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Abstract: In this manuscript we generalize of the notion of
polygroup in an arbitrary category &£, which is also a generaliza-
tion of the notion of group object. We then define the category,
PGrp(€), of polygroup objects in £, and we investigate some of
its properties such as having limits and colimits. We also show
that PGrp(€) is a concrete category over the category Mon(&) of
monoid objects in £, and that it has free objects and is geometric
and essentially algebraic as such. Finally the preservation and
reflection of epimorphism and monomorphism by the forgetful

functor from PGrp(€) to Mon(€) is investigated.

1. Introduction

The hyperstructure theory was introduced by F. Marty in 1934 [6] at

the 8th Congress of Scandinavian Mathematicians.
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Bonansinga and Corsini used this structure and introduced the no-
tion of quasicanonical hypergroup [2], called polygroup by Comer [3],
which is a generalization of the notion of a group.

The theory has found applications in many branches of mathematics
such as analysis, algebra, geometry, automata and fuzzy set. In this pa-
per we give a generalization of the above notion by categorical methods,
having two goals in mind. One is to embed the category of polygroups
in a complete category, as limits have not been computed in the cate-
gory of polygroups yet. Another is to give the hyperstructure theory a
categorical organization. Having established these goals, we have come
up with several other results, such as those mentioned in the abstract.

First we give some notions that are needed in the sequel.

Definition 1.1 Let &£ be a category with finite products. We call
the triple (P, *, ) a monoid object in & if:
(a) *: P x P — P is a morphism in &£ such that the following diagram
commutes.
p3 idexr po
* X tdp | | *
P2 = P

(b) £ : 1 — P is a morphism in & such that the following diagram

commutes. o
P {idp Elp) p2
<E!P7 idp) | \vidp | #
P = p
ie., idp ¥ E'p = Elp % idp = idp, where !p : P — 1 is the unique

morphism from P to the terminal object 1. We call E the identity.

If (P,+, E) and (P, *’,F) are two monoid objects in £, a morphism
of monoid objects f: (P, *, E) — (P, *’,F) is a morphism f: P — P’
in € such that f* = +'f2, and fE = E .

Proposition 1.2 Let (P, x, E) and (P’,*’,F) be monoid objects in
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Eand [ : (Px, F) — (P’,*’,F/) be a morphism. If E = Elp and
E'=F\p, then fE = E'f.

Proof: Straightforward. m

Theorem 1.3 The collection of monoid objects in £ together with
morphisms forms a category, which is denoted by Mon(E).

Proof: The proof is obvious. m

Notation In the special case, where £ = Set is the category of sets
and

functions, we denote the category Mon(Set) by Mon.

Theorem 1.4 Let {(P., %o, Eo)}aer be a collection of objects in
Mon(&). If € has products then (ILP,, Ix,, I1E,) is a product of {( Py, %, Eo)}
in Mon(E). In particular Mon(E) has finite products.

Proof: Straightforward. m

Definition 1.5 (see [7], Page 98) Let £ be a category with finite
products. We call the quadruple (H,*,€e,17) a group object in & if:
(a) *: H x H — H is a morphism in & such that the following diagram

commutes.
H3 lﬁ H?2
x x1 | |l =
H* — H

(b) e : 1 — H is a morphism in & such that the follwoing diagram

commutes.
g ‘e e
1
N N
H* -~ H

(¢)¢: H — H is a morphism in & such that the following diagram
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commutes. '
g Yo
(@1 1 N 1
H* =~ H

We denote the quadruple (H,*,¢e,17) by .
If H and H' are two group objects in £. A morphism of group objects
f: H — H'is defined by a morphism fy : H — H’ in € such that

Jo*x =+ fu.

Theorem 1.6 The collection of group objects in £ together with
morphisms forms a category, which is denoted by Grp(E).

Proof: Straightforward. m

Notation In the special case, where £ = Set, we denote the category

Grp(Set) by Grp.

Theorem 1.7 (see [5], pp 237-238) If (' is a group object in &, then
each hom-set Home(X,G) has the structure of a group, natural in X .
Conversely, a group structure on Homg(X, ) for each object X of &,
natural in X, gives G the structure of an internal group. FEquivalently
G is a group object in £ if and only if Home(—,G) is a group object in
Set®”".

Definition 1.8 A hyperstructure is a nonempty set H together with
a map
«:H x H — P*(H)

which is called hyperoperation, where P*(H ) denotes the set of all non-
empty subsets of H.

Remark 1.9 A hyperoperation * : H x H — P*(H ) yields an oper-
ation @ : P*(H)x P*(H) — P*(H), defined by A@ B = U,c 4 ep @*0.
Conversely an operation on P*(H ) yields a hyperoperation on H, defined
by zxy ={z} @ {y}.
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Definition 1.10 A hyperstructure (H,*) is called a polygroup if it
satisfies the following conditions
(a) z*(y*xz)=(z*y)*z, for all z,y and z in H (associative law)
(b) there exists e € H, such that exz = 2 xe = {a}, forall z € H
(identity element)
(c) for all € H, there exists a unique element 2’ of H such that
e € x*a’' Na'*x (inverse element)

(d) for all 2,y and z in H we have
zCrxxy=>ar €y >yca xz (reversibility property)

A morphism from (H,*) into (H’, *) is defined by a map f: H — H’
such that f(z xy) = f(z)* f(y).

Remark 1.11 In Definition 1.10 (c¢) the uniqueness of 2’ is not
necessary, in fact we can obtain this property from the other conditions,
provided that we replace condition (d) by z € z xy = Vy', 2 € zxy =
Va', y € ' * z.

Theorem 1.12 The collection of polygroups together with morphisms
forms a category, which is denoted by PG.

Proof: Straightforward. m

Definition 1.13 (see [4], Page 16) Let £ be a category with finite
products, and r : A — B? be a monomorphism in & (that is r is a
relation on B). Let o, : X — B be morphisms in £. We say that
a <, pif there exists a morphism h : X — A in & such that rh = (a, ).

Definition 1.14 (see [4], Page 16) Let 7 : A — B? be a monomor-
phism in £. Then we say that r is
(a) reflexive if for every morphism a : X — B in £ we have a <, a.
(b) transitive if for every morphisms o, and y: X — Bin &, o <, 3
and 8 <, v, implies that a <, ~.

(c) a preorder if it is reflexive and transitive.
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The background category in the definition of a polygroup is the cat-
egory Set. In order to generalize the notion of a polygroup we need to
replace the category Set by an arbitrary category £. To achieve this we
need to free the definition of a polygroup from element taking, so we
make the following observations.

Given a polygroup (H,*), by Remark 1.9, we have an operation on
P*(H). It can be easily verified that this operation is associative if and
only if the given hyperoperation on H is associative.

The element e € H yields the function £ : P*(H) — P*(H) taking
each set A to the singleton {e}. Observe that this function factors
through the terminal object. Also we have a function e : H — H taking
each element z toe. If s : H — P*(H) is the singleton function, that is
the function that takes « to {a}, then it can be easily seen that E's = se.
Let us also notice here that the singleton function satisfies the condition:
st Csy=z=uy.

The existence of a unique inverse yields a function ¢ : H — H. To
interpret e € 2’ in an arbitrary category, we replace it by {e} C a*2a’,
and since {e} and z*z’ are elements of P*( H ), we observe that we have a
relation 7C” on P*(H ) and that {e} is related to z*a’. In other words we
have the relation R = {(A, B): A C B}, the inclusion r : R — P*"(H),
and that ({e},z*2") € R.

So we have a multiple (H, P*(H), R, s, r,*, F, 1) satisfying conditions
(a)-(d) of Definition 1.10, rewritten appropriately.

Using these observations we arrive at our definition of a polygroup

object in an arbitrary category that is given in the next section.

2. Category of polygroup objects

Definition 2.1 Let £ be a category with finite products. A polygroup
object in & is a multiple (H, P, R,s,r,*, E, i) where H, P and R are
objectsin &£ and s, r, *, ¥ and ¢ are morphisms in & such that,s: H — P

is a monomorphism and r : R — P? is a preorder on P. Moreover for
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all morphisms «,5: B — H in £ if sa <, s@3, then o = § and:

(a) * : P? — P makes the following diagram commutative.

p3 Ix= P2
*xx 1 | | %
r = p

and hence we say that * is associative.
(b) E': P — P makes the following diagram commutative.

(1,B)

p =2 p?

1
(E,1) | N\ | =
p: . p

That is, 1 * £ = F 1 = 1, and also F's factors through s, i.e., there
exists a morphism e : H — H in & such that Fs = se. Moreover there
exist morphisms £ :1 — P and é:1 — H in £ such that £ = E'p and
e = ely. We call F the identity.

(c)i: H — H satisfies Es <, 1x7iand Es <, 1% 1 where 1 x7 = xs*(1,1)
and i+ 1 = xs?(4,1). We call ¢ an inverse.

(d) For all morphisms «, 5 and v : B — H in & we have the following

implications:
sa < sk sy = 80 <, sak sty = sy <, 81k sa
In this definition we denote the multiple (H, P, R,s,r,*, E, i) by H.
Theorem 2.2 Let H = (H,P,R,s,r,%, E i) be a polygroup object

in & and x : H> — H be a morphism in £ such that sx = xs*. Then
(H,x,eq,1) is a group object in &.

Proof: It is enough to show that 1x¢ = e. From Definition 2.1(c) it
follows that Es <, s(1x%) and so se <, s(1x7). Thus 1%7 = e. Similarly
txl=¢c. 1

Theorem 2.3 Let (H,*,e,t) be a group object in £. Set H =
P = R and let r = A = (1,1) be the diagonal morphism from H
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into H?, and s = idyg be the identity morphism on H in £. Then
(H,H,H, idy, A, *,e,1) is a polygroup object in &.

Proof: Straightforward. m

Proposition 2.4 Let H be a polygroup object in £, then the following
statements hold:
(i) Es = se = By
(ii) s€ = E,
(i) 1% Elp = 1,
(iv) i* =1,

(viti) Fx £ = F.
Proof: Straightforward. m

Notation Let £ be a category and A be an object in £. We denote
the functor Hom(—,A) : £ — Set by A and if f : A — B is a
morphism in £ we denote the natural transformation Hom(—, f): A —

B, by f.

Lemma 2.5 Let r : R — P? be a monomorphism in €. For all

objects F' and morphisms f,qg: F —— P in Set®” we have

[ <rg==VAE€ENVre F(A), falz) <, galz).

Proof: Let f <7 g, so there exists a morphism h : F — R in Set®”
such that 7h = (f, g). Thus we get ha(z): A — R, so fa(z) <, ga(z),
forall A€ & and z € F(A). Thus fa(z) <, ga(2).

Now suppose for all A € £ and 2 € F(A) we have f(z) <, ga(z). So
there exists a morphism hy , 1 A — Rsuchthat rhy, = (fa(2),g4(2)) VA €
€ and z € F(A). Now define hy : F(A) — Hom(A,R) by ha(z) =
hay. It easily follows that A : I — R is a natural transformation and

(Th)a(z) = (f,g)al@), 50 f <rg.m
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Lemma 2.6 Let v : R — P? be a monomorphism in £. Then for all

morphisms a,3: B — P in £ we have: a <, f <= @ <7 J3.

Proof: First suppose that a <, . So there exists a morphism
h : B — R such that rh = (a,3). f A€ Eand 2z : A — Bisa
morphism in &, so we get (Th)4(2) = Ta(ha(2)). Thus @ <7 3.

Now suppose @ <7 3. Then there exists a morphism h : B —
R in Set®” such that 7o = (@, (). By Yoneda lemma we have h =
Hom(—,h), where h = hg(1). So we have (Th)g(1) = (a,f), thus
rh = {a, 3). Therefore a <, 3. m

Remark 2.7 Let f' : A — B be a morphism in Set®”". By Yoneda
Lemma we get f' = f,where f = f{(1,).

Theorem 2.8 Let H, P, R,s,r, %, E,1 be as in the statement of Def-
inition if H = (H,P,R,35,7,%,€,1) is a polygroup 2.1. Then H =
(H,P,R,s,r,%,E,t) is a polygroup object in £ if and only object in
Set®”".

Proof: Follows from Lemmas 2.5 and 2.6. m

Remark 2.9 Theorem 2.8 is the generalized version of Theorem 1.7.

Definition 2.10 Let H and H’ be polygroup objects in €. A
morphism f : H — H’ is a triple (fu, fe, fr) where fy : H — H’,
fp: P — P and fr: R — R are morphisms in & such that

(a) fps = ' fu,

(b) for =1'f=,

(c) fpx = f2,

(d) fpE = E'fp.
Theorem 2.11 If f = (fu,fe,fr): H — H’ is a morphism, then:
(i) fue =€ fu,

(it) fui=1fn.
Proof: (i) Straightforward.
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(ii) We know that Es <, 1% ¢, thus:

Ely <, 1% ;by Proposition 2.4(i)

fpsely <, fp*s*(1,4) ; by Proposition 2.4(ii)

s'fyely <, fp *s*(1,7) ; by Definition 2.10(a) and Proposition 2.4(i)
E's' fg <, fp*s°(1,i) ;by Theorem 2.11(i) and Proposition 2.4(i)
E's' fg <, #'(s'f)*(1,4) ; by Definition 2.10(a)and(c)

sy <, & fg x s fyi ; by Proposition 2.4(i)-(ii)

T

§ fai <, "V fg * s'@ 1. ; by Proposition 2.4(ii)-(iii)
Hence fgi=14fg. m
Lemma 2.12 Let H and G be two polygroup objects in £ and f :
H—Gbea morphism. If 'y : H — 1 is an epimorphism then fye = €.
Proof: Straightforward. m
Theorem 2.13 The collection of all polygroup objects in &£ together
with polygroup morphisms forms a category, which is denoted by PGrp(E).
Sketch of proof: For f . H — H' and g : H — f{”, the com-
position f o § is defined by (fu o gur, fpogp, frogr). The identity
morphism id : H — H is defined to be the triple (idy,idp,idg), where
tdy,tdp, and idg are the identities on H, P and R respectively in £. &
Notation In the special case, where & = Set, we denote PGrp(Set)
by PGrp.

Remark 2.14 By Theorems 2.2 and 2.3, the category Grp(€) can
be embedded in the category PGrp(E),i.e. Grp(E) C PGrp(€). It then
follows that

Mon C Grp C PG C PGrp

Theorem 2.15 Let {f{a}aej be a collection of objects in PGrp(E),
where
f{oz = (Hozv Pozv Rozv SasTay ¥as Eozv ioz)
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If € has products then

WA, = (IH,, 1Py, IRy, sy, Hr,, g, ILE,, 11i,)

is a product of {H,} in PGrp(&). In particular GPGrp(E) has finite

products.
Proof: Straightforward. m

Theorem 2.16 Let & be a category such that for all objects H in
E, g+ H — 1 is an epimorphism. If £ has equalizers, then so does
PGrp(€).

Proof: Let H = (H,P,R,s,r,*, E,i)and G = (G, P/, R, s, 1+ E' i)
be two polygroup objects. Given a pair of morphisms f,g :H — G in
PGrp(&), let ex + K — H, epn : P — P, and €gn : R" — R be
equalizers of (fu, gu), (fp, gp), and (fr, gr), respectively. Using the
fact that ex, epr, and €%, are equalizers, we obtain the morphisms
¢ K — P', /" : R' — P"”, &« . P"” — P' E":P' — P,
and " : K — K. It is straightforward though tedious to show that
K= (K, P", R, s" v «" E" ") is an equalizer of f.g.m

Corollary 2.17 Let £ be a category in which for all objects H in &,
'w : H — 1 is an epimorphism. If € has limits then so does PGrp(E).

Proof: Since &£ has products and equalizers, by Theorems 2.15 and
2.16, so does PGrp(E). Therefore PGrp(&) has limits. m

3. Free Polygroup Objects

Proposition 3.1 There exists a faithful functor U, from PGrp(E) into
Mon(&), where Us(H L {7y = (P,, F) 222 (o, ', F)), that is PGrp(€)
is concrete over Mon(E).

Proof: Let H = (H,P,R,s,r,*, E,i)and H' = (H', P',R,s', '+, E', )
be two arbitrary objects in PGrp(E) and f= (fu, fp, fr) be amorphism
from H into H'in PGrp(E). Then it is easy to see that U, : PGrp(€) —
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Mon(&)is afunctor. Now we show that U, is faithful. Let fog: 0 — 0
be morphisms in PGrp(E), such that Ul(f) = Uy(g). Thus fp = gp.
From Definition 2.10(a) we know that fps = §'fy and gps = s'gy. So
s'fg = s'gy and since s’ is a monomorphism we get that fyz = gg.
Also we have fir = r'fr and ghr = r'gg, by Definition 2.10 (b), so
r'fr = r'gr. Since r' is a monomorphism, thus fr = gg. Therefore

f =g, that is U, is faithful. m

Definition 3.2 Let (P, , F) be an object in Mon(&) and A : P —
P? be the diagonal morphism. Then (1, P, P, E, A, x, Elp,id,) is an ob-
ject in PG'rp(E). We denote this object by P

Theorem 3.3 The concrete category (PGrp(E), Uy) has free objects.

Proof: Let (P,*, E) be an object in Mon(&). We claim that P! is
a free object over (P,*, F). For this reason we show that the identity
morphism

idp, g (Px, E) — Ui(P') = (P, %, F)

is a universal arrow over (P, *, E). Let o = (H', PR, s v « F i)
be another object in PGrp(€) and g : (P, *, E) — Uy (H') = (P',+, F)
be a morphism in Mon(&). Thus by Definition 1.1 we have g* = #’g? and
gB'p = (F/!p/ )g. Since H’ is an object in PGrp(€) thus by Definition
2.1(b) we get €'y = € and we know that ¢ <A ¢, thus there exists
a morphism ¢’ : P — R’ such that 7'¢’ = (g,9) = ¢*A. It is easy to
check that ¢ := (€,¢,¢’) is a morphism from P into H' in PGrp(€),
and Uy(g) = ¢, which implies that U,(g) o idip.7 = 9. Now suppose
that f = (fi, f2, f3) be an arbitrary morphism from P into H such that
Ui(f) o idip, 5 = g. Therefore we get Ui(f) = g = Uy(§). Since U
is faithful, thus f = §. So ¢ is a unique morphism such that U;(§) o
idp. 7 = 9. Therefore Pl is a free object over(P,*, E). m

Proposition 3.4 The mapping F, defined by

F((P,+,E) - (P, F)) = (P "L pry
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is a functor from Mon(E) into PGrp(E).

Proof: Straightforward. m

Lemma 3.5
(1) Mapm = Wi (P,%, ) — U, Fi(P,x,F) = (P,+, E) defines
m : Idyroney — UrFy as a natural transformation.
(ii) For every object A= (H,P,R,s,r,%, E,t) in PGrp(&), the mapping
€, = (¢ idp,h): FlUl(f{) = P! — H defines ¢, : F,U, — Idpeype
as a natural transformation, where h : P — R is @ morphism in £ such

that rh = <de,ldp>
Proof: Straightforward. m

Theorem 3.6 Suppose that Uy, Fy, n and €¢; as in Propositions
3.1, 3.4 and Lemma 3.5 respectively. Then we have (n,€) : Fy Uy :
(PGrp(€), Mon(&)) is an adjoint situation.

Proof: By Lemma 3.5 it is enough to show that Uje o n Uy = idy,
and € Fy o Fin; = idp,. We only show the former, the latter is similar.
Let

H = (H,P,R,s,r,%, F,i)be an object in PGrp(E). So we have

(Ui omUn)(H) = Urer(H) o (mUs)(H)
= Uiei; 0y,
= id(P,*,E) o id(P,*,E) ; by Proposition 3.1
= Ui(€ idp,h)oidp, 5 ; by Lemma 3.5 (i)
— ZdUl(ﬁ)'
So U1€1 ] 771U1 = idUl' |
Theorem 3.7 Let T\ = (11,1, jt1) be the monad associated with the
adjoint situation given in Theorem 3.6, where T = U Fy. Then T is

the trivial monad.

Proof: Let x be an object in the Eilenberg-Moore category (Mon(&)™, U™)
[see 1]. So we have @ : Ty (P, *, E) — (P, *, I/), for some object (P, *, E)
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in Mon(E), that satisfies

(a) el 771(}3)*)5)

(b)yzoTiz=ao0u

= id(PV*VE)7 and
(P,*,B)

By (a) and Lemma 3.5 (i) we have v = idp, 7. Since Ty = U, F7, so
we get T = Idyr,n(e), and by condition (b) we conclude that py, = idp,.
Thus we have u; = 1y = #dp,. Then the monad 7} is trivial monad

(IdMon(£)7 idTl, idTl)- | |

Corollary 3.8 The Eilenberg-Moore category (Mon(E)™, U™ is
concretely isomorphic to (Mon(E), Idyone))-

Proof: Straightforward. m

Theorem 3.9 Let (1s,63) @ Fy — Uy : Mon(E) — & be an ad-
joint situation and Ty = (15, m2, pi2) be its associated monad. Then the

FEilenberg-Moore category (€12, UQTQ) s concretely isomorphic to the cat-
egory Mon(E).

Sketch of Proof: If z : TP — P is a Ty-algebra, multiplication
in P is defined by * = 2 o Uy %5 olp X lp where lp : P — UsFy(P) is
an universal arrow and Fy(P) = (FyP, s, I25) is a free object over P in
Mon(&). And E defined by F = x 0 UyE,. Then (P, , E) is an object
in Mon(E). m

Let (g, e) : Fy = Uy - (PGrp(€), Mon(E)) be adjoint situation as
in Theorem 3.6. Let U = UUy, F' = FiFy, 5 = Uy Fy 019, € =
€0 Fle Uy and p = UeF. Since composition of adjoint situations is an
adjoint situations (see Proposition 19.13[1]), so we have (5,¢): F' - U :
(PGrp(€),E) is an adjoint situation. Suppose that T = (T, n, i) be its

associated monad, then we have the following theorem:

Theorem 3.10 The Filenberg-Moore category (€7, U™ is concretely
isomorphic to the Mon(E).

Proof: The proof is obvious by Theorems 3.8 and 3.9. m
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Proposition 3.11 If the category £ has finite products, then the
functor
Fy: Mon(E) — PGrp(E) given in Proposition 3.4, preserves finite prod-

ucts.

Proof: Let {(P., %o, o) }aer be a finite family of objects in Mon(&).
Then by Theorem 1.4 the object (ILP,,Il*,,IIE,) is a product of the
above family in Mon(E). Let A : 1P, — (IIP,)? be the diagonal mor-
phism, then Pr2A = A, Pr,, forall @ € I, where Pr, : [P, — P, is the
canonical projection morphism. By Theorem 2.15 F(ILP,, Ilx,, IIE,) =
ﬁal = (1,1UP,, 1P, , ITE,, A, 1lx,, 1 E,'1p., id;) together with the canon-
ical projection ]/3,: = (idy, Pr,, Pr,)is a product of the family { F(P,, %o, Fo) =
P = (1, Py, P Fy Ayt Eulp,,idy)} in PGrp(€). m

Proposition 3.12 Let £ have equalizers. If the following diagram

— 7 —

(P, ) =L (P B )= (P"+" E") (1)

is an equalizer in Mon(E), then

— ~y f=(; 1 f A 19=(id1,9,9) . ~
PP )= P =S pp o By = T mpr s B = B
h=(idy,h,h)

is an equalizer in PGrp(E).

Proof: Since gf = hf,s0§f = hf. Let H, = (Hy, P Ry, sy, 71,%1, EyL i)
be an object in PGrp(€) and by = (ku,, kp, kr,): H, — P be a mor-
phism in PGrp(&), such that gky = hk,. By Theorem 2.13 we have
gkp, = hkp, and gkgr, = hkg,.

Since (Pp, 1, Fy) is an object in Mon(&) and the diagram (1) is an
equalizer in Mon(€), so we get the unique morphism tp, : (P, %1, F) —
(P,*,E) in Mon(£), such that ftp, = kp,. Let (Fy(Ry),*2, E3) be
the free monoid over R, in Mon(£), so we have the unique morphism
B (Fo(Ry), %2, Es) — (P, ', E ) in Mon(&) such that Us(h')ol = kg, ,

where [ 1 Ry — UsFy(Ry) is a Us-universal morphism in €. Thus we
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have h' ol = kg,. Since g : (P’,*’,F/) — (P”,*”,F”) is a mor-
phism in Mon(E), then we get gh/ = hh'. So by diagram (I) we
get a unique morphism ¢’ : (Fy(Ry),*5, Fs) — (P,*, E) in Mon(&)
such that ft' = h’. Now, define tg, = Uy(t') o[, that is, tp, =
t ol. Since the concrete category (Mon(&),Us) over &£, has free ob-
jects, and f is a monomorphism in Mon(&), then by Theorem 8.38 [1],
we have Us(f) = f is a monomorphism in £. Now it easily follows that
i, = (ayte,tr,) H — Pisa morphism in PGrp(E). Also ffl = l%l,

and t, is a unique morphism such that ffl =k.m

Theorem 3.13 If £ has finite limits, then the pair (Fy,U;) where

Fy Uy is a geometric morphism.

Proof: The proof is obvious by Propositions 3.11 and 3.12, see also
page 26 of [4]. m

Remark 3.14 By Theorem 3.3, the concrete category (PGrp(£), Uy)
over
Mon(&) has free objects. So by Theorem 8.38 [1], we get that U,
preserves and reflects monomorphisms, and by Proposition 7.44 [1], U;

reflects epimorphisms.

Example 3.15 We know that (7,0, E) and (Q,O,F) are objects

in Mon. Let f be the inclusion homomorphism from (Z,0, F) into
(Q,O,F), ie., f(n) = n for all n € Z. We have that f is an epi-
morphism, by some manipulation (see Example 7.40 (5) of [1]). But
[+ Z — @ as a function in Set is not an epimorphism. We know that
Z' and Q! are objects in PGrp, and f = (idy, f,f) : Z' — Q' is a
morphism in PGrp. It is easy to see that f is an epimorphism in PGrp.

But U(f)= f:7Z — @, as a morphism in Set, is not an epimorphism.
Notation The full subcategory of PGrp whose objects are
(1, P,R,s,r %, F,id) is denoted by P,Grp.
Theorem 3.16 If f = (fi, foy f3) ¢ P — P’ is an epimorphism in

P Grp, then U(f) = fy is an epimorphism in Mon.
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Proof: Let (P,+,E) 2= (P« E )= (P",+", E") be a diagram in

ha
Mon, such that g, f, = hyfs. We know that ' : R — P'* and +/(R) is
the set defined by {(p}, p)|3= € R, such that v'(x) = (p},ps)}. Now let

R" be the smallest preorder relation on the set

1(g2(P1)s g2(pu)| (P, o) € 7/ (R) U {(ha(p))s ha(ps)) (P11, P5) € 7'(R)}

and r : R’ — P”? be the inclusion map. Define s” : 1 — P” by
s" = g,8'. Thus s” is a monomorphism in Set. Since for any morphisms
a,f: B — 1in Set, we have a = §, therefore if s"a <,» s”(3, then
o = 3. Now define P = (1,P”,R”,5”,7‘”,*”,F//!pu,idl). It is easy to
check that P” is an object in P Grp(Set). It can easily be checked that
§ = (idy, g5, g27") and h = (idy, hy, h2'") are morphisms in P;Grp from
P’ to P”. Therefore hf = §f, and since f is an epimorphism in P,Grp
thus A = ¢. That implies go = ho, 50 fo : (P, ) — (P’,*’,F) is an
epimorphism in Mon. m

Proposition 3.17 Let f = (fu, fe,fr): H — H’ be a morphism in
PGrp(€). f is an isomorphism in PGrp(&) if and only if fu, fp and

[r are isomorphisms in £.
Proof: Straightforward. m

Remark 3.18 In Example 3.15, we showed that f = (idy, f, f) =
7t — Ql is an epimorphism in PGrp. Since the concrete category
(PGrp,U) over Set has free objects, so by Theorem 8.38 [2] we get fis
also a monomorphism in PGrp. But fis not an isomorphism in PGrp,
because if f is an isomorphism in PGrp, then U(f) =f:7Z—=(@isan
isomorphism in Set, which is a contradiction. So the category PGrp is

not balanced, and so it is not a topos.

4. Essentially Algebraic Property

We start this section by assuming that the forgetful functor U, : Mon(E) —

& is (generating, Mono-source)-factorizable. For example, we know that
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the forgetful functor Uy : Mon — Set is an adjoint, and so by Propo-
sition 18.3 [1], it is (generating,-)-factorizable, hence it is (generating,
Mono-source)-factorizable.

Throughout this Section we use U = UsU; : PGrp(E) — &, where

U, and U, are the functors introduced in section 3.

Theorem 4.1: The functor U : PGrp(E) — &£ is (generating, Mono-

source)-factorizable.

Proof: Let {ﬁ] = (H;, P, R;,s;,7j,%;, F;,1;)}ier be a collection
of objects in PGrp(&), and (X EEA U(H;) = Pj);e; be a U-structure
source. Since the functor U, : Mon(€) — & is (generating, Mono-
source)-factorizable, thus there exists a Us-generating morphism e : X —

Us(G,*, E) and a mono-source ((G, *, F) it (Pj %5, E))jer in Mon(E),
such that f; = Us(m;)oe; for all j € I. On the other hand, Uy (G, *, E) =
U, Uy Fy (G, %, E) = U(GY). Therefore we have the morphism e : X —

U(G). We claim that e is U-generating. To show this, let Glii_ffx be
morphisms in PGrp(&), such that U(§)oe = U(h)oe. So Uz(Ul(gh))oe =
Uy(Uy(h)) o e, since e is Us-generating thus Uy(§) = Uy(h). Therefore
g = lAz, because U; is faithful. Now we want to get a mono-source
(Al—m#f{j)jej in PGrp(€). Since r; : R; — P? is reflexive, for all
J € I, thus m; <., m;. Hence for all j € I, there exists a morphism
hj : G — R; in &, such that r;h; = mjA. Now define 1y : Gt —
ﬁj by 7; = (é;,m;,h;). By Proposition 2.4, it is easy to check that
7; is a morphism in PGrp(E). Now we show that (Glﬂj{j)jy is a
mono-source in PGrp(E). Let k= (ki, k2, k3) and ¢ = (g1,92,93) be
morphisms in PGrp(E) from k to G' such that 7 o k= m; o g, for
all j € I. So we have U(sn; o k) = U(i; o §), for all j € I. Therefore
m; o ks = mj o gy, forall j € I, and since (m;);¢r is a mono source, we
have k; = ¢o. By Proposition 3.1, we get k= g.

s

Thus (G* 22 0;);¢; is a mono-source in PGrp(&), and we have:

U(m;)oe=Uy(U(1nj))oe=Us(mj)oe=f;
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We conclude that every U-structure has a (generating, Mono-source)-

factorization. m

Theorem 4.2 The forgetful functor U : PGrp(§) — &, creates

isomorphisms.

Proof: Let H = (H,P,R,s,r,%, E,i)be an object in PGrp(E), and
f:X— U(ﬁ) = P be an E-isomorphism. Define Xz = (H,X,R,s', 7"« L' 1),
where s = f~ls, v/ = f2r, % = f~1x f2,F = f'F and E' =
f~YEf. Tt is easy to check that Xy is an object in PGrp(€) and
f = (idy, f,idg) : Xy — H is an isomorphism in PGrp(€). Also
we have U(f) = f, and since U is faithful, thus f is unique morphism

in PGrp(€) such that U(f) = f.m

Corollary 4.3 The concrete category (PGrp(E),U) over £ is essen-
tially algebraic.

Proof: By Theorem 4.1 and 4.2, we have U is essentially algebraic,
so the concrete category (PGrp(E),U) over £, is essentially algebraic. m

Corollary 4.4
(i) The concrete category (PGrp(E),U) has equalizers.
(71) The functor U detects colimits.
(711) The functor U preserves and creates limits.
(iv) If € is complete, then PGrp(E) is complete.
(v) If € has coproducts, then PGrp(E) is cocomplete.
(vi) If € is wellpowered, then PGrp(E) is wellpowered.

Proof: The proof is concluded by Corollary 23.10, Theorem 23.11,
and Proposition 23.12 of [1].m

Remark 4.5 By Corollaries 4.3 and 4.4 we get that PGrp is com-

plete, cocomplete and wellpowered.
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