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Introduction

Various versions of the density theorm have been studied and charac-
terized by numerous authors. Some of the works are [1], [2], [3], [7], [8],
[9], and [10].

Before we enter the main subject, we briefly build up a system to derive
the main results. Then, it will be easily seen that almost all the works
have been done in this regard can be deriven from this system. For the
sake of simplicity and unified notations, we will mention some of the
previous results.

Let R be aring and L and K are modules. We call a submodule N of L,
K-dense if for every l € L and k € K, (N : 1)k = 0 implies k = 0, where
(N:l)={re R|rl e N}. An L-dense submodule of L is called dense
submodule. It is easy to see that if K is faithfull (and elsewhere), then
every K-dense submodule of L is also R-dense and if K is nonsingular,
then every R-dense submodule of L is also K-dense. Furthermore, the
R-dense left ideals of R are just the dense left ideals of R.

Now let R be a right-faithfull ring, M a nonzero cofaithfull (and else-
where) module and L, K € {M, R}. One may form the direct limit L,
Hompg(N, K) over all M-R-dense submodules N of L: we denote this
direct limit by @,,,(L, K'). Let [f] denote the class of f € Homg(L;, K)
in @, (L, K); we have [f] = [¢] if and only if f = g on an M-R-dense (M-
dense and also R-dense) sunmodule of L: addition of classes is defined
by [f]+ [g] = [h] in @m(L, K) where h = f + g on an M-R-dense sub-
module of L. Now if N € {M, R}, then we define the middle linear map
Qm(L, K) X Qun(K,N) — Qn(L,N) naturally. Set D = Q,,,(M, M),
V=QuRM),W=0Q,(M,R),S=Qun(R,R)andU = MD. D, V,W

and S are determind uniquely as follow.

A. 5 is an extension ring of R such that
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1. For every s € 5 there exists an M- R-dense left ideal I of R such
that Is C R.

2. For every 0 # s € S and M-R-dense left ideal I of R, Is # 0.

3. For every M-R-dense left ideal [ of R and f € Homg(I,R)
there exists s € S such that f(z) = zs for all € [.

It is worth to mention that 5 is a subring of the left maximal quotient
ring of R, furthermore if M is faithfull and nonsingular, then S is the

left maximal quotient ring of R.

B. V is an R-module containing M as an R-submodule such that

1. For every v € V there exists an M-R-dense left ideal I of R
such that v C M.

2. For every 0 # v € V and M-R-dense left ideal I of R, Iv # 0.

3. For every M-R-dense left ideal I of R and f € Hompg(I, M)
there exists v € V such that f(z) = zv for all 2 € I.

C. D is an extension ring of Hom(M, M) and V is a R-D-bimodule such
that

1. For every d € D there exists an M-R-dense submodule N of M
such that Nd C M.

2. For every 0 # d € D and M-R-dense submodule N of M,
Nd #0.

3. Forevery M-R-dense submodule N of M and f € Homgz(N, M)
there exists d € D such that f(z) = 2d for all z € N.
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D. W is an additive group with a middle linear map M x W —— 5 such
that

1. For every w € W there exists a M- R-dense submodule N of M
such that Nw C R.

2. For every 0 # w € W and M-R-dense submodule N of M,
Nuw # 0.

3. For every M-R-dense submodule N of M and f € Homg(N, R)
there exists w € W such that f(2) = 2w for all € N.

4. Forevery s€ S,veV and w e W, s(vw) = (sv)w.

The above conditions determine S, V, D, W and U uniquely. Further-
more, (5,V, W, D)is a Morita context and if M is monoform, then U is
the quasi-injective hull of M.

Let M be monoform [4]. If M is faithfull, then S and so R, can be con-
sidered as a subrings of End(Vp) and if for every 0 # a € R, there exist
m € M and b € R such that bRa # 0 and @;(m)b = 0 (for example when
R is prime and M is a left ideal), then S and so R, can be considered
as a subrings of End(pW).

Our minimum expectation is that D can be a division ring and that
can be fullfilled when M is monoform and either M is faithfull or R is
nonsingular. In this case every nonzero submodule is M-R-dense. Now
suppose that M is faithfull and monoform. All the works have been
done so far can be explained and the results can be deriven within this
system by one of these two approches. Amitsur in [1] and Zelmanowitz
in [10] have considered R as a subring of End(pW). But in [7], in [9],
in the Wedderburn density theorem and in the Goldie’s theorems in [2]
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R has been considered as a subring of End(Up).
The following can be proven easily.

E. Let R be aring and M an R-module. If every essential left ideal is M-
R-dense (as will happen if R is nonsingular and either M is nonsingular

or M is a left ideal), then

1. For every R-submodule I of S and f € Hompg(I,5) there exists
s € S such that f(z) = s forall z € I.

2. For every R-submodule I of S and f € Hompg(I,V) there exists
v € V such that f(z) = av for all 2 € I.

F. Let R be aring and M an R-module. If every essential submodule is
M- R-dense (as will happen if either M is nonsingular and faithfull, or
M is monoform and faithfull or M is monoform and R is nonsingular),

then

1. For every R-submodule N of V and f € Hompg(N,V) there
exists d € D such that f(z) = ad for all 2 € N.

2. For every R-submodule N of V and f € Homg(N,S) there
exists w € W such that f(z) = 2w for all z € N.

3. If M is nonsingular, then V is a nonsigular R-module and a

nonsigular S-module.

G. Let R be a ring and M a faithfull R-module. If every essential
submodule is M-R-dense (it will happen if M is either nonsingular or

monoform), then

1. Considering R as a subring of End(Up), for every left ideal
J of R, finite dimensional subspace N of U, and v € U —
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(NtesKer(f) + N), there exists f € J such that f(N) = 0
and f(v) # 0.

2. Considering S as a subring of End(Vp), for every left ideal
J of R, finite dimensional subspace N of V, and v € V —
(NfesKer(f)+ N), there exists f € J such that f(N)=0 and

f(v) #0.

1. Preliminaries
We introduce the following notations and definitions for convenience.

1. An element s of a ring R is said to be primitive, if for every z,y € R,

xsy = 0 implies either zs = 0 or sy = 0.

2. Let S be a ring, R a subring of S and § # X C 5. Then, we denote
{a € R|aX =0} by af(X). We also use af(X) similarly. Moreover,
if there is no ambiguity, we use @;(X) instead of a7 (X) and @,(X)
instead of @2(X). If af(R) = 0, then R will be called right faithfull.
Left faithfull is defined similarly.

3. Suppose that D is a division ring, V' a left vector space over D and

R a subring of Homp(V,V).

1. Ris called "uniformly (and essentially) dense” if {v, va,... ,v,} C
V' is an independent set and {wy,us,...,u,} C V, then there
are 0 #d € D and f € R (with rank not greater than n) such
that f(v;) = du; for all 1 <1i < n.

2. R is called "semi-dense” if {v;,v9,...,v,} C V is an indepen-
dent set and {wuy,us,...,u,} C V, then there is f € R and
0 # d; € D such that f(v;) = du; for all 1 <i < n.
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3. Ris called 7 critically dense” if for every independent set

{v1,09,...,v,} CV, there is a subspace L with

L® < vy,09,...,v, >= V such that for every {u, us,... ,u,} C
V, there exists f € R with f(L) = 0 and f(v;) = w; for all
1 << n.

4. R is called ” uniformly compressible” if for every independent

set
{v1,09,...,v,} CV, there is a subspace L with
L < vy,v9,...,v, >=V and an invertible n X n matrix A =

[a;;] such that for every m > 1 and wy; € V there exists 0 #
d € D depending only on wy;’s and f; € R with f,(L) =0 and
Je(vi) = 200 aij(dwy;) for all 1 <4 < n.

4. Let R be a ring. Then, Q,,,.(R) will represent the maximal right
quotient ring of R and the maximal left quotient ring of R will be rep-
resented by @Q,,(R).

5. Let R be a ring and M a module.

1. M is said to be "total”, if for 0 # m,n € M that a;(m) = a;(n),
there exist @« € R and f,g € Homg(M, M) such that g # 0,
am # 0 and f(am) = g(an). In this case, if R is right faithfull

and M is monoform, then
(a) Dy ={de D|MdC M} is aright order in D.

(b) For every ui,us,...,u, € U, there exists 0 # a € Dy
such that u;a € M for all 1 < i < n.

(c) For every subspace Lof V, (LN M)D=LnU.

2. M is called "quasi-compressible” if for every nonzero finitely

generated submodule K and every nonzero submodule N,
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Hompg(K,N)# 0. In this case, if M is monoform and either M
is faithfull or R is nonsingular, then for every my, mo, ..., m, €
M and every nonzero submodule N, there exists 0 # d € D such
that m;d € N for all 1 <i < mn.

M is called ”"almost compressible” if for every 0 # m,n € M,
there exists @ € R with an # 0 and @;(m)an = 0. In this case,
if M is monoform and either M is faithfull or R is nonsingular,
then for every 0 # m € M and every nonzero submodule N,

there exists 0 # d € D such that md € N.

M is called "transitive” if there exists m € M and s € R such
that saf(a;(m)) is a uniform right ideal.

6. Let R be a ring.

1.

If R has a faithfull, monoform, total and quasi-compressible

module, then R is called ”quasi-primitive”.

If R has a faithfull, monoform, total and almost compressible

module, then R is called ”almost primitive”.

An ideal P is said to be "almost primitive” if R/P is an almost

primitive ring.

R is said to be 7almost semiprimitive” if the intersection of all

almost primitive ideals is zeroo.

Lemma 1.1. Let R be a nonsingular ring and J a uniform left ideal.

Then

1.

FPvery element of J is primitive.

2. For every a € R, either Ja =0 or Ja is a uniform left ideal.
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3. Forevery0#secJ, a,(s)=a,(J).

Proof. 1. We show that for every ) # X C R, either JNa;(X)=0
or J C a;(X). Suppose I = JNa;(X)# 0 and K is the closure of .
Since I C @;(X) and a;(X) is closed by [5, Lemma 1.1], K C a,;(X).
On the other hand, J C K.
2. Suppose Ja # 0. Then, J N a;(a) = 0. Now let K and L be left
ideals contained in Ja with KN L = 0. Set Ky = {2 € J | za € K}.
Then, Kga = K and Lya = L. We claim that Ky N Ly = 0 because if
be Kon Ly, then ba € KN L =0, hence b € J N a;(a) = 0. Thus,
Ky=0o0r Ly =0, therefore K =0 or L = 0.
3. Suppose b € @,(s), then 0 # s € J N a;(b). Thus, J C a;(b). m

Lemma 1.2. Let R be a ring and s € R. If Rs is uniform then
every left ideal K # 0 with K N a;(s) = 0 is uniform.

Proof. The natural map K — Ksis an R-module isomorphism. m

Lemma 1.3. Let R be a nonsingular ring and 0 # s € R.

1. If every left ideal K # 0 with K N ,(s) = 0 is uniform, then

Rs 1s uniform.
2. If Rs is uniform then a,(s) is a maximal left annihilator ideal.

3. If Rs is uniform and s* # 0 then Rs® Q,(s) is an essential left
ideal and a,(s) N @, (a;(s)) = 0.

Proof. 1. Let I and J be left ideals with Is # 0 and Js # 0. It is
enough to show that s N Js # 0. Since I € a;(s) and @,(s) is closed
by [5, Lemma 1.1], there exists a left ideal M # 0 contained in [ with
Mna,(s) = 0. Thus, we may assume that /N@;(s) = 0 and JNa,(s) = 0.
If(I+J)na;s)=0,then INJ #0,thus 0# (INJ)sCIsnJs. Now
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suppose that (I + J) N @;(s) # 0. There exist z € [ and y € J such
that 0 # @ + y € Q;(s), then zs = —ys € IsN Js. On the other hand
zs # 0 because otherwise, z € IN@;(s) =0and y € JNa;(s) =0, then
x + y = 0 which is a contradiction.

2. Let @ € R and a;(s) C @;(a) # R. Since @;(s) and @;(a) are closed,
there exist nonzero left ideals A" and L such that K N a;(¢) = 0 and
L C a;(a) with a;(s) N L = 0, thus (K & L) N @;(s) = 0 which is a

contradiction by Lemma 1.2. m

Lemma 1.4. If R is a prime ring containing a nonzero primitive

element, then R is left and right nonsingular.

Proof. Let a € Sing(R) (singular ideal of R). We claim that ()
contains all primitive elements of R. Suppose & # 0 is a primitive
element of R. Since @;(a) is essential, @;(a) N Rz # 0, so thereis r € R
such that 0 # ra € @,(a), thus @ € @;(a). Now by the hypothesis,
there exists a nonzero primitive element s. Let 2,y € R. Since zsy is a

primitive element, zsy € @;(a). Thus RsR C @;(a). Therefore a = 0. m

Corollary 1.5. Let R be a prime ring containing either a maximal
left annihilator ideal or a mazimal right annihilator ideal. Then, R is

left and right nonsingular.

Lemma 1.6. Let R be a prime ring containing a uniform left ideal.

Then, for every primitive element 0 # s € R, Rs is uniform.

Proof. Suppose a,b € R with as # 0 and bs # 0. It is enough to
show that there are z,y € R with zas = ybs # 0. Suppose [ # 0 is a
uniform left ideal. Consider ¢ € I with sc # 0, then 0 # asc,bsc € I.
So, there are z,y € R with zasc = ybsc # 0, therefore zas = ybs # 0. m

Lemma 1.7. Let R be a prime ring containing a uniform left ideal
and a uniform right ideal. Then, for every primitive element s € R with

s2£0, a(a,(s)) and a,(a,(s)) are uniform.
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Proof. By Lemma 1.4, R is left and right nonsingular. sR is uniform
by Lemma 1.6, so @;(s) N @;(a,(s)) = 0 by Lemma 1.3, then a,(a,(s))

is uniform by Lemma 1.2. m

Lemma 1.8. Let R be a semiprime ring and I a nonzero left ideal

of R. Then, I contains a nonzero square element.

Proof. Suppose it is not. Then, for every z,y € I,
0=(z+y) =24y +ay+ye=aytye

hence zyx = 0. Thus, zbzax = 0 for all z,a € I and b,z € K. Hence
axb = 0 for all a,z € I and b € R. Consequently I?’R = 0 which is a

contradiction. m

Lemma 1.9. Let R be a nonsingular prime ring containing a uni-
form left ideal and a uniform right ideal. If A = {ay,a,...,a,} is a set
of primitive element with a} # 0 for each i and a;a; = 0 for all i < j,

then
1. 3°F Ra; + ai(A) is a direct sum and an essential left ideal.
2. S a; R+ a.(A) is a direct sum and an essential rigth ideal.

3. a(a.(A)Nna;(A) =0 and RA is an essential submodule of
).

4. a.(a;(A) N a.(A) = 0 and AR is an essential submodule of
a.(a,(A)).

2
)
=
=

Proof. 1. Obviously >°7" , Ra;+a;(A)is a direct sum. We prove that
i1 Ra; + a;(A) is an essential left ideal by induction on n. It is clear
for n = 1 by Lemma 1.3 and Lemma 1.6. Set B = {ay,a9,...,0,_1}
and I = Y77 Ra; ® ay(B). I is an essential left ideal by induction, so
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Ina(a,)is an essential submodule of @,(a,,), thus J = I'na,(a,)® Ra,
is an essential left ideal by Lemma 1.3 and Lemma 1.6. Since a; € @;(a,)
forall i < n, INa;(a,) = 317" Ra; ®a;(A), then J = 37 Ra; B a;(A).
3. Since a,(a;(A)) + a,(A) is an essential left ideal and R is right
nonsingular by Lemma 1.1 and Lemma 1.4, a;(A) N a;,(a,(A)) =0.m

Lemma 1.10. Let R be a nonsingular prime ring containing a uni-

form left ideal and a uniform right ideal.

1. For every independent set {1y, I, ..., I,} of uniform left ideals,
there exist a; € I; with a} # 0 such that a;a; = 0 for all i < j,
furthermore, for every 1 < j < n, there exists 1 € R with
I;iv # 0 such that I = 0 for all i # j.

2. if A is an independent finite set of uniform left ideals, then
Yoreal is an essential submodule of @;(A,(3 ;¢4 1))

Proof. 1. By induction on n. It is clear for n = 1 by Lemma 1.8.

Set B ={l,1l5,...,1,_1}. RB is an essential submodule of @,(a,(B))
by Lemma 1.9. On the other hand, RB N1, = 0, so I, € a,(a,.(B)),
hence
1,a,(B) # 0, thus I,a,.(B)I, # 0, implying a,.(B)I, € a,.(I,). Consid-
ering a, € a.(B)Il, — a,(I,) completes the induction by Lemma 1.1.
Now suppose that there is no » € R with I;7 # 0 such that I;» = 0 for
all ¢ # j. Then, a,(3".; Ii) € a,(I;). Thus, I; C a;(a, (3", ;) which
is a contradiction by item (2).
2. Suppose A = {I},I,,...,I,}. There exist a; € I; with a? # 0 such
that a;a; = 0 for all i < j. Set B = {ay,as,...,a,}. RB is an essential
submodule of @;(@,(B)) by Lemma 1.9. On the other hand, a,(a;) =
@,(1;) by Lemma 1.1 , 50 @,(3";c4) = @,(B). Thus, RB is an essential
sumodule of @;(@,(3",c,)), moreover RB C 3", , C ai(A,(3Y;c4))- W
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Lemma 1.11. Let R be a ring and M a uniform nonsingular module.

1. If either M s faithfull or R is nonsingular, then for every 0 #
m € M, there exists w € W and left ideal J # 0 such that

wm = 1 and amw = a for all a € J.

2. If M s faithfull, then W is faithfull.

Proof. 1. Set I = af{(m). There exists a nonzero left ideal .J of R
with I NJ = 0. The map ¢ : Jm — J given by g(am) = a for a € J
is a well defined R-module homomorphism. Thus, there exists w € W
such that @ = amw for all @ € J. Then, Jm(1l — wm) = 0, implying
wm = 1.

2. Let 0 # r € R. There exists m € M with rm # 0, then there exists
w € W such that w(rm)=1. Thus, Wr # 0. m

Lemma 1.12. Let R be a nonsingular irreducible ring and M a

uniform nonsingular module. Then, W is a faithfull R-module.

Proof. Set T = MW NR and Q = a®(T). T # 0 by Lemma

1.11. First we show that for every left ideal J # 0 of R contained
in T, there exist m € M and w € W with 0 # mw € J. Consider
0#b=>5",mw; €.J with nis as small as possible. We claim that
n = 1. Set m = my. The map p: Rm — Rb, given by p(rm) = rb, is a
well defined R-module homomorphism. Thus, there exists w € W such
that b = mw.
Now suppose  # 0, then TN @ # 0. Thus, there exists m € M and
w € W such that 0 # mw € T N Q. On the other hand there exist
w € W and a left ideal J # 0 such that um = 1 and aum = «a for all
a € J, by Lemma 1.11. Then, amw = (emu)mw € Tmw = 0 for all
a € J,implying Jm = 0. Thus, J = Jmu = 0 which is a contradiction.
(This proof has been adopted from [10, Theorem 2.1])
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Lemma 1.13. Let R be a ring and M a faithfull uniform nonsin-
gular module. For every independent set {wy, wsy, ... ,w,} C W, there
exist my, Mo, ... ,m, € M such that the metriz A = [w;m;] is invertible

and for [ =51 myw;, Ker(f)® < wy,wq,...,w, >= W.

Proof. Set K = {wy,ws,...,w,} and N =< K >. Consider 5
as a subring of End(pW) and choose f € MK such that dim(f(NV)) is
maximal. Since f(W) C N and N is finite dimensional, f(N) = N if
and only if Ker(f) N N = 0 and in this case Ker(f)& N = W. We
claim that f(N) = N. Suppose it is not so. Then, Ker(f)N N # 0
and N ¢ f(N). Consider 0 # wy € Ker(f) N N. There exists an
M-R-dense submodule L of M such that Lwy C R, then there ex-
ists m € M such that (Lwg)m # 0, impluing d = wem # 0. Con-
sider w € K — f(N) and set ¢ = f + mw. FYor every u € N, if
g(u) = 0, then f(u)+ (um)w = 0, so um = 0 and f(u) = 0. Thus,
Ker(g)N' N C Ker(f)N N. On the other hand, wy, € Ker(f)N N and
g(wy) = dwy # 0, Thus, dim(g(N)) > dim(f(NV)) which is a contradic-
tion.

There exist my,mo,...,m, € M such that f = > m;w,;. Since
f(N) = N, there exist u; € N such that f(u;) = w;. On the other
hand, there exist a;; € D such that u, = Y | ay;w;, then

n n
(O ariw)(D_mjw;) = wy,
i=1 ji=1

implying >°i"; api(w;m;) = bp;. W

Lemma 1.14. Let R be a nonsingular prime ring containing a uni-
form left ideal and a uniform right ideal and M be a uniform left ideal.

Then, W is uniform.

Proof. Suppose 0 # v, w € W. There exists a left ideal 0 # L. C M
such that 0 # Lv, Lw C R. On the other hand, R contains a nonzero
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primitive element s by Lemma 1.1. Since {m € L | smv =0}U{m € L |
smw = 0} # L, there exists m € L such that smv, smw # 0. Since sR is
uniform by Lemma 1.6, there exist r,t € R such that smvr = smwt # 0.
Now there exists v € W such that wsm = 1 by Lemma 1.11, implying
ur=wt#0.m

2. Various Versions of the Density Theorem

Theorem 2.1. Let R be a quasi-primitive ring. There exist a division
ring D and a vector space U such that R can be embbeded in End(Up)

as a unifomly dense subring.

Proof. Let M be a faithfull, monoform, total and quasi-compressible
module. Suppose that 0 # vy, v9,...,0, € V and uy,us,... ,u, € U.
We claim that there exist 0 # d € D and f;; € R such that f;;(v;) = u,;d.
There exists 0 # a € D such thay w;a € M for all 1 < ¢ < n. On the
other hand, there exists a nonzero left ideal I of R such that 0 # [v; C M
forall 1 < j < m, then there exists 0 # b € D such that (v;a)b € NJL, [v;
for all 1 <7 < n. Thus, there exists f;; € I such that u;ab = f;;(v;).
Now let vy, v9,...,v, € U be an independent set and uy, us, ..., u, € U.
Set V; =< vy, v, , 1,41, - v, >. There exists g; € R such that
g:(V;) = 0 and g;(v;) # 0, then ther exist 0 # d € D and f; € R such
that fi(gi(v:)) = wid. Set f =377, fig;. m

Theorem 2.2. Let R be an almost primitive ring. There exist a
division ring D and a vector space U such that R can be embbedded in

End(Up) as a semi-dense subring.

Theorem 2.3. Let R be a ring having a faithfull nonsingular uni-
form module. Then, there exist a division ring D and a vector space V
such that Q,,(R) can be embbeded in End(Vp) as an essentially dense

subring.
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Proof. First we show that V is a simple S-module. For that, let

0 # u,v € V, we show that there exist f € S such that f(v) = wu. is
maximal respect to IN.J =0. Set K = (Jo:u)f ={re R|rue Ju}.
K Set I = af(v). There exists a nonzero left ideal J of R such that is a
nonzero left ideal of R, moreover for every k € K there is a unique h € J
with ku = hv. Then, the map g : K — J given by ¢g(k) = h is an R-
module homomorphism. Thus, there exists f € S such that g(k) = kf
for all k¥ € K, implying K(fv —u) = 0. It is enough to show that K
is an essential left ideal of R. Suppose L is a left ideal of R such that
KnL=0.Then, Kun Lu=0. Set N = (Lu:v)®. Then, Nn.J =0.
On the other hand, I is closed by [1]. Thus, I = N, because of the
maximality of J, then Lu N Rv = 0, so Jv is an essential R-submodule
of V). Therefore, S is a dense subring of Lu = 0 which implies L = 0
(Or we coud say that K is essential because End(Vp). Now it is enough
to show that 5 contains a rank 1 element.

Consider 0 # m € M. There exists w € W with wm = 1. Set f = muw,
then f(V)=mD.m

Theorem 2.4. Let R be a nonsingular irreducible ring containing a
uniform left ideal. Then, there exist a division ring D and a vector space
W and R°? can be embbeded in End(pW') such that for every0 # w e W
and hy,hy, ... hy € End(pW) that hy(w) # 0, there exists f € R with
fW)=Dw and h;f € R for all 1 <i < n.

(See also [10, Theorem 2.1])

Proof. Let M be a uniform left ideal. There exists an AM-R-dense
submodule L such that Lw, Lhi(w) C R. On the other hand, there
exists m € M such that mhy(w) # 0. Set f = mw and g, = mhy(w).
Then f,gr € R, hi.f = g, g1 # 0 and f(W) = Dw by Lemma 1.11.m
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Theorem 2.5. Let R be a right nonsingular, right irreducible ring
containing a uniform right ideal. Then, there exist a division ring D
and a vector space W and R can be embbeded in End(pW) such that
Qmr(R) = End(pW).

(See also [10, Theorem 2.1])

Corollary 2.6. Let R be a nonsingular irreducible ring containing
a uniform leftt ideal. Then, every nonzero left ideal contains a uniform
left ideal.
(See also [10, Theorem 2.1])

Theorem 2.7. Let R be a prime ring with nonzero socle. Then,
there exist a division ring D and a vector space W and R can be embbeded

in End(pW) as a critically dense subring.

Proof. Let M be a minimal right ideal. Consider M as a left R°?-
module and consider R as a subring of End(pW). Let {vy,vs,...,v,} C
W be an independent set. By Lemma 1.13, there exist my, ms, ... ,m, €
M such that the matrix A = [v;m;] is invertible and for g = "/, m,v;,
Ker(g)® < vy,vs,...,0, >= W. Suppose wy,ws,...,w, € W. There
exist @1,2s,...,2, € W such that w; = >27_ (vymy)z;. Set f =
o miz;. Then, f € R, moreover for every 1 < ¢ < n and w € Ker(g),

n n

flw) = Zw(mlxl) = Z(wml)xl =0

i=1 i=1

n

(o) = v Zn:mﬁj = Z(vimj)xj = w;. &

ji=1

Theorem 2.8. Let R be a nonsingular prime ring containing a
uniform right ideal. Then, there exist a division ring D and a vector

space W and R can be embbeded in End(pW) as a unifomly compressible
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subring.

(See also [10, Theorem A])

Proof. Let M be a uniform right ideal. Consider M as a left R°P-
module and consider R as a subring of End(pW). Let {vy,vs,...,v,} C
W be an independent set. By Lemma 1.13, there exist my, ms, ... ,m, €
M such that the matrix A = [v;m;] is invertible and for g = "/, m,v;,
Ker(g)® < vy,vq,...,0, >= W. Let wy; € W. Since M is compressible
by Lemma 3.5, there exists 0 # ¢ € D such that cwy; € Wy, for all
I <i<mnand 1<k <m. Set fr = > mycwy,. Then, fp € R,
moreover for every 1 <7 <n and w € Ker(g),

n

fe(w) = Zn:w(mzcwm) = Z(wml)cwkl =0

i=1 i=1

n n

Je(vi) = v, ijcwkj = Z(”imj)cwkj- u

j=1 ji=1

Theorem 2.9. Let R be a nonsingular prime ring containing a
uniform right ideal and a uniform left ideal. Then, there exist a division
ring D and a vector space W and R can be embbeded in End(pW) as a
unifomly and essentially dense subring.

(See also [3, Theorem 3.1])

Proof. Let M be a uniform right ideal. Consider M as a left R-
module and consider R as a subring of End(pW). Let {vy,vs,...,v,} C
W be an independent set. There exist a nonzero submodule I; such that
Liv; € R. We show that {Lvy, Lovs,---, L,v,} is an independent set
of uniform left ideals of R. Suppose m; € L; and >, myv; = 0. If
m; # 0, then there is w € W such that wm; # 0 by Lemma 1.11, then
Yo (wm;)v; = 0 which is a contradiction because {vy,vs,...,v,} is

independent. Obviously each L;v; is uniform. Thus, by Lemma 1.10,
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there exist h; € R such that (L;v;)h; # 0 while (L;v;)h; = 0 implying
v;h; # 0 and v;h; = 0 for all « # 7.

By Lemma 1.13, for every 0 # v € W, there exist m € M such that
vm # 0 and for ¢ = mov, Ker(g)® < v >= W. Let 0 # ¢ € D
and 0 # v € W and set p,,. = mecu and d, = vm. Then, vp,,. =
d,cu, moreover wp,,. = 0 for all w € Ker(g), so pyy. is of rank 1.
Furthermore, if Mcu C R, then p,,. € R. Let wy,w,,...,w, € W.
Consider 0 # w € W. There exists 0 # ¢ € D such that Mcw C R and
Mcew; € R for all 1 <2 < n. On the other hand, there exist g, € R
such that (vihy)g; = (v2h2)g2 = -+ = (vuhn)gn # 0 by Lemma 1.14.
Set v = vihi1g;. Then, there exists a rank 1 element p = pyw. € R
and 0 # ¢ = d, € D such that vp = acw. Furthermore, there exist
Pi = Puww,e € Rand 0 # b = d, € D such that wp; = bew;. Set
[ =" higipp; and d = acbe. Then f € R, f is of rank at most n and
v, f =v;h;q;pp; = vpp; = acwp; = dw;. W

(It also can be deriven by applying Lemma 1.11 to drive that R contains
a rank 1 element, then to apply Theorem 2.1 and Corollary 3.7)

Theorem 2.10. Let R be a prime ring in which every left ideal is
principal. Then, R is isomorphic to a total matriz ring over a unital
Ore domain.

(See also [2, Lemma 4.11])

Proof. In the following, F, N, o and (L) are as those used in [3].
Since R is left Noetherian, R contains a uniform left ideal, moreover
R is nonsingular. Thus, by Theorem 2.5, there exist a division ring D
and a vector space W and R°” can be embbeded in End(pW) such that
Qmr(R?) = End(pW). By [3, Theorem 2.10], there exists a subspace
L with Codim(L) = 1 such that R? <; Homp(W, W), so E is a unital
left Ore domain by [3, Lemma 2.5]. We show that R = Mat,(F°?),
implying R = Mat,(F). Since every independent set of right ideals of
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R°P is finite, every independent set of right ideals of End(pW) is also
finite, thus, dim(W) < oco. Set n = dim(W). First, we show that
DN = W. Suppose v € W. Consider u € W — L and 0#£ g € RNI(L).
Since g(u) # 0, there exist 0 # b € D and f € R such that f(g(u)) = bv
by [3, Theorem 2.8]. Set h = fg and w = b~'v, then h(w) = v and
h € RN I(L). Thus, there exists a basis {uy,us,...,u,} C N for W.
Consider g; € RNI(L) such og R because otherwise there exist 0 # ¢ €
RNI(L) with gRNJ =0, that 0(¢;) = u;. J =31, ¢; R is an essential
right ideal implying that {u;, us,...,u,} U{c(g)} is independent which
is a contradiction. Hence, J contains a regular element g becaus R is
Noetherian. J = fR for some f € J, implying g = fh for some h € R.
Furthermore, there exist p; € R such that f = 32", ¢;p;. Since ¢ is
regular, f is also regular. On the other hand, there exist h; € R such
that g; = fhy, then f = 3", fhip;, implying 1 = 3", h;p;, moreover
h; € RNI(L) because f is one to one. Set v; = o(h;) Then, u; = o(g;) =
flo(h;)) = f(v;) € N. Thus, v; € N and {vy,vs,...,v,} is a basis for
W. Now let v € N. Then, v = 37 hi(pi(v)) = 37, u(pi(v))v; =
St ev;. Thus, {v1,v9,...,0,} is a basis for N as an E-module. There
exist e € F such that v; = ev; implying 1 = e € F. Now suppose
q € End(pW) such that ¢(N) C N. Then, ¢ = 3./, ¢hip; € R because
it is easy to see that gh; € R. Thus, by [3, Lemma 2.7], R = {q €
End(pW) | ¢(N)C N} = End(gN)= Mat,(ET). m

3. Some Quasi-primitive Rings and Derivations on Almost

Semiprimitive Rings

Theorem 3.1. If R be an almost primitive ring and p is a derivatioin of
R having only nilpotent values on the left ideal L of R, then Lu(L) =10
and p(L)* = 0.
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Proof. We may assume that R is a semi-dense subring of a full lin-
ear ring Fnd(pV'). Set M = Nep Ker(f). We show that p(L)(V) C M.
Let f € L. We show the following.

1. For every v € V, if f(v) =0, then p(f)(v)=0.

Suppose it is not so. There exist ¢ € L and 0 # d € D such that
gu(f)(v) = dv. Then, u(gf)(v) = plg)f(0) + gu(f)(v) = dv. On the
other hand, p(gf)* = 0 for some n > 1, which is a contradiction.

2. For every v € V., if f(v) € M, then p(f)(v) € M.

We have (L) f(0) = 0, p(Lf)(®) = 0 and u(LF)(0) = u(L)f(0) +
Lu(f)(v). Thus, Lu(f)(v) = 0. Therefore, u(f)(v) € M.

3. For every v € V, there exists a, € D such that u(f)(v) € a, f(v)+M.
Suppose it is not so. There exist v € V such that v ¢ Df(v) + M.
Then, pu(f)(v) ¢ M, so f(v) € M. Thus, u(f)(v) and f(v) are in-
dependent, moreover < p(f)(v), f(v) > NM = 0. Hence, there exists
0#de Dand g€ L such that gf(v) = 0 and gu(f)(v) = dv, implying
p(g) f(v) = 0 and p(gf)(v) = p(g) f(v) + gu(f)(v) = dv. On the other
hand, (g f)(v) = 0 which is a contradiction.

4. For every v,w € V,if f(v)+ M and f(w)+ M are independent, than
Ay = Gy .

Since ju(f)(v) € a, f(0)+ M, u £)(w) € ay f(w)+ M and u(f)(v+w) €
@y f(0 + w) + M, a, f(v) + @y f(w) = vy f(v + w) € M, implying
Ay = Gy .

5. If dim(f(V)/M) > 2 and v, w € V such that f(v), f(w) ¢ M, then
Ay = Gy .

It is clear for the case that f(v)+ M and f(w)+ M are independent by
(4). Otherwise, there exists u € V such that f(u) + M and f(v)+ M
are independent, implying a, = a,. Since f(u)+ M and f(w)+ M are
also independent, a,, = a,.

6. If dim(f(V)/M) > 2 and pu(f)" = 0, then for every v € V, either
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[7(v) € M or u(f)(v) € M.

Suppose v € V such that f*(v) ¢ M. There exist m; € M and
a € D such that u(f)(fi(v)) = af*(v) + m;. Then, u(f)*(v) =
p(f)laf(v) + my) € a®f*(v) + M. Continuing this process, we have
0=p(f)"(v) €af*(v) e M, implying a = 0. Therefore, u(f)(v) € M.
7. If dim(f(V)/M) = 1 and p(f)" = 0, then for every v € V, either
[7(v) € M or u(f)(v) € M.

It is clear for the case n = 1. So, let n > 2 and v € V such that
fM(v)¢g M. Set w= f(v). Then, w & M, so f(V)= Dw+ M, similarly
fw) ¢ M and f(V) = Df(w)+ M. There exist 0 # ¢ € D such that
fw) € aw+ M and b € D such that p(f)(w) € bf(w)+ M = baw + M.
Set ¢ = ba. Then, pu(f)*(w) € ®w + M. So, ¢ = 0, implying b = 0.
Thus, p(f)(w) € M. Set K = f~'(M). There exists d € D such
that f(v) € df(w) + M, implying v € dw + K. Since f(K) C M,
p(f)(K) C M. Therefore, u(f)(v) € M.

8. If u(f)" =0, then either f"(V) C M or u(f)(V)C M.

Set A={veV|u(f)(v)e M} and B={ve V| f*(v) € M}. Since
A and B are subgroups of Vand AU B =V, either A=V or B=V.

9. If there exists v € V such that f*(v) € M and f(v) € M, then
W(FV) € .

It is clear if f"(V) € M. Otherwise, set w = f(v). We claim that
v+ M and w+ M are independent. Suppose it is not so. There exists
a € D such that w4+ M = a(v+ M). Then, ther exists m € M such
that f(v) = av + m, implying f*(v) € a”v + M. Thus, ¢ = 0, imply-
ing f(v) € M which is a contradiction. Hencs, there exist ¢ € L and
0 # a,b € D such that g(v) = av and g(w) = bw. Since for every k > 1,
9" (w) & M and (f +g)"(w) & M, p(g)(V) C M and pu(f +g)(V) € M.
Therefore, pu(f)(V) C M

10. If there exists no v € V such that f*(v) € M and f(v) ¢ M, then
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V)< M.
It is clear if there exists no n > 1 such that f*(V) C M by (8). Other-

wise, f(V) C M. implying u(f)(V) C M by (2). m

Theorem 3.2. If R be an almost semiprimitive ring and p is a
derivatioin of R having only nilpotent values on the left ideal L of R,
then Lu(L) = 0.

Proof. The same proof of [4, Theorem 4] can be applied because,

in an almost semiprimitive ring, every nil left (right) ideal is zero. m

Lemma 3.3. Let R be a nonsingular prime ring and M a module.
If there exist a uniform left ideal K and a unifom right ideal L such that
LK #0# KM, then M is transitive.

Proof. (a;(M)NK)U(a,(L)NK)# K because otherwise @;(M )N
K = K or a,(L)N K = K which is impossible. So, there exists s is
a primitive element by Lemma 1.1, sR is uniform by Lemma 1.4 and
Lemma 1.6. s € K with Ls # 0 # sM. Consider ¢« € M with sa # 0.
Since On the other hand, 0 # saf(a;(a)) C skR. m

Lemma 3.4. Let R be a ring, K a left ideal and M a faithfull and
cofaithfull module. If u,v € K such that a;(v) C a;(v) and Ru is a
transitive module, then there exist f,g € Homg(K, M) and a € R such

that f(au) = g(av) # 0.

Proof. Consider a,s € R such that sa®(a;(au)) is a uniform right
ideal, then sau # 0. Since sav € saf(a,(av)) C saf(a,(au)) and
sau € saf(a;(au)), there exist k,I € R such that sauk = savl # 0,
then there exists m € M with saukm # 0. Set ¢ = km and d = Im.
Consider f,g € Homg(K, M) given by f(z) = xc and g(z) = zd. Then,
flazsau) = xsauc = zsavd = g(xsav) for all # € R. On the other hand,
there exists b € R such that f(bsau) = g(bsav)# 0. m
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Corollary 3.5. Let R be a nonsingular prime ring containing a
uniform left ideal and a uniform right ideal, then every left ideal is a

total module.

Lemma 3.6. Let R be a nonsingular prime ring. Then, every uni-

form left ideal is compressible.

Corollary 3.7. Every nonsingular prime ring containing a uniform
left ideal and a uniform right ideal, is quasi-primitive and almost prim-
itive.

Proof. Let M be a uniform left ideal and 0 # N C M a left ideal.

There exists n € N with Mn # 0. Consider f € Homg(M, N) given by
flz)=2an.m
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