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ON THE RESTRICTION OF CHARACTERS OF
SPECIAL LINEAR GROUPS OF DIMENSION THREE

V. DABBAGHIAN

Communicated by Jamshid Moori

ABSTRACT. Let G be the special linear group SL(3,q), where ¢ is
power of a prime p. Here, we show that xp has a linear constituent
with multiplicity one for each irreducible character y and Sylow
p-subgroup P of G. Furthermore, if cf(G) is the vector space of
class functions of G, we show that the restriction of a subset of
irreducible characters of G on P is a basis for the vector space of
class functions defined on P spanned by {¢p | ¢ € cf(G)}.

1. Introduction

Steinberg asserts, in particular, that for any finite Chevalley group G,
each nonprincipal linear character of a maximal unipotent subgroup H (a
Sylow p-subgroup where p is the characteristic of G) of G is a constituent
of xy with multiplicity at most 1 for every irreducible character y of
G [8, Theorem 49]. Moreover, in an earlier work, Gel’fand and Graev
[2] showed the same results for groups SL(n,q) for arbitrary n with a
particular attention to the case n = 3. If ¢ is a power of a prime p,
by constructing the primitive central idempotents of the complex group
algebra CG = CSL(3, q), Guzel [3] shows that the restriction of x to a
Sylow p-subgroup of G has a linear constituents with multiplicity 1, for
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each irreducible character xy of G. This result has been referred by the
author of this manuscript in [1] without any details.

Here, we provide another explicit proof of this result by using values
of the irreducible characters of G on p-elements and writing them down
as integral linear combinations of some specific characters.

Theorem 1.1. Let G = SL(3, q), where ¢ > 2 is a power of a prime p.
Let P be a Sylow p-subgroup of G. Then, for all irreducible characters
X of G, there exists a linear character ¢ of P such that (xp,¢) = 1.

In the following section, we describe the structure of conjugacy classes
and irreducible characters of G and their restrictions to the Sylow p-
subgroup P. Section 3 contains the proof of Theorem 1.1. Finally, in
section 4 we conclude that a subset of restricted irreducible characters
of G on P is a basis for the vector space of class functions defined on
P and spanned by {¢p | ¢ € cf(G)}, where cf(G) is the vector space of
class functions of G.

2. Structure of characters

The special linear group G' = SL(3, ¢), where ¢ is a power of a prime
p, of dimension 3 over the finite field F, = GF(q), is the set of all
nonsingular 3 x 3 matrices with determinant 1.

Let LT (a,b,c) denote a 3 x 3 lower triangular matrix with diagonal
entries being 1 and the entries at the positions (2,1), (3,1) and (3,2)
being a, b and ¢, respectively. The set P of all matrices LT (a, b, ¢) with
a,b,c € IFy is a Sylow p-subgroup of G of order ¢®. We use the character
values of G restricted to P to show that for each irreducible character
x of G there exists a linear character ¢ of P such that (xp,¢) = 1.

The conjugacy classes and the character table of G are given in [7].
We use notations defined in [7]. We shall use that table to get the values
of characters on the different conjugacy classes of G which contain the
elements of P.

Table 1 is a part of Table 1a of [7] that shows the structure of conju-
gacy classes of G which contain some elements of the Sylow p-subgroup
P. Let d = ged(3,q — 1), w be a cube root of unity and ¢ # 1, for
e € GF(q).

Based on the structure of the elements of P and the fact that w is a
cube root of unity, the elements of P are contained only in the conjugacy

classes Cfg), Céo) and C?(,O’l) of G. The centre Z(P) = {LT (0,2,0) | z €
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F,} is an elementary abelian p-group of order g. Using the canonical

)

representative elements of conjugacy classes C%O), Céo) and Céo’l , We see
that the minimal polynomials of elements of these conjugacy classes have
degrees 1,2 and 3, respectively. The minimal polynomials of nontrivial
elements of Z(P) have degree 2, and so nontrivial elements of Z(P) are
contained in the conjugacy class Céo).
TABLE 1: Conjugacy classes of SL(3, q)
which contain elements of the Sylow p-subgroup P for d =1, 3.

Conjugacy Canonical Parameters

class representative
WwE 000

c® 0 wk 0 0<k<(d—1)
0 0 o
whF 00

csr) 1 Wk 0 0<k<(d—1)
0 0 W
wb 00

csrb d w0 |logki<@—1)
0 € Wk

The following lemma gives some properties of P.

Lemma 2.1. Suppose G = SL(3, q), where q is a power of a prime p.
If P is a Sylow p-subgroup of G, then we have:
(1) P has ¢*> + q— 1 conjugacy classes.
(2) P has ¢? linear characters and q — 1 non-linear characters of
degree q such that their values on nontrivial elements of Z(P)
are 1 and quw', for some 1 < i < p, respectively, where w is a
primative pth root of unity.
(3) If T is an irreducible character of degree q of P, then T(z) =0,
forx @ Z(P), and 321 4.c7p) T(2) = —q.

Proof. First of all we show P/Z(P) is abelian. Let xz,y € P. It

is enough to show 7'y~ lxy € Z(P). Let # = LT (a,b,c) and y =
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LT (d,e, f). Then, 2~ 'y~ tay = LT (0,af — dc,0). Hence, P/Z(P) is
abelian and P’ C Z(P), where P’ is the derived subgroup of P. Con-
versely, if z = LT (0,t,0) € Z(P), then z = 'y lay € P/, where
x =LT(t,b,¢) andy = LT(0, 1, e), for b, c,e € F,. Therefore, P’ = Z(P).

Now, suppose h = LT (h1, he, h3) € P\Z(P) so that at least one of
h1, hg is not 0. Then z Yhe = h* = LT (hl, hic — ahs — hao, hg)

As x runs over P, hic — ahs — hg runs over ;. Thus, the conjugacy
class {h* | x € P} has order ¢q. Therefore, each conjugacy class of P
has order 1 or ¢ and P has ¢ single element conjugacy classes, since
|Z(P)| = q. If n is the number of conjugacy classes of order ¢, then
|IP| = (g x 1)+ (nxq) and son = ¢> — 1. Thus, P has ¢*> + ¢ — 1
conjugacy classes.

Since |P : P'| = ¢?, then P has ¢? linear characters and since the
number of conjugacy classes of P is ¢*> + ¢ — 1, then P has ¢ — 1 non-
linear characters. Let 7 be a non-linear irreducible character of P. Since
Z(P) C Z(r) and by [5, Corollary 2.30] ,

(2.1) (1) <|P:Z(1)| < |P: Z(P)| = ¢,

then 7(1) < ¢. On the other hand, the number of conjugacy classes of
Pis ¢*> + ¢ — 1 and the order of P is ¢® ,and thus

75 (1)%,

ML

q2
¢ =|P|=) i1+
=1 1

<
Il

where ; and 7; are linear and non-linear irreducible characters of P,
respectively. Since 7;(1) < ¢, then 7;(1) = ¢ and (2.1) implies Z(P) =
Z(t). Since P' = Z(P), then the value of all linear characters of P on
Z(P) is 1. Also, for an irreducible character 7 of degree ¢, if p is the
representation which affords 7, then p(z) is a scalar for all 1 # z € Z(P)
and thus 7(2) = qw?, for some 1 < j < p, where w is a primitive p*-root
of unity.

Since 72(1) = ¢®> = |P : Z(P)|, [5, Corollary 2.30] shows that 7(z) = 0,
for all x ¢ Z(P). Using the first orthogonality relation, we get

1 _ 1 1
B Y r(@)i) = B Y r(x) = B Y r(z)=0.
| | zeP | ‘ zeP | | z€Z(P)
Therefore, 7(1) = ¢ implies

(2.2) > 1(2)=—q,

1#£2€Z(P)
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and this completes the proof. ]
The following lemmas are simple consequences of Clifford’s Theorem
[5, Theorem 6.2] and Frattini’s argument [6, Lemma 1.13].

Lemma 2.2. Let H be a subgroup of any group G, v € Ng(H) and ¥
and v be characters of H. Then, (9%, ¢") = (9,1). In particular, taking
Y =19, 9% is irreducible if and only if 9 is irreducible.

Lemma 2.3. Let G be a normal subgroup of a group L and H be a
Sylow p-subgroup of G. Let x and 9 be irreducible characters of G and
H, respectively. Letl € L. Then,

(xr,9) = (X, 9) for some @ € N (H).
In particular, (xmg,1) = <XZH7 1).

Tables 2 and 3 show the values of the restriction of the irreducible
characters of the groups SL(3, ¢) on the elements of Sylow p-subgroup
P when d =1 and d = 3, respectively (see [7] Table 1b).

Lemma 2.4. Let G = SL(3, q), where ¢ > 2 is a power of a prime p and
let P be the Sylow p-subgroup of G and v be the irreducible character of
degree ¢*> + q of G. Then,
(1) (¥p,1)=2.
(2) (Yp,7) =1, for each irreducible character T of degree q of P.
(3) There exist some non-principal linear characters ¢ and ¢ of P
such that (Yp, ) =0 and (Yp,d) = 1.

Proof. Suppose z = LT (a,b,c) € P is contained in the conjugacy class

Céo) of G. Since each element in Céo) has a minimal polynomial of degree
2, (x —1)? = LT (0,ac,0) = 0. This, together with x ¢ Z(P), implies
a = 0 or ¢ = 0 but not both. Therefore the number of possibilities for
the elements = with the above properties is 2¢(q — 1). The elements of

Z(P) are also contained in Céo) and the values of 1 on C;O), Céo) and

Céo»ﬂ) are ¢°> + ¢, ¢ and 0, respectively Thus, we have

(Yp,1) = Z"Lﬁp

xEP

%<wp<>+ Z bp(z Z ¥p(2))

1#£2€Z(P) 2¢Z(P)
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1
== ((®+q) + (g —1)g+2q(qg — 1)g) =2.
This proves the first assertion.
Now, suppose 7 is an irreducible character of degree ¢ of P. By using

Table 2 for the value of 1 on the conjugacy class Céo) of G which contains

the elements of Z(P) and Lemma 2.1, we have

(Yp,7) = Z] Z¢P

zeP

f%<wp<><>+ Z + Y e

1#£2€Z(P) 2¢Z(P)
ZE((QQJrq)q—q +0) =1,

where 7(z) is the complex conjugate of the value 7(z). Therefore, for
each irreducible character 7 of degree ¢ of P,

as claimed. (Wp,7) =1,

Now, since (¢pp, 7) = 1 for each irreducible character 7 of degree g of
P, then¢p =Y 17, TZ—I-Z§:1 mj;, where the ¢; are 1inear characters of
P with the multiplicities m;. Since ¢(1) = ¢*+qand > 1 (1) = ¢*—q,
we have Z§:1 m;j;(1) = 2q. Since P possesses ¢°—1 non-principal linear
characters, there exists at least one non-principal linear character ¢ such
that (¢p, @) = 0.

By the first assertion, (¢)p, 1) = 2. Hence, Z;tzl mjp;(1) =2¢—2 > 1,
where Y runs over ¢; # 1. This means there exists some non-principal
linear character ¢ of P such that (¢p,¢) # 0. Note that (4)p = pp —
¥p + 1 is a character of P and that pp is the regular character of P. It
follows that any nonprincipal linear constituent ¢ of ¢ p has multiplicity
1. This completes the proof. ([l
(0)7

By the values of characters wy, and 7, on the conjugacy classes C;
Céo) and Céo’l) in the Table 1b of [7], we have

(2.3) {(w1)p, (W2)p, (w3)p} = {(M)p, (12) P, (73) P}
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TABLE 2: VALUES OF CHARACTERS OF SL(3, q)
ON ELEMENTS OF P WHEN d = 1, WHERE 1 <14,j < q—2, 1 <r < (¢> — 5g+6)/6,
1<s<(?—q)/2 anD 1<t < (¢°+q)/3.

c® O o
1 1 1 1
Y ¢ +q q 0
p ¢ 0 0
G P +q+1 qg+1 1
nj ¢+ +q q 0
e | @ +2¢7 +2¢+1]2¢+1 1
is ¢ -1 -1 | -1
v ¢—¢F —q+1 | 1—¢q 1

TABLE 1: VALUES OF CHARACTERS OF SL(3, ¢) ON ELEMENTS OF P WHEN d = 3,
WHERE 1 <4,/ <q¢—2,1<r< (¢ —5¢+4)/6,1<s<(¢*>—q)/2,
1<t<(¢*+q—2)/3 axD 1< k,m,n<3.

Cgo) Cgo) Cgo,l)

1 1 1 1

¢ ¢ +q q 0

P ¢ 0 0

Gi ¢ +q+1 q+1 1

1 ¢+ +q q 0

O | (®+2¢2+2¢+1)/3|(2¢+1)/30Rr | (2¢+1)/3 OR
(1-9)/3 (1-¢q)/3

Er @ +2¢°+2q+1 2q + 1 1

fhs ¢ -1 —1 -1

v ¢ —q>—q+1 l—gq 1

wn | (= —q+1)/3 | 1-q)/30r | (1-9)/30r
(2¢+1)/3 (2¢+1)/3

| (@@= —-q+1)/3 | (1-q)/30r | (1-¢)/3 OR
(2 +1)/3 (29 +1)/3

3. Proof

Proof of Theorem 1. By Table 2, the characters p and 1 have degrees
¢® and ¢? + ¢, respectively. Now, if we restrict them to P we see that
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for all nontrivial x € P, we have pp(x) = 0 and ¢)p(z) = g or 0. Thus,
from the values of the other characters of G on P, we get

(3.1) (G)p=vp+1
(3.2) (n;)p = pp +p
(3.3) (er)p=pp+2¢p+1
(3.4) (1s)p=pp —1
and

(3.5) (ve)p = pp —p +0

Since p(1) = ¢? is the order of P and pp(x) = 0, for all z # 1 in P,
thus pp is the regular character of P and pp = ZUGIH(P) v(1)v. On the
other hand, by Lemma 2.4 there exists a non-principal linear character
¢ of P such that (¢)p,¢) = 0. Then, since (pp,p) = 1, we have

((nj)p,p) = (pp+vp,p) =1,
((er)pyp) = {pp+2¢p+1,0) =1,
((us)p, o) = (pp—1,0) =1

and

(), o) = (pp—vp+1,¢) =1
Also, by Lemma 2.4 there exists a non-principal linear character ¢ of P
such that (¢p,#) = 1. Thus,

((G)p,¢) = (Yp+1,0)=1.

For the case that d = 3, the only remaining characters to consider are
Ok, wm and 7y, for 1 < k,m,n < 3.

Using the Frobenius reciprocity, we have
)

(5, 0%) = (er, %) = (s, %) = (%) = 1,

and ((;, %) = 0. Also, if
((Ok) P, p) = Kk, ((Wm) P, ) = My, and ()P, ) = Nn,

then
Ok, 0% = Kp, (W ) = My, and (7, %) = Ny,

for 1 < k,m,n < 3. Therefore, if we induce ¢ to G, we get
0% =p+(a—2)n; + (¢ = 5q+4)/6)er + ((¢° — q)/2)pss
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3 3 3
+(P+a=2/Bm+ Y Kibi+ Y Mpwm + > Nan.
k=1 m=1 n=1

Using the fact that (1) = |G : P|p(1), we calculate the value at 1 and
simplifing the above equation we have

3
’GP‘ —q —2(] +q +ZKk9k +Zmem )"‘ZNn’}’n(l)
k=1

Since \G:P\:q5—q3—q2+1 we get

3
ZKkek + Zmem )+2Nn7n(1) :q3+1-

Since
Or(1) = (¢* +2¢° +2¢ +1)/3
and
wn(1) =m(1) = (> — ¢ —q+1)/3,
we have
3 3

O~ Ke)(d*+2¢°+2¢+1)/3)+(> m+ZN (P —>—q+1)/3) = ¢*+1.
k=1 m=1 n=1

Hence, by considering K = Zk:l Ky, M = Zizl M,, and N = Zi:l Ny,

we get
K((¢® +2¢° +2¢+1)/3) + (M + N)((¢* —¢* —q+1)/3) = ¢’ + 1,

and so

(K4+M+N)@*+ (2K —(M+N)@*+((2K —(M4N))g+(K+M+N) = 3(¢>+1).
Thus,

(3.6) (A=3)(¢° +1) = -B(¢* + q),

where A = K+ M + N and B = 2K — (M + N). Since K, M and
N are non negative integers and are not all equal to 0, then A is a
positive integer. Since q | —B(q¢® + q), then ¢ | A — 3 and this means
that A — 3 = tq, for some integer t. Hence, simplifying equation (3.6)
implies —B = t(¢> — ¢ + 1). Thus,

0<3K=A+B=3—t(qg—1)%

Since d = ged(3,¢ — 1) = 3, then we can consider ¢ > 3, which in
this case A =3 +tq > 0 impliest > 0and A+ B=3—t(¢g—1)2>0
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shows t < 0. Thus, t =0, A = 3 and B = 0, which yield K = 1 and
M + N = 2. Therefore, >3 Kj =1 and 322 _ M, + 32 _ N, = 2.
So, for some k, K; =1 and ((0x)p, p) = 1.

Let ((01)p,¢) = 1. Then, the characters 61,60, and 03 are conjugate
in L = GL(3,q) (see [7, Sec. 4]). Hence, by Lemma 2.3, we have

((01)p, @) = ((02)p, ¢") = ((03)p, ") = 1,

for some x,y € Np(P). On the other hand, by Lemma 2.2, ¢* and ¢Y
are linear characters of P and so the restriction of characters 61,65 and
A3 to P have at least a constituent of degree one with multiplicity one.

Also, by (2.3),

{(w1)p, (W2)p, (w3)p} = {(M)p, (12) P, (73) P}

and so 323 _ M, =1and 3.>_ N, = 1. Therefore, for some m and n
we have N,, = 1 and M,,, = 1, which means ((wn,)p,») = ()P, ¢) = 1.
Without any ambiguity, we can suppose ((w1)p,¢) = ((71)p, ) = 1.
Since the elements of each set of characters {w1,w2,ws} and {y1,72,73}
are conjugate in L = GL(3,q) (see [7, Sec. 4]), then by Lemma 2.3 and
Lemma 2.2, there exist 7, s,t,u € N7(G) such that ¢, 9% ¢! and % are
linear characters of P and

(W2)p,¢") = ((ws)p,9") = {(12)p,¢") = ((13) P, ") = 1.

Hence, for 1 < m,n < 3, the characters (w,,)p and (v,)p have a linear
constituent with multiplicity 1. This completes the proof. O

4. Basis for class functions

If G is a finite group with n conjugacy classes such that ¢ of these
classes are p-elements, then the n X n matrix X constructed from the
character table of G has an n xt submatrix M whose columns correspond
to the p-elements. Since X is invertible, the columns of M are linearly
independent and so M has rank ¢. Thus, there exist ¢ irreducible charac-
ters of G such that for every irreducible character x of G, the restriction
of x on p-elements is a linear combination of these ¢ characters. Now,
suppose G = SL(3,q). If d = 1, then equations (3.1) to (3.5) show that
the class function ¢p of P is an integral linear combination of characters
pp, ¥p and 1, for each generalized character ¢ of G. If d = 3, then using
the values of the characters 6y, w,, and =, on p-elements, we have

pp = (Ok)p + (Win)p + ()P — L.
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Now, considering equations (3.1) to (3.5), we have

(G)p= vp+1,
nj)p = (Or)p+ (wm)p+ (Wm)p +vp —1,
)p= (Oc)p + (wm)pP + (Vn)P + 2¢p,
)P = (ek)P + (wm)P + (’Vn)P -2-1,
and

(v)p = (Ok)p + (wm)p + ()P — Vp.

Thus, {(0k)p, (Wm)p, ()P, ¥p,1p} is a basis for the vector space of
class functions defined on P with integer coefficients. This is analogous
to the theory of w-partial characters of solvable groups, developed by
Isaacs, for the case m = {p} (see [4]).
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