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Abstract: The aim of this paper is to introduce a new method
for solving optimal shape problems which are defined with re-
spect to a pair of geometrical elements.The problem is to find the
optimal domain for a given functional that is involved with the
solution of a linear or nonlinear elliptic equation with a bound-
ary condition over a domain. By transferring the problem into
a measure-theoretical form the shape-measure method, in Carte-
sian coordinates, will be used to find the optimal solution in two
steps. First we will find the solution of the elliptic problem for a
given domain by using the embedding method. Then the Shape-
Measure method will be applied to find the optimal solution.
Two examples are given for the linear and nonlinear cases of the

elliptic problem.
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1. Introduction

Consider the optimal shape (OS) or optimal shape design (OSD) prob-
lems in which they are defined with respect to a pair of geometrical
elements; this pair conists in a measurable set (in R?), which can be
regarded as a domain, and a simple closed curve containing a given
point, which is the boundary of the set. Based on the simple property
of curves, the related OSD problem depends on the geometry which is
used. We solved the appropriate OS in [2] by introducing shape-measure
method in Polar coordinates. But in Cartesian coordinates, it is diffi-
cult to introduce a linear condition which determines the property of a
closed curve being simple; thus in this paper we consider those measur-
able sets D which its boundary consists in a variable part I' and a fixed

part between two given points, to be sure it is simple.

This paper deals with solving an OS or OSD problem with a fixed
control, which is to find the optimal domain like D for a given function,
I, that is involved with the solution of a linear or nonlinear elliptic par-
tial differential equation with a boundary condition over D. The process
of solution is achieved in two stages. First for a fixed domain, by using
the idea of approximating a curve by broken lines, I' can be determined
with fixed number of M points. Then D, any integral on D and the
variational form of elliptic equations can be considered as a function
of M variables. By means of a well-known process of embedding, we
transfer the problem into a measure-theoretical one. The history of this
idea can be found, for instance, in [2] and [10]. Then we enlarge the
underlying space to reach an infinite linear system of equations that the
unknown is a measure. By the use of total sets and putting an appro-
priate discretization, one can approximate the solution of the problem
with the solution of a finite linear system of equations. Hence the value
of I is calculated as a function of M variables for any given domain D.
In the second stage, considering the previous one, a vector function
J D € Dy — I(D) is set up. Using a standard minimization algo-
rithm on J, gives the minimizer domain; then Theorem 1, proves that
this minimizer, is the optimal solution for the problem. Finally, two
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examples for the linear and nonlinear cases of elliptic problem are given.

2. Problem

Let D C R? be a bounded domain with a piecewise-smooth, closed and
simple boundary dD. We assume that some part of 9D is fixed and
the rest, I', with the given initial and final points A and B respectively,
is not fixed. Here we suppose that the fixed part of D is made by
three segments, parts of lines y = 0,2 = 0 and y = 1 between points
A(1,0),(0,0),(0,1), B(1,1) (see Figure 1). For more general case, the
reader is advised to see [1]. Thus we choose an appropriate (variable)
curve I’ joining A and B, so that D is well-defined. Let X € D —
u(X) € R, that X = (z,y) € R? is a bounded solution of the following
elliptic partial differential equation with the boundary condition on the

domain D:
AU(X)—I_f(Xvu):U(X)v Ulsp =0, (1)

where X € D — v(X) € R is a bounded fixed control function; the
function f is assumed to be a bounded and continuous real-valued func-
tion in Lo(D xR). A domain D as above, is called an admissible domain
if the elliptic equation (1) has a bounded solution on D; we denote by
D as the set of all such admissible domains. We are going to solve the
problem of minimizing the functional I(D) = [, fo(X,u)dX, on the set
D where f, is a given continuous, nonnegative, real-valued function on
D x R. To calculate the value of I(D) for a given domain D, it is nec-
essary, first, to identify the solution of the partial differential equations

(1.

3. Weak Solution and Metamorphosis

In general, it is difficult and sometimes impossible to identify a clas-
sical solution for the problem like (1); thus usually one tries to find
a generalized or weak solution of them which is more applicable than
the classical one in some branches. In our method, especially when-
ever one wants to change the problem into a measure-theoretical form,
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this kind of solution is more appropriate. Hence the variational form
of the problem (1) is introduced in the following proposition. We re-
mind the reader that here HJ(D) = {¢ € HY(D) : ,, = 0}, where
HYD) = {h €Ly(D): 2e LQ(D),% € LQ(D)} is the Sobolev space

of order 1.

Proposition 1: Let u be the classical solution of (1), then we have
the following equality:

/D(umb +f)dX = /D Yo dX ; Vo € HA(D). 2)

Proof: Multiplying (1) by the function ¢» € Hi(D) and then inte-
grating over D, with use of the Green’s formula (see for instance [4])

gives:
Ou o
Jwavtwr—voyax = [ (i -uh)ds.
where n is the unit vector normal to the boundary 9D and directed
outward with respect to D. Because vy,, = 0 and u),, = 0, then (2) is

satisfied.O

Definition: A function v € H*(D)is called a bounded weak solution
of the problem (1) when it bounded and satisfies in the equality (2) for
all functions ¢ € Hy(D).

We remind the reader that conditions for the existence of the classical
and of the weak solution of the problem (1), and also other properties
of them such as boundedness and uniqueness, have been considered in
many references, like [4] and [3].

Now we can apply our Shape-Measure method for solving the problem.
The bounded weak solution can be represented by a positive Radon
measure. Hence instead of looking for the weak solution on the given
domain D, one prefers to seek for its related measure, defined on the
appropriate space. For the rest of the paper, we suppose Q@ = U X
D, where U C R is the smallest bounded set in which the bounded
weak solution u(-) takes values. By applying the Riesz Representation
Theorem [11], similar to the Proposition 3.1 in [2], one can prove the

following proposition.
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Proposition 2: Let u(X) be a bounded generalized solution of (1);

there exists a unique positive Radon measure, say i, in M*(82) so that:
ja(F) = / Fdu, :/ F(X,u)dX ; VF € C(9). (3)
Q D
Thus the equality (2) changes into the following:

pa(Fy) =7y 5 Vo€ Hy(D) (4)

where Fyy = uAvy + fip and vy = [, v dX. Also, I(D) = pu(fo).
Because the measure p, projects on the (x,y)-space as the respective
Lebesgue measure, we should have i, (§) = a;, where £ : @ — R depends
only on variable X (i.e. £ € C1(Q)), and a¢ is the Lebesgue integral of
& over D. Therefore the problem can be described as follows:

Find a measure p, € M*(Q) so that it satisfies the following con-
straints:

HU(F¢):7¢7 V¢GH&(D)§
fu(§) = ag, VE € Ci(). (5)

As Rubio did in [9], to be sure that we do not miss any solution, consider
a more general version of the problem by extending the underlying space;
instead of finding a y, € M*(Q), defined by Proposition 2, satisfying
equalities (5), we seek a measure p € MT(Q) which satisfies just the
conditions

W(Fy) =y, Ve Hy(D);
1) = ag, VE € C1(Q). (6)

Hence we have I(D) = p(f,). The system (6) is linear because all the
functions in the right-hand-side of equations are linear functions in their
argument . But the number of equations and the underlying space are
not finite.
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4. Approximation

We shall develop the system (6) by requiring that only a finite number of
the constraints are satisfied. This will be achieved by choosing countable
sets of functions whose linear combinations are dense in the appropriate
spaces. First we try to approximate the unknown part of the boundary,

I', just by the finite number of points.

Approximating 0D with broken lines: The idea of selecting a

finite set of points instead of the curve I', comes from the approximation
of a curve by broken lines. In general the curve 9D, and hence T, can
be regarded as an infinite set of points. More specifically, by applying
the density property, one can regard I' as a countable set. For the given
D and hence for the given I', let A,, = (@, Ym),m =0,1,2,..., M, be
a finite number of these points (we suppose Ay = A). We link together
each pair of consecutive points A, and A, for m =0,1,.... M — 1
and close this curve by joining the points A and B together. Now the
resulted shape, which is denoted by 0Dy, is an approximation for dD;
we also call Djy; to the domain which introduced by its boundary 0Dy,.
The domain Dy, is called a M-approzimated domain of D (domains
D, Dy and their boundaries are shown in Figure 1).

It is possible that by increasing the number of points, M, the curve
0Dy will become closer and closer (in the Euclidean metric) to the curve
0D, and hence one may conclude that the minimizer of I over Dy, if
one exists, tends to the minimizer of I over D, if one exists. In the
Appendix, we have explained some of the difficulties that arise. Thus,
we will fix the number of points (M) and look for the minimizer of I(D)
amongst all admissible Dy;’s.

Here we have actually 2M unknowns to determine, x1, x-, ..., Zyr,

Yis Y2y . ., Yxr. 1t would be more convenient if one, somehow, could re-
duce the number of unknowns, without losing the generality. For a
given positive integer M, let the value of the components vy, 4o, ..., Yar,
be fixed. Because z,, is a free term, the point A,, could be anywhere on
the line y = Y,,,, 2 > 0 for every m (see Figure 1). Therefore points A,,



Shape-measure method for solving.... 47

and A, can be chosen so that they belong to I' and hence the part of I'
between the lines y = Y,, and y = Y,,,11 can be approximated by the seg-
ment A,, A;p1 (especially whenever the number M is large). It means,
we do not lose generality. Thus, from now on, we fix the components
Yis Yoy« oo, Yor With the values Vi, Ys, ..., Y, respectively. Indeed the set
{Ay = (2, Ym),m=1,2,..., M}, which is called M-representation of
D, determines the M-approximation domain Dy;.

First set of functions: We are going to introduce the set
{p € H{(D):i=1,2,...} so that the linear combinations of the func-

tions ;s are uniformly dense - that is, dense in the topology of the uni-

form convergence - in the space Hy( D). We know that the vector space of
polynomials with the variable z and y, P(x,y), is dense in C*(D); there-
fore the set Py(z,y) = {p(z,y) € P(z,y) | pla,y) =0,Y(z,y) € ID}, is
dense (uniformly of course) in the following space:

{hec=(D):h,, =0} =C5(D).

Sotheset Q(z,y) = {1,z,y, 2% ay, y*, 23, 2%y, 2y, y>, ... } is a countable
base for the vector space P(z,y) and hence each elements of P(z,y)
and also Py(z,y), is a linear combination of the elements in Q(z,y).
By theorem 3 of Mikhailov [4] page 131, the space C*°(D) is dense in
HY(D); thus the space C5°(D) will be dense in Hi(D). Consequently,
the space Py(x,y) is uniformly dense in Hy(D). We define the function

1; for each 7 as:

Yi(e,y) =ayly— D) ] [(e — o +y— vw)a(z,y), (7)

-

1
-

where ¢; is an element of the countable set Q(z,y). Therefor . = 0
and the set {¢;(z,y):1=1,2,...},is total in HJ(D).

Second set of functions: Let I be a given positive integer number

and divide D into L (not necessary equal) parts Dy, Ds, ..., D, so that
by increasing L the area of each D,,s = 1,2,..., L, will be decreased.
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Then, for each s = 1,2,..., L, we define:

1 if (2,y) € D,

0 otherwise.

£y, u) = {

These functions are not continuous, but each of them is the limit
of an increasing sequence of positive continuous functions,{¢,, }; then if
p is any positive Radon measure on Q, pu(&) = limg_ o, p(&, ). Now
consider the set {§; : j = 1,2,...,1} of all such functions, for all positive
integer L. The linear combination of these functions can approximate a
function in C'1(2) arbitrary well (see [9] chapter 5).

As a result, the problem (6) can be replaced by another one in which we
are looking for the measure € M*(Q), so that it satisfies the following
constraints:

W) = a5 G=12. (8)

where F; = Fy, , v = vy, , @j = ag,. To approximate the system of
equations in (8) with a finite system of equations, first we choose a finite

number of equations as follows:

par o (F) = v, i=1,2,..., My;
finy 1, (&) = 4y, J=1,2,..., M,, (9)

where M, and M, are two positive integers. If we denote by Q(M,, M)
the set of positive Radon measures in M™* () which satisfy equalities
(6), and also denote by () the set of positive Radon measures in M*(Q)
which satisfy equalities (6), by regarding the property of the total sets
one can easily prove the following Proposition by considering the proof
of Proposition I17.1 in [9].

Proposition 3: If My, My — oo; then Q(M,, My) — Q, hence
for the large enough numbers M, and M, the set () can be identified by
Q(Mlv MZ)
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But even if the number of equations in (6) is finite, the underlying
space Q(M,, M) is still infinite-dimensional. It is possible to define a
finite linear system whose solutions can be used to approximate that for

(6).

Discritization: By a result of Rosenbloom [8], which was proved in

Theorem A.5 Appendix in [9], that gy, ar, in (6) can be characterized
as fan, M, = ZHMIII"MQ a,6(7Z,), with triples Z,, € @ and the coefficients
a, > 0forn=1,2,..., My + M,, where 6(z) € M*(£) is supposed to be
a unitary atomic measure with support the singleton set {z}. This struc-
tural result points the way toward a further approximation scheme; the
measure problem is equivalent to a nonlinear one in which the unknowns
are the coefficients «,, and supports {7, }. It would be more convenient
if one could find the solution only with respect to the coefficients «,;
this would be a finite linear system of equations (a type of linear pro-
gramming problem). The answer lies in approximating this support, by
introducing a set dense in Q. Proposition I11.3 of [9] Chapter 3, states
that the measure jiyy, pr, has the following form

N
Mnry vy = Zané(Z”)7 (10)
n=1

where Z,,n = 1,2,..., N, belongs to a dense subset of {}.

Now let put a discretization on Q, with the nodes 7, = (2., Yn, tn ),
in a dense subset of Q; then we can set up the following linear system

in which the unknowns are the coefficients «,,:

a, > 0, n=12,....,N;
N
ZanE(Zn) =% 1= 1727"'7M1;
n=1

N
o wn(Zy)=a;,  j=1,2,..., M. (11)
n=1

We remind the reader that the solution of (11) is not necessary
unique, (even if the problem (1) satisfies the necessary conditions for
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having a unique bounded weak solution, because of the approximation
schame. Fach solution introduces a measure pyy, a7, via the equality (10)
which has the same properties (approximately) as the measure p,,, the
representative measure for the weak solution u(X ). Indeed we achieve
an approximate solution for the elliptic problem in the given domain
D. Therefore we are able to calculate the value of I(D) for each given
domain D. In the next, we shall explain how one can find the optimal
domain for the mentioned OS problem in Dy, by applying the above

results.

5. The optimal solution

The main aim of the present section is to find an optimal domain D* €
Dy so that the value of I(D*) will be the minimum on the set Dy,.
By applying the result of the previous section, a solution of (1) can be
found. This solution is approximated by a solution of the linear system
(11) according to the variables, z,,,m = 1,2,..., M. As mentioned, this
solution is not necessary unique. Let us to specify one of them for each
D; there are some possibilities, for example, by solving the following
linear programming problem, one may chose that one in which the value
of [, fo(X,u)dX (for a given D) is minimum according to the variables
a,,n=1,2,...,N:

N

Minimize : Z an fo(Zy)

n=1

Subject to : a, >0, n=1,2,...,N;

As a result, for each D, the value I(D) = [, fo(X,u)dX = p(f,) ~
par, m.(fo),1s defined uniquely in terms of the variables z,,,m = 1,2,..., M.
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So, we set up a function, J, on Dy, defined by
J:De¢ DM —_— I(D) = ,uMl’MQ(fO) € R, (13)

where ppr, a,(fo) = ZnN:1 ay, fo(Z,). By regarding the definition of M-
representation of D, clearly J is a function of the variables z, @4, ...,z

and hence can be regarded as a vector function:

J i (w, w0 o) €ERYM — iy (fo) €R. (14)

It is not possible in general to ascertain continuity properties of this
function (see for instance [6]); we can say, however, that, since this is a
real-valued function which is bounded below, and is defined on a compact
set (since constraints are to be put in the variables), it is possible to find
a sequence of points so that the value of the function along the sequence
tends to the (finite) infimum of the function. The coordinate values

corresponding to the points in the sequence are of course finite.

Now, suppose that (a7,25%,...,2%;) is the minimizer of the vector
function J; it can be identified by using one of the related minimization
methods (for instance the method introduced by Nelder and Mead, see
[12]and [5]). For this, one can apply standard Algorithms and Routines
(like AMOEBA [7] or EO4JAF-NAG Library Routine). The intro-
duced domain by the minimizer (z7,23,...,2%,) is denoted by D*. We
assume in the following theoretical result that the minimization algo-
rithm which is used, (such as AMOFEBA) is perfect; that is, it comes

out with the global minimum of J in its (compact) domain.

Theorem 1: Let M, M, and M, be the given positive integer num-
bers which were defined in section 4, and D* be the minimizer of (14)
as mentioned above. Then D* is the minimizer domain of the func-
tional I over Dy and the value of 1(D*) can be approximated by J(D*);
moreover J(D*) — I(D*) as My and M, tend to infinity.

Proof: Suppose D* is not the minimizer of I; hence there exists
a domain, call D', in Dy so that I(D’) < I(D*). Proposition 2 shows
that there is a unique measure, call i/, in M*(Q) so that I1(D") = p/(f,),
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and also Proposition 2 states that for suffliciently large numbers M; and
M, p'(f,) can be approximated by i}, 4, (fo) in Q(My, Ms). Thus,
I(D") = iy 4, (fo) = J(D'). In the same way, one can show that
J(D*) approximates I(D*); so I(D*) = pujy 4, (fo) = J(D*). Hence
J(D'") < J(D*). which is contrary with the fact that D* is the minimizer
of J. Moreover, from Proposition 2 it follows that J(D*) tends to I(D*)
as My, M; — oo. O

6. Numerical Examples

For the next two examples, we consider the elliptic equations (1) for
which the function v(z,y) (the fixed control function) is defined as:

(w,y)—{ 1 if (z,y)eDNC

0 otherwise,

where C' is the square [+, 3] x [

=,3] ( see Figure 2 ). We also take M = 8
and suppose Yi, Y, ..., Yg are 0.

(
15,0.25,...,0.85, respectively. By extra
constraints on x5, 23,...,%7, Ty > % = 2, 3,...,7, the valve of v, for

any D € Dy is deﬁned as

:/4/4¢i(x,y)dxdy; 1=1,2,..., M.

We also assume that the function u(-) takes value in the bounded
set U = [—1, 1] (one may obtain the set U by trial and error so as to be
sure that the appropriate finite linear system in (11) has a solution.

Our way to find an optimal domain is an iterative method. For
a given set of variables z; = Xi,25 = Xo,...,28 = Xg, we will set
up the linear system (11) and calculate the value of I(D) according
to the X,,’s. Then the standard minimization algorithm changes these
X1, Xs,...,Xs, to new ones for which the value of I(D) is supposed to
be less than previous; these new values introduce a new domain. Again,
in the next iteration, an appropriate linear system for the new domain
will be solved to calculate the value of I(D) and see whether I(D) is
smaller than the previous on in the former iteration or not. If the value
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is not smaller, the Algorithm changes the domain with the suitable one;
if it has been smaller, the Algorithm seeks again for the other domain
like D' € Dy with the smaller value of I(D’) than I(D). The iteration
will be stopped whenever the optimal domain is obtained; note that
we assume in this discussion that the standard minimization Algorithm
(AMOEBA) is qualified to obtain the global minimizer without any
restriction (see Appendix C of [1]).

6.1. Nods and Equations

To establish the linear system (11) it is necessary to put a discretization
on §2; because our method is iterative, the discretizations depends on the
values X1, Xo,..., Xg at each iteration. Thus, we select N = 740 nodes
Zn = (Zny Yn, Uy ) in Q, so that each component is a rational number;
hence these nodes belong to a dense subset of Q. Since v, = 0, for
each (z,,y,) € 0D, we should have Z,, = (2., y,,0). This fact has been
taken into account in the discretization by choosing 36 related nodes.
The rest of the nodes are related to the interior points of D. We consider
Zy = (Zn,Yn,u,) € D for n =364+88(: — 1)+ 11(j — 1) + k as

1+ 0.5)X,;
xn:%vynzifjvun:

ok — 1)
10

—1
that 1 <i<8,1<j<8,1<k<I1l.

To set up the mentioned linear system in (11) we select M; =
10 and M, = 8, and consider the polynomial ¢;(z,y) form the set
{1,2,y, 2% 2y, y* 2°, 2%y, zy*, v*}. Also the domain D is divided into 8
parts, say Dy, Do, ..., Dg, as follows: D, is the region of DD between the
lines y = 0 and y = 0.2 (O Aey0, in Figure 2), D, is the region of D be-
tween the lines y = 0.2 and y = 0.3 (0,€1€504 in Figure 2), and similarly
D3, Dy, ..., Ds; we define Dg as the region of D between the lines y = 0.8
and y = 1 (0o7ezBFE in Figure 2), where z,, = %(Xl+1 - XD+ X501 =
1,2,...,7. Therefore a; = [, &(x,y)dX = areaof Dj,¥j=1,2,...,8.
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Hence in our case, the linear system (11) is

a, > 0, n=1,2,...,740;

740

S bi(Za)=, i=1,2,...,10;

n=1

740

S n&(Z)=a;,  j=1,2,...8. (15)
n=1

To find the nonnegative unknowns a,,’s we apply the F04M BF —
N AG Library Routine Document. The result shows a nonnegative value
for each a,,, n = 1,2,...,740, that satisfy the linear system. By applying
these values in (10), one can calculate the value of I(D) for a given
function f,, which is a function of the variables X, X»,..., Xg; thus we
have set up the function J in (14). By applying a standard minimization
algorithm on J, the optimal domain in Dy, is obtained. We remind the
reader that the functions F; and the values of v;, ¢ = 1,2,...,10, have
been calculated by the package “Maple V.5”.

6.2. Minimization

In minimization, we apply the Downhill Simplex Method in Multidimen-
sion by using the Subroutine AMOEBA (see [7]) with the conditions
X, >20,Xg>0and X,, > 0.75,m = 2,3,...,7; besides, we also con-
sider an upper bound for variables (suppose they are not higher than 2).
These conditions are applied by means of a penalty method to change
the constraint minimization problem into an unconstrainted one (for
instance see [12]).

To start, AMOF BA needs an initial value for variables X,,, when
m=1,2,...,8, (a given domain). At any iteration the new domain is
illustrated and the new value for J is calculated; comparing this value
with the previous one leads the algorithm to find a domain with a smaller
value. This procedure is repeating till the optimal domain is character-
ized.

In the next, two examples are given; one for the linear case and
the other for the nonlinear case of the elliptic equation. We chose the
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function f, as f, = (u — 0.1)%, this function, indeed, can be considered
as a distribution of heat in the surface for the system governed by an

elliptic equations.

6.3. Example 1

In the linear case defined by the partial differential equations (1) and
f(z,y,u) = 0, the function F; in (15)is F; = ulyy; ;1 = 1,2,...,10.
We used the initial values X,, = 1.0,m = 1,2,...,8, and the stopping
tolerance for the program (variable ftol in the Subroutine AMOFEBA)

has been chosen as 10~7. Here are the results:
e The optimal value of I = 0.70469099432415;
e The number of iterations = 827;

e The value of the variables in the final step:
X7 =1.033028, X5 = 1.390598, X3 = 1.422364, X, = 0.97706,
X5 =1.017410, X¢ = 0.958974, X» = 1.018387, Xg = 0.951333.

These values represent the optimal domain. The initial and the
final domain has been shown in the Figure 3, and also the alteration of
the objective function, according to the number of iterations, has been

plotted in the Figure 4.

6.4. Example 2

For the nonlinear case of the partial differential equations (1), we have
taken f(z,y,u)= 0.25u?, and used the same initial values and stopping

tolerance as Frxample 1. The obtained results are:
e The optimal value of I = 0.45467920356379;
e The number of iterations = 502;

e The value of the variables in the final step:
X, =1.050197, X, = 1.085212, X3 = 0.750001, X, = 0.768701,
X5 = 1.129861, Xs = 1.137751, X7 = 0.977838, Xg = 1.615668,
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which represent the optimal domain, shown in the Figure 5. Also the

change of the objective function, according to the number of iterations,

has been plotted in the Figure 6.
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7. Appendix
Why Dy, instead of D?

Based on the approximation of a closed and simple curve in R? by a
set of broken lines, we decided to consider Dj; as the underlying space
in which the minimization takes place. Indeed we approximated the
variable part of any domain D € Dy, ', by M number of segments
(in other words by M + 1 corners). As M — oo, if an appropriate
optimal shape design problem in Dy, has a minimizer, then this may
tend in some topology to the minimizer over D if such exists. However
things can go wrong; for instance: There may be no minimizer over Dy,
there may be no minimizer over D (or both D and Dy, ), the sequence of
minimizer over Dy, may not be convergent or may tend in some sense
towards a curve that does not define a shape.

On the other hand, let D}, € Dy be the optimal solution of the ap-
propriate problem over Dy, and 73, € M*(w) be the optimal measure
which represents the boundary of D%, (0D3,); then because M*(w) is
compact, the sequence {nj,}3,_, and hence {9D},}5,_,, have a conver-
gent subsequence even they are not convergent. Young in [13] has shown
that their related subsequences of broken lines, tends to an infinitesimal
zigzag (generalized curve). This is not (necessarily) an admissible curve
(see [13] Chapter VI). So the solution over Dy does not tend to the
solution over D, even in the weakly*-sense. Also, there is the important
point that too oscillatory boundaries (like the infinitesimal zigzag) some-
times cause problem; Pironneau in [6] shows some of these problems.

So, we prefer to fix the number of M in this paper, and search for
the optimal solution of the appropriate optimal shape design problems

over Dyy.



H8 A. Fakharzadeh J. and J. E. Rubio

8. Figures

Figure 1: D and 0D in the defined assumption.
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Figure 2: An admissible domain D under the assumptions of the

numerical work
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Figure 3: The initial and the optimal domain for the linear case of

elliptic equation.
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Figure 4: Changes of the objective function according to iterations

in the linear case.
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Figure 5: The initial and the optimal domain for nonlinear case of

elliptic equations.
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Figure 6: Changes of the objective function according to iterations

in the nonlinear case.



