SCHUR-PAIR PROPERTY AND THE STRUCTURE OF VARIETAL COVERING GROUPS

Mohammad Reza R. Moghaddam and Ali Reza Salemkar

* Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran moghadam@math.um.ac.ir

** Department of Mathematics, Sistan Baloochestan University, Zahedan, Iran

Abstract: This paper is devoted to study the connection between the concepts of Schur-pair and the Baer-invariant of groups with respect to a given variety \mathcal{V} of groups. It is shown that if a group G belongs to a certain class of groups then so does its \mathcal{V} covering group G^* . Among other results, a theorem of E.W. Read in 1977 is being generalized to arbitrary varieties of groups. In addition, we consider covering groups and marginal extensions of a \mathcal{V} -perfect group with respect to a subvariety of abelian groups \mathcal{V} and show that any \mathcal{V} -marginal extension of a \mathcal{V} -perfect group G is a homomorphic image of a \mathcal{V} -stem cover of G.

⁰MSC (2000): Primary 20E34, Secondary 20E10-20F19.

 $^{^{0}}$ Keywords: Variety of groups, Baer-invariant, Schur-pair, ν -isologism, ν -covering group, ν -perfect group.

⁰*Received:* 11 November, 1998.

^oThis research was partially supported by the grant No. 2000/m.01 of Khayyam Higher Education Institute in Mashhad, Iran.

1. Introduction and Preliminaries

Let F_{∞} be a free group freely generated by a countable set $\{x_1, x_2, \ldots\}$. Let ν be a variety of groups defined by the set of laws V, which is a subset of F_{∞} . It will be assumed that the reader is familiar with the notions of verbal subgroup, V(G), and of marginal subgroup, $V^*(G)$, associated with a variety of groups ν , and a given group G. See also [23] for more information on the varieties of groups.

Let G be a group with a normal subgroup N. Then we define $[NV^*G]$ to be the subgroup of G generated by the elements of the following set:

$$\{v(g_1,\ldots,g_in,\ldots,g_r)(v(g_1,\ldots,g_r))^{-1} \mid 1 \le i \le r; v \in V; g_1,\ldots,g_r \in G; n \in N\}$$

It is easily checked that $[NV^*G]$ is the smallest normal subgroup T of G contained in N, such that $N/T \subseteq V^*(G/T)$.

The following lemma gives basic properties of verbal and marginal subgroups of a group G with respect to the variety ν , which are useful in our investigations, see [4] for the proofs.

Lemma 1.1 Let ν be a variety of groups defined by the set of laws V, and let N be a normal subgroup of a group G. Then the following statements hold:

 $\begin{array}{l} (i) \ V(V^*(G)) = 1 \ and \ V^*(\frac{G}{V(G)}) = \frac{G}{V(G)}; \\ (ii) \ V(G) = 1 \ iff \ V^*(G) = G \ iff \ G \in \mathcal{V}; \\ (iii) \ [NV^*G] = 1 \ iff \ N \subseteq V^*(G); \\ (iv) \ V(\frac{G}{N}) = \frac{V(G)N}{N} \ and \ V^*(\frac{G}{N}) \supseteq \frac{V^*(G)N}{N}; \\ (v) \ V(N) \subseteq [NV^*G] \subseteq N \cap V(G). \ In \ particular \ , V(G) = [GV^*G]; \\ (vi) \ If \ N \cap V(G) = 1 \ , \ then \ N \subseteq V^*(G) \ and \ V^*(G/N) = V^*(G)/N; \\ (vii) \ V^*(G) \cap V(G), \ is \ contained \ in \ the \ Frattini \ subgroup \ of \ G. \end{array}$

The following useful lemma can be proved easily. See also [4].

Schur-pair property and the structure of ...

Lemma 1.2 Let ν be a variety of groups, and G be a group. If G = HN, where H a subgroup and N is a normal subgroup of G, then $V(G) = V(H)[NV^*G]$.

Let ν be a variety of groups defined by the set of laws V, and let G be an arbitrary group with a free presentation

$$1 \dashrightarrow R \dashrightarrow F \dashrightarrow G \dashrightarrow 1$$

where F is a free group. Then the *Baer-invariant* of G with respect to the variety ν , denoted by $\nu M(G)$, is defined to be

$$\mathcal{V}M(G) = \frac{R \bigcap V(F)}{[RV^*F]}.$$

One may check that the Baer-invariant of a group G is always abelian and independent of the choice of the free presentation of G (see [7] or [8]). In particular, if ν is the variety of abelian or nilpotent groups of class at most c ($c \geq 1$), then the Baer-invariant of the group Gwill be $\frac{R \cap F'}{[R,F]}$ (the so called *Schur-multiplicator* of G) or it will be $\frac{R \cap \gamma_{c+1}(F)}{[R,cF]}$, respectively(here $\gamma_{c+1}(F)$ stands for the (c + 1)st term of the *lower central series* of F and $[R, F] = [R, F, \ldots, F]$, where F is repeated c times (see also [8], [9], [10] or [12]).

An exact sequence $1 \longrightarrow A \longrightarrow G^* \longrightarrow G \longrightarrow 1$ is said to be a ν -stem cover of G, if $(i) \ A \subseteq V(G^*) \cap V^*(G^*)$, and $(ii) \ A \cong \nu M(G)$. In this case G^* is called a ν -covering group of G. Note that if ν is taken to be the variety of abelian groups, then we have the usual definition of covering group.

Let ν be a variety of groups defined by the set of laws V, and let G and H be groups. Then (α, β) is said to be a ν -isologism between G and H, if there exist isomorphisms $\alpha : \frac{G}{V^*(G)} \longrightarrow \frac{H}{V^*(H)}$ and $\beta : V(G) \longrightarrow V(H)$, such that for all $v(x_1, \ldots, x_r) \in V$ and all $g_1, \ldots, g_r \in G$, we have

$$\beta(v(g_1,\ldots,g_r))=v(h_1,\ldots,h_r),$$

whenever $h_i \in \alpha(g_i V^*(G))$, $i = 1, \ldots, r$. In this case we write $G \geq H$, and say that G is ν -isologic to H. In particular, if ν is the variety of abelian groups we obtain the notion of *isoclinism* due to P. Hall [3], (see also [17] and [18]).

The following lemma of H.N. Hekster [4] is needed, in our investigation.

Lemma 1.3 Let ν be a variety of groups defined by the set of laws V, and let G be a group with a subgroup H and a normal subgroup N. Then the following statements hold.

(i) $H \approx HV^*(G)$. In particular, if $G = HV^*(G)$ then $G \approx H$. Conversely, if $\frac{G}{V^*(G)}$ satisfies the descending chain condition on subgroups and $G \approx H$, then $G = HV^*(G)$.

(ii) $\frac{G}{N \cap V(G)} \approx \frac{G}{N}$. In particular, if $N \cap V(G) = \langle 1 \rangle$ then $G \approx \frac{G}{N}$. Conversely, if V(G) satisfies the descending chain condition on normal subgroups and $G \approx \frac{G}{N}$, then $N \cap V(G) = \langle 1 \rangle$.

In section 2, we deal with the connection between the Schur pair property and the Baer-invariant of groups. In fact, it will be shown that if (ν, \mathcal{X}) is a Schur-pair, and G^* is a ν -covering group of a group G then $G \in \mathcal{X}$ if and only if $G^* \in \mathcal{X}$ (see Corollary 2.3).

In section 3, we study the varietal covering groups and among the other results, a theorem of E.W. Read [24] is being generalized, extensively. Section 4 is devoted to study the ν -covering groups and ν -marginal extensions of a ν -perfect group, when ν is taken to be a subvariety of abelian groups.

4

2. Schur-pair and the Baer-invariant of groups

Let ν be a variety of groups defined by the set of laws V and let \mathcal{X} be a class of groups. Then (ν, \mathcal{X}) is said to be a *Schur-pair*, when G is any group with $\frac{G}{V^*(G)} \in \mathcal{X}$ it implies that $V(G) \in \mathcal{X}$.

In particular, if \mathcal{X} is the class of all finite groups then the above property is known as a Hall's first conjecture (see [3]).

In this section we give some equivalent conditions that (ν, \mathcal{X}) has Schur-pair property if and only if, when G is in \mathcal{X} then its Baer-invariant $\nu M(G)$ is also in \mathcal{X} . For the class of finite groups, we have the remarkable theorem of C.R. Leedham-Green and S. McKay [7], which reads as follows:

Theorem 2.1([7; Theorem 1.17]) Let ν be a variety of groups defined by the set of laws V, and let \mathcal{X} be the class of finite groups. Then the following conditions are equivalent:

(a) (ν, \mathcal{X}) is a Schur-pair;

(b) For any finite group G, the order of the Baer-invariant of G, $|\mathcal{V}M(G)|$, divides a power of |G|.

Let \mathcal{X} be an arbitrary class of groups, which is extension, quotient, and normal subgroup closed, i.e. $\mathcal{X} = PQS_n\mathcal{X}$. Then we are able to prove a result similar to Theorem 2.1 for the class \mathcal{X} , which is much larger than the class of finite groups.

Theorem 2.2 Let ν be a variety of groups defined by the set of laws V and let \mathcal{X} be a class of groups with $\mathcal{X} = PQS_n\mathcal{X}$. Then the following conditions are equivalent:

(a) (ν, \mathcal{X}) is a Schur-pair;

(b) If G is any group in \mathcal{X} , then so is $\mathcal{V}M(G)$.

Proof. Let $1 \to R \to F \to G \to 1$ be a free presentation of the

group G. Then

$$1 \longrightarrow \frac{R}{[RV^*F]} \longrightarrow \frac{F}{[RV^*F]} \longrightarrow G \longrightarrow 1$$

is a \mathcal{V} -marginal extension of G. Now if $(\mathcal{V}, \mathcal{X})$ is a Schur-pair and $G \in \mathcal{X}$, then using the property $\mathcal{X} = Q\mathcal{X}$ and $\frac{R}{[RV^*F]} \subseteq V^*(\frac{F}{[RV^*F]})$ we have

$$\frac{\frac{F}{[RV^*F]}}{V^*(\frac{F}{[RV^*F]})} \in \mathcal{X}.$$

Hence $\frac{V(F)}{[RV^*F]} \in \mathcal{X}$, and so $\mathcal{V}M(G) \in \mathcal{X}$.

Conversely, with the same notation, let E be a group with marginal factor group $\frac{E}{V^*(E)} \cong G$. By the assumption $G \in \mathcal{X}$ and hence

$$1 \longrightarrow \mathcal{V}M(G) \longrightarrow \frac{V(F)}{[RV^*F]} \longrightarrow V(G) \longrightarrow 1,$$

is a ν -marginal extension of $V(G) \in \mathcal{X}$, then $\frac{V(F)}{[RV^*F]}$ is also in \mathcal{X} . It is easily checked that V(E) is a homomorphic image of $\frac{V(F)}{[RV^*F]}$. Therefore $V(E) \in \mathcal{X}$, i.e. (ν, \mathcal{X}) is a Schur-pair.

The following interesting corollary states that a group G in the above mentioned class of groups \mathcal{X} has the same structure as its covering group, and its proof follows from the above theorem.

Corollary 2.3 Let ν be a variety of groups defined by the set of laws V and let \mathcal{X} be a class of groups with $\mathcal{X} = PQS_n\mathcal{X}$. Let (ν, \mathcal{X}) be a Schur-pair and G^* be a ν -covering group of G. Then $G \in \mathcal{X}$ if and only if $G^* \in \mathcal{X}$.

Remark. J.A. Hulse and J.C. Lennox in [5] did introduce a generalized version of the Schur-pair property as follows: (ν, \mathcal{X}) is said to be an *ultra Schur-pair*, if for any group G with a normal subgroup N such that $\frac{N}{N \cap V^*(G)} \in \mathcal{X}$, it holds that $[NV^*G] \in \mathcal{X}$, see also [13] and [20]. Now, considering this notion we have been able to prove a result similar to Theorem 1.3.

3. Varietal Covering groups

This section is devoted to study the covering groups of a group G, with respect to a given variety of groups ν . One should note that, in general, groups might not possess ν -covering groups. In [19], we presented a class of groups lacking ν -covering groups, with respect to a certain given variety ν , (see also [7]).

However, I.Schur in [25] showed the existence of covering groups for finite groups and then M.R. Jones (see [26]) generalized it to every group in the variety of abelian groups. In [14] we have also shown that every group has a ν -covering group with respect to the variety of abelian groups of exponent m, when m is a square-free positive integer. Now, assuming the existence of a covering group of a given group G with respect to a variety ν , we are able to give the structure of such covering groups.

Theorem 3.1 Let ν be a variety of groups defined by the set of laws V and let G be a group with a free presentation $1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$. Then

(i) If S is a normal subgroup of F such that

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \frac{S}{[RV^*F]},$$

then $G^* = F/S$ is a ν -covering group of G.

(ii) Every ν -covering group of G is a homomorphic image of $\frac{F}{[RV^*F]}$. (iii) For any ν -covering group G^* of the group G with a ν -stem cover

$$1 \longrightarrow A \longrightarrow G^* \longrightarrow G \longrightarrow 1,$$

there exists a normal subgroup S of F as in part (i), satisfying also $F/S \cong G^*$ and $R/S \cong A$.

Proof. (i) Put A = R/S. Then $G^*/A \cong F/R \cong G$ and $A \cong \nu M(G)$. From the assumption we have $R \subseteq V(F)S$. Clearly

$$A=\frac{R}{S}\subseteq V^*(\frac{F}{S})=V^*(G^*) \ and \ A=\frac{R}{S}\subseteq \frac{V(F)S}{S}=V(\frac{F}{S})=V(G^*).$$

Hence $G^* = F/S$ is a ν -covering group of G.

(ii) Let F be the free group freely generated by the set X and let $\pi: F \longrightarrow G$ be an epimorphism with $R = ker\pi$. Let G^* be a ν -covering group of G, with the ν -stem cover $1 \longrightarrow A \longrightarrow G^* \xrightarrow{\phi} G \longrightarrow 1$. Clearly for any $x \in X$, there exists $g_x \in G^*$ such that $\phi(g_x) = \pi(x)$. Now, we put $H = \langle g_x \in G^* \mid x \in X \rangle$, hence $G^* = HA$. But using Lemma 1.2, $A \subseteq V^*(G^*) = V(H)$, so $G^* = H$. We consider the homomorphism $\psi: F \longrightarrow G^*$ given by $\psi(x) = g_x, x \in X$. Then ψ is onto and $\pi = \phi \circ \psi$. It is easily seen that $\psi(R) \subseteq A$, so

$$\psi([RV^*F]) \subseteq [\psi(R)V^*G^*] = 1.$$

Thus ψ induces a homomorphism $\overline{\psi}$ from $\frac{F}{[RV^*F]}$ onto G^* , which is the required assertion.

(iii) Let $a \in A$ and $a = \psi(x)$, for some $x \in F$. Then $1 = \phi(a) = \pi(x)$. So $x \in R$ and hence $A \subseteq \psi(R)$. One can easily see that $A = \psi(R)$. Now observe that

$$\psi(R \cap V(F)) \subseteq \psi(R) \cap \psi(V(F)) = A \cap V(G^*) = A.$$

To prove the converse, suppose that $z = \psi(x) = \psi(y)$, for some $x \in V(F)$ and $y \in R$, whence $x^{-1}y \in ker\psi$. Thus $\pi(x^{-1}y) = 1$ and $x^{-1}y \in R$. It follows that $x \in R$ and $z \in \psi(R \cap V(F))$, which shows that $A \subseteq \psi(R \cap V(F))$. Hence $A = \psi(R \cap V(F))$. Therefore $\overline{\psi}$ restricts to

Schur-pair property and the structure of ...

an isomorphism from $\frac{R \cap V(F)}{[RV^*F]}$ onto A. Let $S = ker\psi$. Then $\frac{S}{[RV^*F]}$ is the kernel of the restriction of $\bar{\psi}$ to $\frac{R}{[RV^*F]}$ and the image of this restriction is A. Thus one may conclude that

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \frac{S}{[RV^*F]}$$

Now, part (i) implies that F/S is a ν -covering group of G. Let $\theta: F/S \longrightarrow G^*$ be the homomorphism induced by ψ . Using the fact that ψ is onto and $\psi(R) = A$, it follows that $\theta(R/S) = A$, which completes the proof.

In general, it is not true that any two covering groups of a given group G are isomorphic (see [6]). However using the above theorem we deduce that any tow covering groups are ν -isologic, which generalizes a theorem of Bioch and van der Waall [2].

Corollary 3.2 (see also [15]) Let ν be a variety of groups defined by the set of laws V and G be a group. Then all ν -covering groups of G are ν -isologic.

In [16], by imposing some condition on homomorphisms we give a sufficient condition for tow ν -covering groups of a given group to be isomorphic. Also we deduce that all ν -covering groups of a group in ν are Hopfian.

Covering groups have been studied for the abelian case, by several authors. See for instance [6], [10] or [26].

In the following we deal with the property of covering groups in an arbitrary variety of groups ν , which generalizes the work of E.W. Read [24], extensively.

Theorem 3.3 Let ν be a variety of groups, and let G_1 and G_2 be two ν -covering groups of a given group G. Let

 $1 \longrightarrow A_i \longrightarrow G_i \longrightarrow G \longrightarrow 1 \quad , \ i = 1,2$

be a ν -stem cover of G. Then

$$\frac{V^*(G_1)}{A_1} \cong \frac{V^*(G_2)}{A_2}.$$

Proof. Let $1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$ be a free presentation for the group G, and G^* be a fixed covering group of G with respect to a given variety \mathcal{V} . By the definition, there is an exact sequence $1 \longrightarrow A \longrightarrow G^* \longrightarrow G \longrightarrow 1$ such that $A \subseteq V^*(G^*) \cap V(G^*)$ and $A \cong \mathcal{V}M(G)$. To prove the result it suffices to show that isomorphism class of groups $\frac{V^*(G^*)}{A}$ are determined uniquely by the presentation $F/R \cong G$. Using Theorem 3.1, we may assume that $G^* \cong F/S$, $A \cong R/S$ for some normal subgroup S of F such that

 $\frac{R}{[RV^*F]} \cong \nu M(G) \times \frac{S}{[RV^*F]}.$ Put $V^*(\frac{F}{[RV^*F]}) = \frac{L}{[RV^*F]}$, then clearly $[LV^*F] \subseteq [RV^*F] \subseteq S$ and hence $L/S \subseteq V^*(F/S)$. Now, if $xS \in V^*(F/S)$ then for every $v \in V$ and $f_1, \ldots, f_r \in F$, we have

$$v(f_1, \ldots, f_i x, \ldots, f_r) v(f_1, \ldots, f_r)^{-1} \in S \cap V(F) = [RV^*F].$$

So $x[RV^*F] \in V^*(\frac{F}{[RV^*F]})$. This implies that $V^*(F/S) \subseteq L/S$. Thus $V^*(F/S) = L/S$. Hence $\frac{V^*(G^*)}{A} \cong L/R$. But the factor group L/R is only determined by the free presentation $F/R \cong G$, and hence the result follows.

Remark. In [7], Leedham-Green and McKay introduced the generalized version of the Baer-invariant of a group G with respect to two varieties of groups. We have proved, a result similar to Theorem 3.3 in this generalized version (see [21] and [22] for more details).

4. Subvarieties of abelian groups

In this final section we consider ν -covering groups and ν -marginal extensions of a ν -perfect group with respect to a subvariety of abelian groups ν , say.

In [15], we have shown the following theorem, yielding the existence of ν -covering groups for ν -perfect groups with respect to an arbitrary variety of groups ν .

Theorem 4.1 Let ν be a variety of groups and let G be a ν -perfect group with a free presentation $G \cong F/R$. Then $\frac{V(F)}{[RV^*F]}$ is a ν -covering group of G.

Theorem 4.1 is also generalized Theorem 2.1 of [11], in which the variety ν was defined by the set of outer commutator words.

Now in the following main result (Theorem 4.3), it is shown that if ν is a variety of groups contained in the abelian variety \mathcal{A} , say, then the ν -marginal extensions of a ν -perfect group G are homomorphic images of a ν -stem cover. Of course, we have also proved such a result in [14] for any group with respect to the variety of abelian groups of exponent m, where m is a square free positive integer.

The following lemma shortens the proof of the main theorem considerably, and its proof is straightforward.

Lemma 4.2 Let ν be a variety of groups and G be any group with a free presentation $1 \longrightarrow R \longrightarrow F \xrightarrow{\pi} G \longrightarrow 1$, and let $1 \longrightarrow A \longrightarrow$ $H \longrightarrow \overline{G} \longrightarrow 1$ be a ν -marginal extension of another group \overline{G} . If $\alpha: G \longrightarrow \overline{G}$ is an isomorphism, then there exists an epimorphism β : $\begin{array}{c} \frac{F}{[RV^*F]} \longrightarrow H \text{ such that the following diagram commutes} \\ 1 \longrightarrow \frac{R}{[RV^*F]} \longrightarrow \frac{F}{[RV^*F]} \xrightarrow{\pi} G \longrightarrow 1 \\ \downarrow \beta_1 \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \alpha \\ 1 \longrightarrow A \longrightarrow H \longrightarrow \overline{G} \longrightarrow 1 \end{array}$

where $\bar{\pi}$ is the natural homomorphism induced by π and β_1 is the restriction of β .

Theorem 4.3 Let ν be a variety contained in the variety of abelian groups and let

$$1 \dashrightarrow A \dashrightarrow H \dashrightarrow G \dashrightarrow 1$$

be a ν -marginal extension of a ν -perfect group G. Then there exists a ν -covering group G^* of G such that H is a homomorphic image of G^* .

Proof. Let $1 \to R \to F \xrightarrow{\pi} G \to 1$ be a free presentation of the group G. By Lemma 4.2, there exists an epimorphism $\beta : \frac{F}{[RV^*F]} \to H$ such that the following diagram commutes:

where β_1 is the restriction of β . Put

$$ker\beta_1 = ker\beta = \frac{T}{[RV^*F]},$$

where T is a normal subgroup of R and $T(R \cap V(F)) = R$. Hence, since G is ν -perfect we have

$$\frac{T}{T \cap V(F)} \cong \frac{T(R \cap V(F))}{R \cap V(F)} = \frac{R}{R \cap V(F)} \cong \frac{RV(F)}{V(F)} \cong \frac{F}{V(F)}.$$

Thus the following exact sequence splits

$$1 \longrightarrow \frac{T \cap V(F)}{[RV^*F]} \longrightarrow \frac{T}{[RV^*F]} \longrightarrow \frac{T}{T \cap V(F)} \longrightarrow 1,$$

Schur-pair property and the structure of ...

where $\frac{T}{[RV^*F]}$ is an abelian group, and hence

$$\frac{T}{[RV^*F]} \cong \frac{T \cap V(F)}{[RV^*F]} \times \frac{S}{[RV^*F]},$$

where $\frac{S}{[RV^*F]} = \frac{T}{T \cap V(F)}$. Now we have

$$S \cap (R \cap V(F)) = S \cap (T \cap V(F)) = [RV^*F],$$

and

$$\begin{split} S(R \cap V(F)) &= S(T(R \cap V(F)) \cap V(F)) &= (R \cap V(F))(S(T \cap V(F))) \\ &= (R \cap V(F))T = R, \end{split}$$

which implies that

$$\frac{R}{[RV^*F]} = \frac{R \cap V(F)}{[RV^*F]} \times \frac{S}{[RV^*F]}.$$

Hence by Theorem 2.1, F/S is a ν -covering group of G. Moreover

$$\frac{F/S}{T/S} \cong \frac{\frac{F}{[RV^*F]}}{\frac{T}{[RV^*F]}} \cong H,$$

which completes the proof. \blacksquare

Now, we obtain the following corollary which is of interest in its own account.

Corollary 4.4 Let ν be a variety contained in the variety of abelian groups and let

(e): $1 \longrightarrow A \longrightarrow H \longrightarrow G \longrightarrow 1$ be a ν -marginal extension of a ν perfect group G such that every other ν -marginal extension of G is a
homomorphic image of the extension (e). Then (e) is a ν -stem cover of
G.

Proof. By Theorem 4.3, there exists a ν -stem cover (e') : $1 \longrightarrow A_1 \longrightarrow G^* \longrightarrow G \longrightarrow 1$ and an epimorphism $\psi : G^* \longrightarrow H$ such that the following diagram is commutative

where ψ_1 is the restriction of ψ to A_1 . Now by using [15, Theorem 3.4], we obtain that ψ is an isomorphism which gives the result.

In the context of ν -perfect groups, we have proved several other results, for instance we have shown that any automorphism of a finite ν -perfect group can be lifted to an automorphism of its ν -covering group (see [15]). This result is a vast generalization of Alperin and Gorenstein [1].

Acknowledgement: We would like to thank the referees for their valuable suggestions.

References

- J.L. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc., 17 (1966) 515-519.
- [2] J.C. Bioch and R.W. van der Waall, Monomiality and isoclinism of groups, J. Reine Angew. Math., 289 (1978) 74-88.
- [3] P. Hall, The classification of prime power groups, J. Reine Angew. Math., 182 (1940) 130-141.
- [4] N.S. Hekster, Varieties of groups and isologisms, J. Austral. Math. Soc., (Series A) 46 (1989) 22-60.

- [5] J.A. Hulse and J.C. Lennox, Marginal series in groups, Proc. Royal Soc. Edinburgh, 76A (1976) 139-154.
- [6] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs New Series, 2 (1987).
- [7] C.R. Leedham-Green and S. McKay, The Baer-invariant, isologism, varietal laws and homology, Acta Math., 137 (1976) 99 - 150.
- [8] M.R.R. Moghaddam, The Baer-invariant of a direct product, Arch. der Math. (Basel), 33 (1979) 504-511.
- M.R.R. Moghaddam, On the Schur-Baer property, J. Austral. Math. Soc. (Series A), 31 (1981) 43-61.
- [10] M.R.R. Moghaddam, Some inequalities for the Baer-invariant of a finite group, Bull. Iranian Math. Soc., Vol. 9 (1981) 5-10.
- [11] M.R.R. Moghaddam and S. Kayvanfar, *V*-perfect groups, *Indag. Math. N. S.*, 8(4) (1997) 537-542.
- [12] M.R.R. Moghaddam and M.M. Nasrabadi, Schur-Baer property in polynilpotent groups, Italian Journal of Pure and Applied Mathematics, 8 (2000) 49-56.
- [13] M.R.R. Moghaddam and A.R. Salemkar, Some remarks on generalized Schur pairs, Arch. der Math., (Basel)71 (1998) 12-16.
- [14] M.R.R. Moghaddam and A.R. Salemkar, Characterization of varietal covering and stem groups, *Communication in Algebra*, 27(11) (1999) 5575-5586.
- [15] M.R.R. Moghaddam and A.R. Salemkar, Varietal isologism and covering groups, Arch. der Math., (Basel)75 (2000) 8-15.
- [16] M.R.R. Moghaddam and A.R. Salemkar, Some properties on isologism of groups, J. Austral. Math. Soc. (Series A), 68 (2000) 1-9.
- [17] M.R.R. Moghaddam, A.R. Salemkar and A. Gholami, Some properties on isologism of groups and Baer-invariants, Southeast Asian Bulletin of Mathematics, 24 (2000) 255-261.

- [18] M.R.R. Moghaddam, A.R. Salemkar and A. Gholami, Some properties on marginal extensions and the Baer-invariant of groups, *Viet*nam Journal of Mathematics, 29:1 (2001) 39-45.
- [19] M.R.R. Moghaddam, A.R. Salemkar and M.M. Nasrabadi, Baerinvariant: inequalities and covering groups, to appear.
- [20] M.R.R. Moghaddam, A.R. Salemkar and M.R.Rismanchian, Some properties of ultra Hall and Schur pairs, Arch. der Math., (Basel)(2002), to appear.
- M.R.R. Moghaddam, A.R. Salemkar and M.R.Rismanchian, Generalized covering groups, Southeast Asian Bulletin of Mathematics, 25 (2001) 485-490.
- [22] M.R.R. Moghaddam, A.R. Salemkar, and M. Taheri, Baerinvariants with respect to two varieties of group, Algebra Colloquium, 8:2 (2001) 145-151.
- [23] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin, (1967).
- [24] E.W. Read, On the centre of a representation group, J. London Math. Soc., (2)16 (1977) 43-50.
- [25] I. Schur, Uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew.Math., 127 (1904) 20-50.
- J. Wiegold, The Schur Multiplier: An elementary approach, Groups-St. Andrews (1981), Lecture Note Series of London Math. Soc., Vol. 71, Cambridge University Press, Cambridge, (1982) 137-154.