Bulletin of the Iranian Mathematical Society Vol. 32 No. 2 (2006), pp 43-51.

P-AMENABLE LOCALLY COMPACT HYPERGROUPS

R. A. KAMYABI-GOL

ABSTRACT. Let K be a locally compact hypergroup with left Haar measure and let $P^1(K) = \{f \in L^1(K) : f \ge 0, ||f||_1 = 1\}$. Then $P^1(K)$ is a topological semigroup under the convolution product of $L^1(K)$ induced in $P^1(K)$. We say that K is P-amenable if there exists a left invariant mean on $C(P^1(K))$, the space of all bounded continuous functions on $P^1(K)$. In this note, we consider the Pamenability of hypergroups. The P-amenability of hypergroup joins $K = H \lor J$ where H is a compact hypergroup and J is a discrete hypergroup with $H \cap J = \{e\}$ is characterized. It is also shown that Z-hypergroups are P-amenable if $Z(K) \cap G(K)$ is compact.

1. Introduction

Throughout this paper, we will consider hypergroups in the sense of [5], which will be referred to for basic definitions and results concerning hypergroups (see also [15] and [12]). We will follow the notations of [5] with the following exceptions:

- (i) By $x \mapsto \check{x}$ we denote the involution on the hypergroup K.
- (ii) For $(x \in K)$, δ_x is the Dirac measure concentrated at x.

MSC(2000): Primary 43A20; Secondary 46H05

Keywords: Hypergroup, Left invariant mean, Amenable, P-amenable, Hypergroup joins, Z-hypergroup, Strongly normal, Supernormal, Topological semigroup

Received: 21 August 2006 , Revised: 05 January 2007

 $[\]bigodot$ 2006 Iranian Mathematical Society.

⁴³

- (iii) 1_X will denote the characteristic function of the non-empty set X.
- (iv) For $A \subset K$ and $x \in K$, let A * x denote the subset $A * \{x\}$ in K.
- (v) For a locally compact Hausdorff space X, $C_{00}(X)$ denotes the set of all continuous functions with compact support on X.

Furthermore all hypergroups occurring in this paper are supposed to admit a (left) Haar measure λ (it is still unknown if an arbitrary hypergroup has a Haar measure but discrete, compact and commutative hypergroups possess a Haar measure [8]). In this case, one can define the convolution algebra $L^1(K)$ with multiplication

$$f * g(x) = \int_K f(x * y) g(\breve{y}) d\lambda(y) \qquad (\text{see } [5, \S 5.5])$$

for $f, g \in L^1(K)$. Let

$$P^{1}(K) = \{ f \in L^{1}(K) : f \ge 0, \|f\|_{1} = 1 \}.$$

Then $P^1(K)$ is a topological semigroup (a semigroup with jointly continuous multiplication and Huasdorff topology) under the convolution product in $L^1(K)$ equipped with the norm topology.

For a topological semigroup S, let $l^{\infty}(S)$ denote the space of all bounded real-valued functions on S with the sup norm. For $f \in S$ and $\theta \in l^{\infty}(S)$, let $_{f}\theta$ and θ_{f} denote, respectively, the *left* and the *right translation* of θ by f, i.e., $_{f}\theta(g) = \theta(fg)$ and $\theta_{f}(g) = \theta(gf), g \in S$. Let X be a closed subspace of $l^{\infty}(S)$ containing constants and invariant under translations. Then a linear functional $m \in X^{*}$ is called a *mean* if $||m|| = m(1_{S}) = 1$; m is called a *left invariant mean* [*right invariant mean*], denoted by LIM [RIM] if $m(_{f}\theta) = m(\theta) \quad [m(\theta_{f}) = m(\theta)]$ for all $f \in S, \quad \theta \in X$.

Let C(S) denote the space of all bounded continuous functions on Sand let $UC_r(S)$ denote the space of *left uniformly continuous* functions on S, i.e., all $F \in C(S)$ so that the mapping $f \mapsto {}_{f}F$ from S into C(S) is continuous when C(S) has the sup norm topology. Then both Banach spaces $UC_r(S)$ and C(S) are invariant under translations and contain the constant (see also [7] or [6]). We call S (*left*) amenable if there exists a LIM on C(S).

We say that a hypergroup K is P-*amenable* if $C(P^1(K))$ has a LIM. In this paper we initiate a study of P-amenable hypergroups and generalize

44

some of the results from [3]. Also among other things, we show that if H is a strongly normal sub-hypergroup (for a definition see section 2) of K, then K is P-amenable, which in turn implies that K//H (see section 2) is P-amenable. For the properties of strongly normal and normal sub-hypergroups one can consult with [15]. In particular, we show that the hypergroup joins $K = H \vee J$ (see section 2) is P-amenable if and only if J is P-amenable where H is a compact hypergroup and J is a discrete hypergroup with $H \cap J = \{e\}$ (see Corollary 2.12) and a central hypergroup (see 2.13) is P-amenable if $Z(K) \cap G(K)$ (see 2.13) is compact (see 2.14).

2. P-amenable hypergroups

We start this section by recalling the definition of hypergroup joins which we use very often in this paper.

Let H be a compact hypergroup and J a discrete hypergroup with $H \cap J = \{e\}$, where e is the identity of both hypergroups. Let $H \cup J$ have the unique topology for which both H and J are closed subspaces of K. Let σ be the normalized Haar measure on H. Define the operation \bullet on K as follows:

- (i) If $s, t \in H$, then $\delta_s \bullet \delta_t = \delta_s * \delta_t$;
- (ii) If $a, b \in J$, $a \neq \check{b}$, then $\delta_a \bullet \delta_b = \delta_a * \delta_b$;
- (iii) If $s \in H$, $a \in J$ $(a \neq e)$, then $\delta_s \bullet \delta_a = \delta_a \bullet \delta_s = \delta_a$;
- (iv) If $a \in J$, $a \neq e$, and $\delta_{\check{a}} * \delta_a = \sum_{b \in J} c_b \delta_b$, where c_b 's are non-negative, only finitely many of them are non-zero and $\sum_{b \in J} c_b = 1$, then

$$\delta_{\check{a}} \bullet \delta_a = c_e \sigma + \sum_{b \in J \setminus \{e\}} c_b \delta_b.$$

We call the hypergroup K the hypergroup joins of H and J, and write $K = H \lor J$. Observe that H is a sub-hypergroup of K, but J is not a sub-hypergroup unless J or H is equal to $\{e\}$. The hypergroup joins always has a left Haar measure [17, Proposition 1.1] and $K//H \cong J$ as hypergroups [17, Proposition 1.3]. Let H be a compact sub-hypergroup of K with the normalized Haar measure σ . As shown in [5, §14] the double coset space $K//H = \{H * x * H : x \in K\}$ is a hypergroup with convolution defined by

$$\int_{K//H} f \, d\delta_{H*x*H} * \delta_{H*y*H} = \int_K f \circ \pi \, d\delta_x * \sigma * \delta_y,$$

for all positive Borel measurable functions f on K//H where π is the canonical projection of K onto K//H. A Haar measure on K//H is given by $\dot{\lambda} = \int_K \delta_{H*x*H} dx$. By [5, 14.2H] the Haar measure $\dot{\lambda}$ on K//H can be so chosen that

$$\int_{K//H} \int_{K} f \, d\sigma * \delta_{x} * \sigma \, d\dot{\lambda}(\dot{x}) = \int_{K} f \, dx.$$
(2.1)

Let T_H be the mapping defined by $T_H f(H * x * H) = \int_K f \, d\sigma * \delta_x * \sigma$ for $f \in L^1(K)$. Then as shown in [9, Theorem 2.4.(ii)], T_H is a bounded linear map of $L^1(K)$ onto $L^1(K//H)$ with norm 1.

A compact sub-hypergroup H of a locally compact hypergroup K is called *strongly normal* if $\delta_x * \sigma = \sigma * \delta_x$ for all $x \in K$ where σ is the normalized Haar measure of H. In this case, we have x * H = H * x =H * x * H for each $x \in K$ and (1) takes the form

$$\int_{K/H} \int_{H} f(x * \xi) \, d\sigma(\xi) \, d\dot{\lambda}(\dot{x}) = \int_{K} f(x) \, d\lambda(x).$$

Moreover, T_H is an algebra homomorphism [9, Theorem 2.4(iv)]. For example, in the hypergroup joins $K = H \vee J$, where H is a compact hypergroup and J a discrete hypergroup with $H \cap J = \{e\}, H$ is strongly normal in K [17, Proposition 1.2].

Definition 2.1. A hypergroup K is called P-amenable if $P^1(K)$ as a topological semigroup is left amenable.

Example 2.2. (a) Every abelian hypergroup K is P-amenable. Indeed if K is abelian, then so is $P^1(K)$ and we know that every abelian topological semigroup is left amenable (see [16] and [2]).

(b) Every compact hypergroup K is P-amenable. To see this, first note that if K is compact then $1_K \in P^1(K)$. Let m be defined on $l^{\infty}(P^1(K))$ by $m(F) = F(1_K)$, for all $F \in l^{\infty}(P^1(K))$. Then m is a LIM on $l^{\infty}(P^1(K))$. Indeed, it is clear that m is a mean on $l^{\infty}(P^1(K))$. Now by using the fact that $f * 1_K = 1_K$ for all $f \in P^1(K)$, one can see easily that m is left invariant on $l^{\infty}(P^1(K))$. This implies that K is P-amenable.

Theorem 2.3. Let H be a strongly normal sub-hypergroup of K. Then if K is P-amenable, so is K//H.

Proof. Let m be a LIM on $C(P^1(K))$. Define $\bar{m} : C(P^1(K//H)) \to \mathbb{R}$ by $\bar{m}(F) = m(\bar{F})$, $(F \in C(P^1(K//H)))$, where $\bar{F} : P^1(K) \to \mathbb{R}$ is defined by $\bar{F}(f) = F(T_H f)$ for $f \in P^1(K)$. Then clearly \bar{F} is a bounded continuous function and \bar{m} is a mean on $C(P^1(K//H))$. Indeed, it is easy to check that \bar{m} is linear and positive. Furthermore, for $F = 1_{P^1(K//H)}$, one can see that $\bar{F} = 1_{P^1(K)}$ (see [4, Lemma 1.1 and Remark 1.5]), hence

$$\bar{m}(F) = m(\bar{F}) = 1.$$

If $g \in P^1(K//H)$, then there exists $f \in P^1(K)$ such that $T_H f = g$ (see [4, Lemma 1.1] and [9, Theorem 2.4]). Now observe that for $h \in P^1(K)$,

$$(_{g}F)(h) = _{g}F(T_{H}h) = F(g * T_{H}h) = F(T_{H}f * T_{H}h) = F(T_{H}(f * h)) = \bar{F}(f * h) = _{f}(\bar{F})(h).$$

So $(_g F \overline{)} = _f(\overline{F})$. Hence

$$\langle \bar{m}, {}_{g}F \rangle = \langle m, ({}_{g}F\bar{)} \rangle = \langle m, {}_{f}(\bar{F}) \rangle = \langle m, \bar{F} \rangle = \langle \bar{m}, F \rangle.$$

Consequently \overline{m} is a LIM on $C(P^{1}(K//H))$.

Definition 2.4. Let
$$H$$
 be a sub-hypergroup of K . We say that H is supernormal in K if $\check{x} * H * x \subseteq H$. As an example, in hypergroup joins $K = H \lor G$, where H is a compact hypergroup and G is any discrete group with $H \cap G = \{e\}, H$ is supernormal.

Note that if H is a supernormal sub-hypergroup in K, then it is also strongly normal but the converse is not true in general. In fact, $\{e\}$ (e the identity element of K) is supernormal in K if and only if K is a group. Also when H is a supernormal sub-hypergroup, we have K//H = K/H[1, p. 549]. In this case K/H is a group under the convolution

$$\int f \, d\delta_{x*H} * \delta_{y*H} = \int f \circ \pi \, d\delta_x * \delta_y = \int_H f \circ \pi(x*t*y) \, d\lambda(t),$$

for all $f \in C_{00}(K/H)$, $x, y \in K$, where π is the canonical map of K onto K/H (see [18, Theorem 2.1]).

Corollary 2.5. Let K be a P-amenable hypergroup and H a compact supernormal sub-hypergroup in K. Then K/H is P-amenable.

Proof. This can be concluded from the fact that any super-normal sub-hypergroup is strongly normal, and an application of Theorem 2.3. \Box

Definition 2.6. A subgroup N of a locally compact hypergroup K is called *normal* if xN = Nx for all $x \in K$. In this case K/N is a hypergroup with convolution defined by $\int_{K/N} f \, d\delta_{xN} * \delta_{yN} = \int_N f \circ \pi d\delta_x * \delta_y$ for all $x, y \in K$ and $f \in C_{00}(K/N)$ (see [4, p 84]).

Note that any compact normal subgroup N of a hypergroup K is strongly normal because, xN = Nx = NxN, for all $x \in K$.

Corollary 2.7. Let N be a compact normal subgroup of a locally compact hypergroup K. If K is P-amenable then so is K/N.

In order to prove the next theorem, we first need to prove the following Lemma.

Lemma 2.8. Let S be a topological semigroup and I a non-void left ideal of S. If there exists a left invariant mean on $l^{\infty}(I)$ then there exists a left invariant mean on $l^{\infty}(S)$.

Proof. We choose $b \in I$ to be a fixed element. For $f \in l^{\infty}(S)$, let $f' = ({}_{b}f)|_{I}$; then $f' \in l^{\infty}(I)$. Since I is a left ideal of S, for any $a \in S$, we have $ab \in I$. Also for $x \in I$ we establish the following:

$$(_{a}f)'(x) = (_{b}(af))(x) = f(abx) = _{(ab)}f(x).$$

Now for a left invariant mean m on $l^{\infty}(I)$ we have

$$m((_{a}f)') = m(_{(ab)}(f|_{I})) = m((_{b}f)|_{I}) = m(f').$$

At this point we define n(f) = m(f') for $f \in l^{\infty}(S)$. From this definition we conclude that n is a mean on $l^{\infty}(S)$ and $n(_af) = n(f)$, for all $f \in l^{\infty}(S)$ and $a \in S$.

Theorem 2.9. Let H be a strongly normal compact sub-hypergroup in hypergroup K. If there exists a left invariant mean on $l^{\infty}(P^1(K/H))$, then there exists a left invariant mean on $l^{\infty}(P^1(K))$.

Proof. Let *I* denote the set of all elements f in $P^1(K)$ which are constant on the cosets. Then *I* is a left ideal in $P^1(K)$, i.e., $P^1(K) * I \subseteq I$. Indeed, for $f \in I$ and $g \in P^1(K)$ we have

$$g*f(x) = \int_K g(x*y)f(\check{y})dy = \int_K g(x*h*y)f(\check{y}*\check{h})dy = \int_K g(x*h*y)f(\check{y}*\check{h})dy = \int_K g(x*h*y)f(\check{y}*\check{h})dy$$

$$= \int_K g(x * h * y) f(\check{y}) dy = g * f(x * h).$$

Then by Theorem 2.4 in [9], $I \neq \emptyset$. According to Lemma 2.8 it is enough to prove that there exists a left invariant mean on $l^{\infty}(I)$. Let θ be a real valued function on I. Define

$$\bar{\theta}: P^1(K/H) \to I\!\!R$$

by
$$\bar{\theta}(\bar{f}) = \theta(\bar{f} \circ \pi_H),$$

where $\pi_H : K \to K/H$ is the canonical map (see [5, §14.1]). Then by Theorem 2.4(i) in [9], $\bar{f} \circ \pi_H \in P^1(K)$ is constant on cosets and therefore it belongs to I. Hence, $\bar{\theta}$ is well defined. Let \bar{m} be a LIM on $l^{\infty}(P^1(K/H))$ and define a linear functional m on $l^{\infty}(I)$ by $\langle m, \theta \rangle =$ $\langle \bar{m}, \bar{\theta} \rangle$. Then m is a mean on $l^{\infty}(I)$. Note that if $f \in I$, then $f = \bar{f} \circ \pi_H$ for some $\bar{f} \in P^1(K/H)$ (by definition of I). Now, by Theorem 2.4(i(c)) in [9], we have $(f\theta) = \bar{f}\theta$. In fact for any $\bar{g} \in P^1(K/H)$,

$$(f\theta)(\bar{g}) = f\theta(\bar{g} \circ \pi_H) = \theta(f * \bar{g} \circ \pi_H) = \theta(f \circ \pi_H * \bar{g} \circ \pi_H) = \\ = \theta((\bar{f} * \bar{g}) \circ \pi_H) = \bar{\theta}(\bar{f} * \bar{g}) = f\bar{\theta}(\bar{g}).$$

Hence

$$\langle m, {}_{f}\theta \rangle = \langle \bar{m}, ({}_{f}\theta \bar{)} \rangle = \langle \bar{m}, {}_{\bar{f}}\bar{\theta} \rangle = \langle \bar{m}, \bar{\theta} \rangle = \langle m, \theta \rangle,$$
 for any $f \in I$, i.e., m is a LIM on $l^{\infty}(I)$.

Remark 2.10. Since a compact normal subgroup of a hypergroup is strongly normal (see Definition 2.6) and more generally each compact normal sub-hypergroup is strongly normal, the statement in Theorem 2.9 holds for normal subgroups and compact normal sub-hypergroups (see also Lemma 1.5 in [15]).

The following example shows that we can not remove the condition 'strongly normal' in Theorem 2.9.

Example 2.11. Let $SL(2, \mathbb{R})$ be the locally compact group (with the usual topology) of 2×2 matrices with determinant 1 and let SO(2) be the compact subgroup of unitary matrices in $SL(2, \mathbb{R})$. Then $SL(2, \mathbb{R})$ contains the discrete (closed) free subgroup F_2 on two generators [10, Corollary 14.6], so by corollary 2.3 in [3], it is not P-amenable. But

the hypergroup $SL(2, \mathbb{R})/SO(2)$ is commutative [5, 15.5] and hence P-amenable.

The following Corollary shows that there are non-compact, non-abelian P-amenable hypergroups.

Corollary 2.12. Let $K = H \lor J$ be a hypergroup joins, where H is a compact hypergroup and J a discrete hypergroup with $H \cap J = \{e\}$. Then K is P-amenable if and only if J is P-amenable.

Proof. We know that $K//H \cong J$ (see [17, Proposition 1.3]) and H is strongly normal compact sub-hypergroup of K [17, Proposition 1.2]. Now by Theorems 2.3 and 2.9, we are done.

Definition 2.13. Let K be a hypergroup, and let $Z(K) = \{x \in K : \delta_y * \delta_x = \delta_x * \delta_y \text{ for each } y \in K\}$. Then K is called a *central hypergroup* or Z-hypergroup if $K/(Z(K) \cap G(K))$ is compact where $G(K) = \{x \in K : \delta_x * \delta_{\tilde{x}} = \delta_e\}$ is the maximal subgroup of K [4]. Central hypergroups admit left Haar measures and are unimodular (see [4, p. 93] and [11, §4]).

Corollary 2.14. Any central hypergroup K (Z-hypergroup) is P-amenable if $Z(K) \cap G(K)$ is compact.

Proof. It follows from Example 2.2 (b) and Theorem 2.9.

Acknowledgements

The author would like to express his sincere thanks to the referee for his/her valuable comments and useful suggestions, specially for pointing out Remark 2.10.

References

- W. R. Bloom, Convergence of convolution products of probability measures on hypergroups, *Rend. Mat.* 2 (1982), 547-563.
- M. M. Day, Ergodic theorems for abelian semigroups, Trans. Amer. Math. Soc. 51 (1942), 583-608.
- [3] S. Ganesan, P-amenable locally compact groups, Monatsh Math. 101 (1986), 301-308.
- [4] W. Hauenschild, E. Kaniuth and A. Kumar, Harmonic analysis on centeral hypergroups and induced representations, *Pacific J. Math.* **110** (1984), 83-112.

- R. I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), 1-101.
- [6] R. A. Kamyabi-Gol, The Topological Center of $L_1(K)^{**}$, Scientiae Mathematicae Japonicae, e-2005, 213-221.
- [7] R. A. Kamyabi-Gol, The topological center of $UC_r(K)^*$, submitted.
- [8] R. A. Kamyabi-Gol, A short proof for the existence of Haar measure on commutative hypergroups, *Journal of Sciences, Islamic Republic of Iran* 13 (3) (2002), 263-265.
- [9] A. Kumar and A. J. Singh, Spectral synthesis in products and quotients of hypergroups, *Pacific J. Math.* 94 (1981), 177-192.
- [10] J. P. Pier, Amenable Locally Compact Groups, John Wiley & Sons, New York, 1984.
- [11] K. A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc. 243 (1978), 251-269.
- [12] K. A. Ross, Hypergroups and centers of measure algebras, Ist. Naz. di Alta Mat., Symposia Math. 22 (1977), 189-203.
- [13] M. Skantharajah, Amenable Hypergroups, Doctoral Thesis, University of Alberta, (1989).
- [14] M. Skantharajah, Amenable hypergroups, Ill.J. Math. 36 (1992), 15-46.
- [15] M. Voit, Properties of sub-hypergroups, Semigroup Forum 56 (1997), 373-391.
- [16] J. Von Neumann, Zur allgemeinen theorie des MaBes, Fund. Math. 13 (1929), 73-116.
- [17] R. C. Vrem, Hypergroup joins and their dual objects, Pacific J. Math. 111 (1984), 483-495.
- [18] R. C. Vrem, Connectivity and supernormality results for hypergroups, Math. Z. 195 (1987), 419-428.

R. A. Kamyabi-Gol

Department of Mathematics Ferdowsi University of Mashhad P. O. Box 1159 Mashhad 91775, Iran Centere of Excellence in Analysis on Algebric Structures(CEAAS) e-mail: Kamyabi@ferdowsi.um.ac.ir