table of G are given in [7]. We use notations defined in [7]. We shall use that table to get the values of characters on the different conjugacy classes of G which contain the elements of P.

Table 1 is a part of Table 1a of [7] that shows the structure of conjugacy classes of G which contain some elements of the Sylow p-subgroup P. Let $d=\operatorname{gcd}(3, q-1), \omega$ be a cube root of unity and $\epsilon^{3} \neq 1$, for $\epsilon \in \operatorname{GF}(q)$.

Based on the structure of the elements of P and the fact that ω is a cube root of unity, the elements of P are contained only in the conjugacy classes $\mathcal{C}_{1}^{(0)}, \mathcal{C}_{2}^{(0)}$ and $\mathcal{C}_{3}^{(0, l)}$ of G. The centre $Z(P)=\{\operatorname{LT}(0, z, 0) \mid z \in$
$\left.\mathbb{F}_{q}\right\}$ is an elementary abelian p-group of order q. Using the canonical representative elements of conjugacy classes $\mathcal{C}_{1}^{(0)}, \mathcal{C}_{2}^{(0)}$ and $\mathcal{C}_{3}^{(0, l)}$, we see that the minimal polynomials of elements of these conjugacy classes have degrees 1,2 and 3 , respectively. The minimal polynomials of nontrivial elements of $Z(P)$ have degree 2 , and so nontrivial elements of $Z(P)$ are contained in the conjugacy class $\mathcal{C}_{2}^{(0)}$.

Table 1: Conjugacy classes of $\operatorname{SL}(3, q)$
which contain elements of the Sylow p-subgroup P for $d=1,3$.

Conjugacy class	Canonical representative	Parameters
$\mathcal{C}_{1}^{(k)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ 0 & \omega^{k} & 0 \\ 0 & 0 & \omega^{k}\end{array}\right)$	$0 \leqslant k \leqslant(d-1)$
$\mathcal{C}_{2}^{(k)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ 1 & \omega^{k} & 0 \\ 0 & 0 & \omega^{k}\end{array}\right)$	$0 \leqslant k \leqslant(d-1)$
$\mathcal{C}_{3}^{(k, l)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ \epsilon^{l} & \omega^{k} & 0 \\ 0 & \epsilon^{l} & \omega^{k}\end{array}\right)$	$0 \leqslant k, l \leqslant(d-1)$

The following lemma gives some properties of P.
Lemma 2.1. Suppose $G=\mathrm{SL}(3, q)$, where q is a power of a prime p. If P is a Sylow p-subgroup of G, then we have:
(1) P has $q^{2}+q-1$ conjugacy classes.
(2) P has q^{2} linear characters and $q-1$ non-linear characters of degree q such that their values on nontrivial elements of $Z(P)$ are 1 and $q \omega^{i}$, for some $1 \leqslant i \leqslant p$, respectively, where ω is a primitive $p^{\text {th }}$ root of unity.
(3) If τ is an irreducible character of degree q of P, then $\tau(x)=0$, for $x \notin Z(P)$, and $\sum_{1 \neq z \in Z(P)} \tau(z)=-q$.

Proof. First of all we show $P / Z(P)$ is abelian. Let $x, y \in P$. It is enough to show $x^{-1} y^{-1} x y \in Z(P)$. Let $x=\operatorname{LT}(a, b, c)$ and $y=$

LT (d, e, f). Then, $x^{-1} y^{-1} x y=\operatorname{LT}(0, a f-d c, 0)$. Hence, $P / Z(P)$ is abelian and $P^{\prime} \subseteq Z(P)$, where P^{\prime} is the derived subgroup of P. Conversely, if $z=\operatorname{LT}(0, t, 0) \in Z(P)$, then $z=x^{-1} y^{-1} x y \in P^{\prime}$, where $x=\operatorname{LT}(t, b, c)$ and $y=\operatorname{LT}(0,1, e)$, for $b, c, e \in \mathbb{F}_{q}$. Therefore, $P^{\prime}=Z(P)$.

Now, suppose $h=\mathrm{LT}\left(h_{1}, h_{2}, h_{3}\right) \in P \backslash Z(P)$ so that at least one of h_{1}, h_{3} is not 0 . Then $x^{-1} h x=h^{x}=\operatorname{LT}\left(h_{1}, h_{1} c-a h_{3}-h_{2}, h_{3}\right)$.

As x runs over $P, h_{1} c-a h_{3}-h_{2}$ runs over \mathbb{F}_{q}. Thus, the conjugacy class $\left\{h^{x} \mid x \in P\right\}$ has order q. Therefore, each conjugacy class of P has order 1 or q and P has q single element conjugacy classes, since $|Z(P)|=q$. If n is the number of conjugacy classes of order q, then $|P|=(q \times 1)+(n \times q)$ and so $n=q^{2}-1$. Thus, P has $q^{2}+q-1$ conjugacy classes.

Since $\left|P: P^{\prime}\right|=q^{2}$, then P has q^{2} linear characters and since the number of conjugacy classes of P is $q^{2}+q-1$, then P has $q-1$ nonlinear characters. Let τ be a non-linear irreducible character of P. Since $Z(P) \subseteq Z(\tau)$ and by [5, Corollary 2.30],

$$
\begin{equation*}
\tau^{2}(1) \leqslant|P: Z(\tau)| \leqslant|P: Z(P)|=q^{2}, \tag{2.1}
\end{equation*}
$$

then $\tau(1) \leqslant q$. On the other hand, the number of conjugacy classes of P is $q^{2}+q-1$ and the order of P is q^{3},and thus

$$
q^{3}=|P|=\sum_{i=1}^{q^{2}} \varphi_{i}(1)^{2}+\sum_{j=1}^{q-1} \tau_{j}(1)^{2},
$$

where φ_{i} and τ_{j} are linear and non-linear irreducible characters of P, respectively. Since $\tau_{j}(1) \leqslant q$, then $\tau_{j}(1)=q$ and (2.1) implies $Z(P)=$ $Z(\tau)$. Since $P^{\prime}=Z(P)$, then the value of all linear characters of P on $Z(P)$ is 1 . Also, for an irreducible character τ of degree q, if ρ is the representation which affords τ, then $\rho(z)$ is a scalar for all $1 \neq z \in Z(P)$ and thus $\tau(z)=q \omega^{j}$, for some $1 \leqslant j \leqslant p$, where ω is a primitive $p^{\text {th }}$-root of unity.

Since $\tau^{2}(1)=q^{2}=|P: Z(P)|,[5$, Corollary 2.30$]$ shows that $\tau(x)=0$, for all $x \notin Z(P)$. Using the first orthogonality relation, we get

$$
\frac{1}{|P|} \sum_{x \in P} \tau(x) 1\left(x^{-1}\right)=\frac{1}{|P|} \sum_{x \in P} \tau(x)=\frac{1}{|P|} \sum_{z \in Z(P)} \tau(z)=0 .
$$

Therefore, $\tau(1)=q$ implies

$$
\begin{equation*}
\sum_{1 \neq z \in Z(P)} \tau(z)=-q, \tag{2.2}
\end{equation*}
$$

and this completes the proof.
The following lemmas are simple consequences of Clifford's Theorem [5, Theorem 6.2] and Frattini's argument [6, Lemma 1.13].

Lemma 2.2. Let H be a subgroup of any group $G, x \in N_{G}(H)$ and ϑ and ψ be characters of H. Then, $\left\langle\vartheta^{x}, \psi^{x}\right\rangle=\langle\vartheta, \psi\rangle$. In particular, taking $\psi=\vartheta, \vartheta^{x}$ is irreducible if and only if ϑ is irreducible.

Lemma 2.3. Let G be a normal subgroup of a group L and H be a Sylow p-subgroup of G. Let χ and ϑ be irreducible characters of G and H, respectively. Let $l \in L$. Then,

$$
\left\langle\chi_{H}, \vartheta\right\rangle=\left\langle\chi_{H}^{l}, \vartheta^{x}\right\rangle \text { for some } x \in N_{L}(H)
$$

In particular, $\left\langle\chi_{H}, \mathbf{1}\right\rangle=\left\langle\chi_{H}^{l}, \mathbf{1}\right\rangle$.
Tables 2 and 3 show the values of the restriction of the irreducible characters of the groups $\operatorname{SL}(3, q)$ on the elements of Sylow p-subgroup P when $d=1$ and $d=3$, respectively (see [7] Table 1b).

Lemma 2.4. Let $G=\mathrm{SL}(3, q)$, where $q>2$ is a power of a prime p and let P be the Sylow p-subgroup of G and ψ be the irreducible character of degree $q^{2}+q$ of G. Then,
(1) $\left\langle\psi_{P}, \mathbf{1}\right\rangle=2$.
(2) $\left\langle\psi_{P}, \tau\right\rangle=1$, for each irreducible character τ of degree q of P.
(3) There exist some non-principal linear characters φ and ϕ of P such that $\left\langle\psi_{P}, \varphi\right\rangle=0$ and $\left\langle\psi_{P}, \phi\right\rangle=1$.

Proof. Suppose $x=\operatorname{LT}(a, b, c) \in P$ is contained in the conjugacy class $\mathcal{C}_{2}^{(0)}$ of G. Since each element in $\mathcal{C}_{2}^{(0)}$ has a minimal polynomial of degree $2,(x-1)^{2}=\operatorname{LT}(0, a c, 0)=0$. This, together with $x \notin Z(P)$, implies $a=0$ or $c=0$ but not both. Therefore the number of possibilities for the elements x with the above properties is $2 q(q-1)$. The elements of $Z(P)$ are also contained in $\mathcal{C}_{2}^{(0)}$ and the values of ψ on $\mathcal{C}_{1}^{(0)}, \mathcal{C}_{2}^{(0)}$ and $\mathcal{C}_{3}^{(0,0)}$ are $q^{2}+q, q$ and 0 , respectively. Thus, we have

$$
\begin{gathered}
\left\langle\psi_{P}, \mathbf{1}\right\rangle=\frac{1}{|P|} \sum_{x \in P} \psi_{P}(x) 1(x) \\
=\frac{1}{q^{3}}\left(\psi_{P}(1)+\sum_{1 \neq z \in Z(P)} \psi_{P}(z)+\sum_{z \notin Z(P)} \psi_{P}(z)\right)
\end{gathered}
$$

$$
=\frac{1}{q^{3}}\left(\left(q^{2}+q\right)+(q-1) q+2 q(q-1) q\right)=2
$$

This proves the first assertion.
Now, suppose τ is an irreducible character of degree q of P. By using Table 2 for the value of ψ on the conjugacy class $\mathcal{C}_{2}^{(0)}$ of G which contains the elements of $Z(P)$ and Lemma 2.1, we have

$$
\begin{gathered}
\left\langle\psi_{P}, \tau\right\rangle=\frac{1}{|P|} \sum_{x \in P} \psi_{P}(x) \overline{\tau(x)} \\
=\frac{1}{q^{3}}\left(\psi_{P}(1) \tau(1)+\sum_{1 \neq z \in Z(P)} \psi_{P}(z) \overline{\tau(z)}+\sum_{z \notin Z(P)} \psi_{P}(z) \overline{\tau(z)}\right) \\
=\frac{1}{q^{3}}\left(\left(q^{2}+q\right) q-q^{2}+0\right)=1
\end{gathered}
$$

where $\overline{\tau(x)}$ is the complex conjugate of the value $\tau(x)$. Therefore, for each irreducible character τ of degree q of P,
as claimed.

$$
\left\langle\psi_{P}, \tau\right\rangle=1
$$

Now, since $\left\langle\psi_{P}, \tau\right\rangle=1$ for each irreducible character τ of degree q of P, then $\psi_{P}=\sum_{i=1}^{q-1} \tau_{i}+\sum_{j=1}^{t} m_{j} \phi_{j}$, where the ϕ_{j} are linear characters of P with the multiplicities m_{j}. Since $\psi(1)=q^{2}+q$ and $\sum_{i=1}^{q-1} \tau_{i}(1)=q^{2}-q$, we have $\sum_{j=1}^{t} m_{j} \phi_{j}(1)=2 q$. Since P possesses $q^{2}-1$ non-principal linear characters, there exists at least one non-principal linear character φ such that $\left\langle\psi_{P}, \varphi\right\rangle=0$.

By the first assertion, $\left\langle\psi_{P}, \mathbf{1}\right\rangle=2$. Hence, $\sum_{j=1}^{\prime t} m_{j} \phi_{j}(1)=2 q-2>1$, where \sum^{\prime} runs over $\phi_{j} \neq 1$. This means there exists some non-principal linear character ϕ of P such that $\left\langle\psi_{P}, \phi\right\rangle \neq 0$. Note that $\left(\nu_{t}\right)_{P}=\rho_{P}-$ $\psi_{P}+\mathbf{1}$ is a character of P and that ρ_{P} is the regular character of P. It follows that any nonprincipal linear constituent ϕ of ψ_{P} has multiplicity 1. This completes the proof.

By the values of characters ω_{m} and γ_{n} on the conjugacy classes $\mathcal{C}_{1}^{(0)}$, $\mathcal{C}_{2}^{(0)}$ and $\mathcal{C}_{3}^{(0, l)}$ in the Table 1 b of $[7]$, we have

$$
\begin{equation*}
\left\{\left(\omega_{1}\right)_{P},\left(\omega_{2}\right)_{P},\left(\omega_{3}\right)_{P}\right\}=\left\{\left(\gamma_{1}\right)_{P},\left(\gamma_{2}\right)_{P},\left(\gamma_{3}\right)_{P}\right\} . \tag{2.3}
\end{equation*}
$$

Table 2: Values of characters of $\operatorname{SL}(3, q)$
on elements of P when $d=1$, where $1 \leqslant i, j \leqslant q-2,1 \leqslant r \leqslant\left(q^{2}-5 q+6\right) / 6$,

$1 \leqslant s \leqslant\left(q^{2}-q\right) / 2$ AND $1 \leqslant t \leqslant\left(q^{2}+q\right) / 3$			
	$\mathcal{C}_{1}^{(0)}$	$\mathcal{C}_{2}^{(0)}$	$\mathcal{C}_{3}^{(0,0)}$
$\mathbf{1}$	1	1	1
ψ	$q^{2}+q$	q	0
ρ	q^{3}	0	0
ζ_{i}	$q^{2}+q+1$	$q+1$	1
η_{j}	$q^{3}+q^{2}+q$	q	0
ε_{r}	$q^{3}+2 q^{2}+2 q+1$	$2 q+1$	1
μ_{s}	$q^{3}-1$	-1	-1
ν_{t}	$q^{3}-q^{2}-q+1$	$1-q$	1

Table 1: Values of characters of $\operatorname{SL}(3, q)$ on elements of P when $d=3$, where $1 \leqslant i, j \leqslant q-2,1 \leqslant r \leqslant\left(q^{2}-5 q+4\right) / 6,1 \leqslant s \leqslant\left(q^{2}-q\right) / 2$,

$1 \leqslant t \leqslant\left(q^{2}+q-2\right) / 3$ AND $1 \leqslant k, m, n \leqslant 3$			
	$\mathcal{C}_{1}^{(0)}$	$\mathcal{C}_{2}^{(0)}$	$\mathcal{C}_{3}^{(0, l)}$
$\mathbf{1}$	1	1	1
ψ	$q^{2}+q$	q	0
ρ	q^{3}	0	0
ζ_{i}	$q^{2}+q+1$	$q+1$	1
η_{j}	$q^{3}+q^{2}+q$	q	0
θ_{k}	$\left(q^{3}+2 q^{2}+2 q+1\right) / 3$	$(2 q+1) / 3$ OR	$(2 q+1) / 3$ OR
		$(1-q) / 3$	$(1-q) / 3$
ε_{r}	$q^{3}+2 q^{2}+2 q+1$	$2 q+1$	1
μ_{s}	$q^{3}-1$	-1	-1
ν_{t}	$q^{3}-q^{2}-q+1$	$1-q$	1
ω_{m}	$\left(q^{3}-q^{2}-q+1\right) / 3$	$(1-q) / 3$ OR	$(1-q) / 3$ OR
		$(2 q+1) / 3$	$(2 q+1) / 3$
γ_{n}	$\left(q^{3}-q^{2}-q+1\right) / 3$	$(1-q) / 3$ OR	$(1-q) / 3$ OR
		$(2 q+1) / 3$	$(2 q+1) / 3$

3. Proof

Proof of Theorem 1. By Table 2, the characters ρ and ψ have degrees q^{3} and $q^{2}+q$, respectively. Now, if we restrict them to P we see that
for all nontrivial $x \in P$, we have $\rho_{P}(x)=0$ and $\psi_{P}(x)=q$ or 0 . Thus, from the values of the other characters of G on P, we get

$$
\begin{gather*}
\left(\zeta_{i}\right)_{P}=\psi_{P}+\mathbf{1} \tag{3.1}\\
\left(\eta_{j}\right)_{P}=\rho_{P}+\psi_{P} \tag{3.2}\\
\left(\varepsilon_{r}\right)_{P}=\rho_{P}+2 \psi_{P}+\mathbf{1} \tag{3.3}\\
\left(\mu_{s}\right)_{P}=\rho_{P}-\mathbf{1} \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\nu_{t}\right)_{P}=\rho_{P}-\psi_{P}+\mathbf{0} \tag{3.5}
\end{equation*}
$$

Since $\rho(1)=q^{3}$ is the order of P and $\rho_{P}(x)=0$, for all $x \neq 1$ in P, thus ρ_{P} is the regular character of P and $\rho_{P}=\sum_{v \in \operatorname{Irr}(P)} v(1) v$. On the other hand, by Lemma 2.4 there exists a non-principal linear character φ of P such that $\left\langle\psi_{P}, \varphi\right\rangle=0$. Then, since $\left\langle\rho_{P}, \varphi\right\rangle=1$, we have

$$
\begin{aligned}
& \left\langle\left(\eta_{j}\right)_{P}, \varphi\right\rangle=\left\langle\rho_{P}+\psi_{P}, \varphi\right\rangle=1, \\
& \left\langle\left(\varepsilon_{r}\right)_{P}, \varphi\right\rangle=\left\langle\rho_{P}+2 \psi_{P}+\mathbf{1}, \varphi\right\rangle=1, \\
& \left\langle\left(\mu_{s}\right)_{P}, \varphi\right\rangle=\left\langle\rho_{P}-\mathbf{1}, \varphi\right\rangle=1
\end{aligned}
$$

and

$$
\left\langle\left(\nu_{t}\right)_{P}, \varphi\right\rangle=\left\langle\rho_{P}-\psi_{P}+\mathbf{1}, \varphi\right\rangle=1
$$

Also, by Lemma 2.4 there exists a non-principal linear character ϕ of P such that $\left\langle\psi_{P}, \phi\right\rangle=1$. Thus,

$$
\left\langle\left(\zeta_{i}\right)_{P}, \phi\right\rangle=\left\langle\psi_{P}+\mathbf{1}, \phi\right\rangle=1 .
$$

For the case that $d=3$, the only remaining characters to consider are θ_{k}, ω_{m} and γ_{n}, for $1 \leqslant k, m, n \leqslant 3$.

Using the Frobenius reciprocity, we have

$$
\left\langle\eta_{j}, \varphi^{G}\right\rangle=\left\langle\varepsilon_{r}, \varphi^{G}\right\rangle=\left\langle\mu_{s}, \varphi^{G}\right\rangle=\left\langle\nu_{t}, \varphi^{G}\right\rangle=1,
$$

and $\left\langle\zeta_{i}, \varphi^{G}\right\rangle=0$. Also, if

$$
\left\langle\left(\theta_{k}\right)_{P}, \varphi\right\rangle=K_{k},\left\langle\left(\omega_{m}\right)_{P}, \varphi\right\rangle=M_{m} \text { and }\left\langle\left(\gamma_{n}\right)_{P}, \varphi\right\rangle=N_{n},
$$

then

$$
\left\langle\theta_{k}, \varphi^{G}\right\rangle=K_{k},\left\langle\omega_{m}, \varphi^{G}\right\rangle=M_{m} \text { and }\left\langle\gamma_{n}, \varphi^{G}\right\rangle=N_{n},
$$

for $1 \leqslant k, m, n \leqslant 3$. Therefore, if we induce φ to G, we get

$$
\varphi^{G}=\rho+(q-2) \eta_{j}+\left(\left(q^{2}-5 q+4\right) / 6\right) \varepsilon_{r}+\left(\left(q^{2}-q\right) / 2\right) \mu_{s}
$$

$$
+\left(\left(q^{2}+q-2\right) / 3\right) \nu_{t}+\sum_{k=1}^{3} K_{k} \theta_{k}+\sum_{m=1}^{3} M_{m} \omega_{m}+\sum_{n=1}^{3} N_{n} \gamma_{n}
$$

Using the fact that $\varphi^{G}(1)=|G: P| \varphi(1)$, we calculate the value at 1 and simplifing the above equation, we have
$|G: P|=-q^{2}-2 q^{3}+q^{5}+\sum_{k=1}^{3} K_{k} \theta_{k}(1)+\sum_{m=1}^{3} M_{m} \omega_{m}(1)+\sum_{n=1}^{3} N_{n} \gamma_{n}(1)$.
Since $|G: P|=q^{5}-q^{3}-q^{2}+1$, we get

$$
\sum_{k=1}^{3} K_{k} \theta_{k}(1)+\sum_{m=1}^{3} M_{m} \omega_{m}(1)+\sum_{n=1}^{3} N_{n} \gamma_{n}(1)=q^{3}+1
$$

Since

$$
\theta_{k}(1)=\left(q^{3}+2 q^{2}+2 q+1\right) / 3
$$

and

$$
\omega_{m}(1)=\gamma_{n}(1)=\left(q^{3}-q^{2}-q+1\right) / 3
$$

we have
$\left(\sum_{k=1}^{3} K_{k}\right)\left(\left(q^{3}+2 q^{2}+2 q+1\right) / 3\right)+\left(\sum_{m=1}^{3} M_{m}+\sum_{n=1}^{3} N_{n}\right)\left(\left(q^{3}-q^{2}-q+1\right) / 3\right)=q^{3}+1$.
Hence, by considering $K=\sum_{k=1}^{3} K_{k}, M=\sum_{m=1}^{3} M_{m}$ and $N=\sum_{n=1}^{3} N_{n}$, we get

$$
K\left(\left(q^{3}+2 q^{2}+2 q+1\right) / 3\right)+(M+N)\left(\left(q^{3}-q^{2}-q+1\right) / 3\right)=q^{3}+1
$$

and so
$(K+M+N) q^{3}+(2 K-(M+N)) q^{2}+\left((2 K-(M+N)) q+(K+M+N)=3\left(q^{3}+1\right)\right.$.
Thus,

$$
\begin{equation*}
(A-3)\left(q^{3}+1\right)=-B\left(q^{2}+q\right) \tag{3.6}
\end{equation*}
$$

where $A=K+M+N$ and $B=2 K-(M+N)$. Since K, M and N are non negative integers and are not all equal to 0 , then A is a positive integer. Since $q \mid-B\left(q^{2}+q\right)$, then $q \mid A-3$ and this means that $A-3=t q$, for some integer t. Hence, simplifying equation (3.6) implies $-B=t\left(q^{2}-q+1\right)$. Thus,

$$
0 \leqslant 3 K=A+B=3-t(q-1)^{2}
$$

Since $d=\operatorname{gcd}(3, q-1)=3$, then we can consider $q>3$, which in this case $A=3+t q>0$ implies $t \geqslant 0$ and $A+B=3-t(q-1)^{2} \geqslant 0$
shows $t \leqslant 0$. Thus, $t=0, A=3$ and $B=0$, which yield $K=1$ and $M+N=2$. Therefore, $\sum_{k=1}^{3} K_{k}=1$ and $\sum_{m=1}^{3} M_{m}+\sum_{n=1}^{3} N_{n}=2$. So, for some $k, K_{k}=1$ and $\left\langle\left(\theta_{k}\right)_{P}, \varphi\right\rangle=1$.

Let $\left\langle\left(\theta_{1}\right)_{P}, \varphi\right\rangle=1$. Then, the characters θ_{1}, θ_{2} and θ_{3} are conjugate in $L=\mathrm{GL}(3, q)$ (see [7, Sec. 4]). Hence, by Lemma 2.3, we have

$$
\left\langle\left(\theta_{1}\right)_{P}, \varphi\right\rangle=\left\langle\left(\theta_{2}\right)_{P}, \varphi^{x}\right\rangle=\left\langle\left(\theta_{3}\right)_{P}, \varphi^{y}\right\rangle=1
$$

for some $x, y \in N_{L}(P)$. On the other hand, by Lemma $2.2, \varphi^{x}$ and φ^{y} are linear characters of P and so the restriction of characters θ_{1}, θ_{2} and θ_{3} to P have at least a constituent of degree one with multiplicity one.

Also, by (2.3),

$$
\left\{\left(\omega_{1}\right)_{P},\left(\omega_{2}\right)_{P},\left(\omega_{3}\right)_{P}\right\}=\left\{\left(\gamma_{1}\right)_{P},\left(\gamma_{2}\right)_{P},\left(\gamma_{3}\right)_{P}\right\}
$$

and so $\sum_{m=1}^{3} M_{m}=1$ and $\sum_{n=1}^{3} N_{n}=1$. Therefore, for some m and n we have $N_{n}=1$ and $M_{m}=1$, which means $\left\langle\left(\omega_{m}\right)_{P}, \varphi\right\rangle=\left\langle\left(\gamma_{n}\right)_{P}, \varphi\right\rangle=1$. Without any ambiguity, we can suppose $\left\langle\left(\omega_{1}\right)_{P}, \varphi\right\rangle=\left\langle\left(\gamma_{1}\right)_{P}, \varphi\right\rangle=1$. Since the elements of each set of characters $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ are conjugate in $L=\operatorname{GL}(3, q)$ (see [7, Sec. 4]), then by Lemma 2.3 and Lemma 2.2, there exist $r, s, t, u \in N_{L}(G)$ such that $\varphi^{r}, \varphi^{s}, \varphi^{t}$ and φ^{u} are linear characters of P and

$$
\left\langle\left(\omega_{2}\right)_{P}, \varphi^{r}\right\rangle=\left\langle\left(\omega_{3}\right)_{P}, \varphi^{s}\right\rangle=\left\langle\left(\gamma_{2}\right)_{P}, \varphi^{t}\right\rangle=\left\langle\left(\gamma_{3}\right)_{P}, \varphi^{u}\right\rangle=1
$$

Hence, for $1 \leqslant m, n \leqslant 3$, the characters $\left(\omega_{m}\right)_{P}$ and $\left(\gamma_{n}\right)_{P}$ have a linear constituent with multiplicity 1 . This completes the proof.

4. Basis for class functions

If G is a finite group with n conjugacy classes such that t of these classes are p-elements, then the $n \times n$ matrix X constructed from the character table of G has an $n \times t$ submatrix M whose columns correspond to the p-elements. Since X is invertible, the columns of M are linearly independent and so M has rank t. Thus, there exist t irreducible characters of G such that for every irreducible character χ of G, the restriction of χ on p-elements is a linear combination of these t characters. Now, suppose $G=\mathrm{SL}(3, q)$. If $d=1$, then equations (3.1) to (3.5) show that the class function ϕ_{P} of P is an integral linear combination of characters ρ_{P}, ψ_{P} and 1, for each generalized character ϕ of G. If $d=3$, then using the values of the characters θ_{k}, ω_{m} and γ_{n} on p-elements, we have

$$
\rho_{P}=\left(\theta_{k}\right)_{P}+\left(\omega_{m}\right)_{P}+\left(\gamma_{n}\right)_{P}-\mathbf{1}
$$

Now, considering equations (3.1) to (3.5), we have

$$
\begin{aligned}
& \left(\zeta_{i}\right)_{P}=\psi_{P}+\mathbf{1} \\
& \left(\eta_{j}\right)_{P}=\left(\theta_{k}\right)_{P}+\left(\omega_{m}\right)_{P}+\left(\gamma_{n}\right)_{P}+\psi_{P}-\mathbf{1} \\
& \left(\varepsilon_{r}\right)_{P}=\left(\theta_{k}\right)_{P}+\left(\omega_{m}\right)_{P}+\left(\gamma_{n}\right)_{P}+2 \psi_{P} \\
& \left(\mu_{s}\right)_{P}=\left(\theta_{k}\right)_{P}+\left(\omega_{m}\right)_{P}+\left(\gamma_{n}\right)_{P}-2 \cdot \mathbf{1}
\end{aligned}
$$

and

$$
\left(\nu_{t}\right)_{P}=\left(\theta_{k}\right)_{P}+\left(\omega_{m}\right)_{P}+\left(\gamma_{n}\right)_{P}-\psi_{P}
$$

Thus, $\left\{\left(\theta_{k}\right)_{P},\left(\omega_{m}\right)_{P},\left(\gamma_{n}\right)_{P}, \psi_{P}, \mathbf{1}_{P}\right\}$ is a basis for the vector space of class functions defined on P with integer coefficients. This is analogous to the theory of π-partial characters of solvable groups, developed by Isaacs, for the case $\pi=\{p\}$ (see [4]).

Acknowledgments

The author thanks the referee for the valuable comments and suggestions.

References

[1] V. Dabbaghian-Abdoly, Constructing representations of finite simple groups and covers, Canad. J. Math. 58 (2006) 23-38.
[2] I.M. Gelfand and M.I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk SSSR 147 (1962) 529532.
[3] E. Güzel, Les representations irreductibles complexes des groups $\mathrm{SL}(3, q)$, PSL(3, q), J. Karadeniz Tech. Univ. 11 (1988) 53-62.
[4] I. M. Isaacs, Characters of π-separable groups, J. Algebra 86 (1984) 98-128.
[5] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.
[6] I. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, 92, AMS, Providence, RI, 2008.
[7] A. W. Simpson and J. S. Frame, The character tables for $\mathrm{SL}(3, q), \mathrm{SU}\left(3, q^{2}\right)$, $\operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right)$, Canad. J. Math. 25 (1973) 486-494.
[8] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968.

Vahid Dabbaghian

MoCSSy Program, The IRMACS Centre, Simon Fraser University, BC, V5A 1S6, Canada.
Email: vdabbagh@sfu.ca

[^0]: MSC(2010): Primary: 20C15; Secondary: 20D20.
 Keywords: Special linear group, irreducible representation, Sylow subgroup.
 Received:09 June 2008, Accepted: 28 August 2009.
 (C) 2010 Iranian Mathematical Society.

