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P-AMENABLE LOCALLY COMPACT HYPERGROUPS

R. A. KAMYABI-GOL

Abstract. Let K be a locally compact hypergroup with left Haar
measure and let P 1(K) = {f ∈ L1(K) : f ≥ 0, ‖f‖1 = 1 }. Then
P 1(K) is a topological semigroup under the convolution product of
L1(K) induced in P 1(K). We say that K is P-amenable if there
exists a left invariant mean on C(P 1(K)), the space of all bounded
continuous functions on P 1(K). In this note, we consider the P-
amenability of hypergroups. The P-amenability of hypergroup joins
K = H ∨ J where H is a compact hypergroup and J is a discrete
hypergroup with H∩J = {e} is characterized. It is also shown that
Z-hypergroups are P-amenable if Z(K) ∩G(K) is compact.

1. Introduction

Throughout this paper, we will consider hypergroups in the sense of
[5], which will be referred to for basic definitions and results concerning
hypergroups (see also [15] and [12]). We will follow the notations of [5]
with the following exceptions:

(i) By x 7−→ x̆ we denote the involution on the hypergroup K.

(ii) For (x ∈ K), δx is the Dirac measure concentrated at x.
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(iii) 1X will denote the characteristic function of the non-empty set
X.

(iv) For A ⊂ K and x ∈ K, let A ∗x denote the subset A ∗ {x} in K.

(v) For a locally compact Hausdorff space X, C00(X) denotes the
set of all continuous functions with compact support on X.

Furthermore all hypergroups occurring in this paper are supposed to
admit a (left) Haar measure λ (it is still unknown if an arbitrary hy-
pergroup has a Haar measure but discrete, compact and commutative
hypergroups possess a Haar measure [8]). In this case, one can define
the convolution algebra L1(K) with multiplication

f ∗ g(x) =
∫

K
f(x ∗ y) g(y̆) dλ(y) (see [5, §5.5])

for f, g ∈ L1(K). Let

P 1(K) = {f ∈ L1(K) : f ≥ 0, ‖f‖1 = 1}.

Then P 1(K) is a topological semigroup (a semigroup with jointly con-
tinuous multiplication and Huasdorff topology) under the convolution
product in L1(K) equipped with the norm topology.

For a topological semigroup S, let l∞(S) denote the space of all
bounded real-valued functions on S with the sup norm. For f ∈ S
and θ ∈ l∞(S), let fθ and θf denote, respectively, the left and the right
translation of θ by f, i.e., fθ(g) = θ(fg) and θf (g) = θ(gf), g ∈ S.
Let X be a closed subspace of l∞(S) containing constants and invariant
under translations. Then a linear functional m ∈ X∗ is called a mean
if ‖m‖ = m(1S) = 1; m is called a left invariant mean [right invariant
mean], denoted by LIM [RIM] if m( fθ) = m(θ) [m(θf ) = m(θ)] for all
f ∈ S, θ ∈ X.

Let C(S) denote the space of all bounded continuous functions on S
and let UCr(S) denote the space of left uniformly continuous functions
on S, i.e., all F ∈ C(S) so that the mapping f 7−→ fF from S into
C(S) is continuous when C(S) has the sup norm topology. Then both
Banach spaces UCr(S) and C(S) are invariant under translations and
contain the constant (see also [7] or [6]). We call S (left) amenable if
there exists a LIM on C(S).

We say that a hypergroup K is P-amenable if C(P 1(K)) has a LIM. In
this paper we initiate a study of P-amenable hypergroups and generalize
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some of the results from [3]. Also among other things, we show that if
H is a strongly normal sub-hypergroup (for a definition see section 2) of
K, then K is P-amenable, which in turn implies that K//H (see section
2) is P-amenable. For the properties of strongly normal and normal
sub-hypergroups one can consult with [15]. In particular, we show that
the hypergroup joins K = H ∨ J (see section 2) is P-amenable if and
only if J is P-amenable where H is a compact hypergroup and J is a
discrete hypergroup with H ∩ J = {e} (see Corollary 2.12) and a cen-
tral hypergroup (see 2.13) is P-amenable if Z(K) ∩G(K) ( see 2.13) is
compact (see 2.14).

2. P-amenable hypergroups

We start this section by recalling the definition of hypergroup joins
which we use very often in this paper.

Let H be a compact hypergroup and J a discrete hypergroup with
H ∩ J = {e}, where e is the identity of both hypergroups. Let H ∪ J
have the unique topology for which both H and J are closed subspaces
of K. Let σ be the normalized Haar measure on H. Define the operation
• on K as follows:

(i) If s, t ∈ H, then δs • δt = δs ∗ δt;
(ii) If a, b ∈ J, a 6= b̆, then δa • δb = δa ∗ δb;
(iii) If s ∈ H, a ∈ J (a 6= e), then δs • δa = δa • δs = δa;
(iv) If a ∈ J, a 6= e, and δă ∗ δa = Σb∈Jcbδb, where cb’s are non-

negative, only finitely many of them are non-zero and Σb∈Jcb =
1, then

δă • δa = ceσ + Σb∈J\{e}cbδb.

We call the hypergroup K the hypergroup joins of H and J , and write
K = H ∨ J. Observe that H is a sub-hypergroup of K, but J is not
a sub-hypergroup unless J or H is equal to {e}. The hypergroup joins
always has a left Haar measure [17, Proposition 1.1] and K//H ∼= J as
hypergroups [17, Proposition 1.3]. Let H be a compact sub-hypergroup
of K with the normalized Haar measure σ. As shown in [5, §14] the
double coset space K//H = {H ∗ x ∗ H : x ∈ K} is a hypergroup with
convolution defined by∫

K//H
f dδH∗x∗H ∗ δH∗y∗H =

∫
K

f ◦ π dδx ∗ σ ∗ δy,
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for all positive Borel measurable functions f on K//H where π is the
canonical projection of K onto K//H. A Haar measure on K//H is
given by λ̇ =

∫
K δH∗x∗H dx. By [5, 14.2H] the Haar measure λ̇ on K//H

can be so chosen that∫
K//H

∫
K

f dσ ∗ δx ∗ σ dλ̇(ẋ) =
∫

K
f dx. (2.1)

Let TH be the mapping defined by THf(H ∗ x ∗H) =
∫
K f dσ ∗ δx ∗ σ

for f ∈ L1(K). Then as shown in [9, Theorem 2.4.(ii)], TH is a bounded
linear map of L1(K) onto L1(K//H) with norm 1.

A compact sub-hypergroup H of a locally compact hypergroup K is
called strongly normal if δx ∗ σ = σ ∗ δx for all x ∈ K where σ is the
normalized Haar measure of H. In this case, we have x ∗H = H ∗ x =
H ∗ x ∗H for each x ∈ K and (1) takes the form∫

K/H

∫
H

f(x ∗ ξ) dσ(ξ) dλ̇(ẋ) =
∫

K
f(x) dλ(x).

Moreover, TH is an algebra homomorphism [9, Theorem 2.4(iv)]. For
example, in the hypergroup joins K = H ∨ J, where H is a compact
hypergroup and J a discrete hypergroup with H ∩ J = {e}, H is
strongly normal in K [17, Proposition 1.2].

Definition 2.1. A hypergroup K is called P-amenable if P 1(K) as a
topological semigroup is left amenable.

Example 2.2. (a) Every abelian hypergroup K is P-amenable. Indeed
if K is abelian, then so is P 1(K) and we know that every abelian topo-
logical semigroup is left amenable (see [16] and [2]).

(b) Every compact hypergroup K is P-amenable. To see this, first
note that if K is compact then 1K ∈ P 1(K). Let m be defined on
l∞(P 1(K)) by m(F ) = F (1K), for all F ∈ l∞(P 1(K)). Then m is a
LIM on l∞(P 1(K)). Indeed, it is clear that m is a mean on l∞(P 1(K)).
Now by using the fact that f ∗ 1K = 1K for all f ∈ P 1(K), one can
see easily that m is left invariant on l∞(P 1(K)). This implies that K is
P-amenable.

Theorem 2.3. Let H be a strongly normal sub-hypergroup of K. Then
if K is P-amenable, so is K//H.
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Proof. Let m be a LIM on C(P 1(K)). Define m̄ : C(P 1(K//H)) → IR
by m̄(F ) = m(F̄ ), (F ∈ C(P 1(K//H))), where F̄ : P 1(K) → IR is
defined by F̄ (f) = F (THf) for f ∈ P 1(K). Then clearly F̄ is a bounded
continuous function and m̄ is a mean on C(P 1(K//H)). Indeed, it is easy
to check that m̄ is linear and positive. Furthermore, for F = 1P 1(K//H),
one can see that F̄ = 1P 1(K) (see [4, Lemma 1.1 and Remark 1.5]), hence

m̄(F ) = m(F̄ ) = 1.

If g ∈ P 1(K//H), then there exists f ∈ P 1(K) such that THf = g (see
[4, Lemma 1.1] and [9, Theorem 2.4]). Now observe that for h ∈ P 1(K),

( gF )̄(h) = gF (THh) = F (g ∗ THh) = F (THf ∗ THh) =
F (TH(f ∗ h)) = F̄ (f ∗ h) = f (F̄ )(h).

So ( gF )̄ = f (F̄ ). Hence

〈m̄, gF 〉 = 〈m, ( gF )̄〉 = 〈m, f (F̄ )〉 = 〈m, F̄ 〉 = 〈m̄, F 〉.

Consequently m̄ is a LIM on C(P 1(K//H)). �

Definition 2.4. Let H be a sub-hypergroup of K. We say that H is
supernormal in K if x̆ ∗H ∗ x ⊆ H. As an example, in hypergroup joins
K = H ∨ G, where H is a compact hypergroup and G is any discrete
group with H ∩G = {e}, H is supernormal.

Note that if H is a supernormal sub-hypergroup in K, then it is also
strongly normal but the converse is not true in general. In fact, {e} (e the
identity element of K) is supernormal in K if and only if K is a group.
Also when H is a supernormal sub-hypergroup, we have K//H = K/H
[1, p. 549]. In this case K/H is a group under the convolution∫

f dδx∗H ∗ δy∗H =
∫

f ◦ π dδx ∗ δy =
∫

H
f ◦ π(x ∗ t ∗ y) dλ(t),

for all f ∈ C00(K/H), x, y ∈ K, where π is the canonical map of K onto
K/H (see [18, Theorem 2.1]).

Corollary 2.5. Let K be a P-amenable hypergroup and H a compact
supernormal sub-hypergroup in K. Then K/H is P-amenable.

Proof. This can be concluded from the fact that any super-normal sub-
hypergroup is strongly normal, and an application of Theorem 2.3. �
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Definition 2.6. A subgroup N of a locally compact hypergroup K is
called normal if xN = Nx for all x ∈ K. In this case K/N is a hyper-
group with convolution defined by

∫
K/N f dδxN ∗ δyN =

∫
N f ◦ πdδx ∗ δy

for all x, y ∈ K and f ∈ C00(K/N) (see [4, p 84]).

Note that any compact normal subgroup N of a hypergroup K is
strongly normal because, xN = Nx = NxN, for all x ∈ K.

Corollary 2.7. Let N be a compact normal subgroup of a locally com-
pact hypergroup K. If K is P-amenable then so is K/N .

In order to prove the next theorem, we first need to prove the following
Lemma.

Lemma 2.8. Let S be a topological semigroup and I a non-void left
ideal of S. If there exists a left invariant mean on l∞(I) then there exists
a left invariant mean on l∞(S).

Proof. We choose b ∈ I to be a fixed element. For f ∈ l∞(S), let
f ′ = ( bf)|I ; then f ′ ∈ l∞(I). Since I is a left ideal of S, for any a ∈ S,
we have ab ∈ I. Also for x ∈ I we establish the following:

( af)′(x) = ( b( af))(x) = f(abx) = (ab)f(x).

Now for a left invariant mean m on l∞(I) we have

m(( af)′) = m( (ab)(f |I)) = m(( bf)|I) = m(f ′).

At this point we define n(f) = m(f ′) for f ∈ l∞(S). From this definition
we conclude that n is a mean on l∞(S) and n( af) = n(f), for all f ∈
l∞(S) and a ∈ S. �

Theorem 2.9. Let H be a strongly normal compact sub-hypergroup in
hypergroup K. If there exists a left invariant mean on l∞(P 1(K/H)),
then there exists a left invariant mean on l∞(P 1(K)).

Proof. Let I denote the set of all elements f in P 1(K) which are con-
stant on the cosets. Then I is a left ideal in P 1(K), i.e., P 1(K) ∗ I ⊆ I.
Indeed, for f ∈ I and g ∈ P 1(K) we have

g ∗ f(x) =
∫

K
g(x ∗ y)f(y̌)dy =

∫
K

g(x ∗ h ∗ y)f(y̌ ∗ ȟ)dy =
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=
∫

K
g(x ∗ h ∗ y)f(y̌)dy = g ∗ f(x ∗ h).

Then by Theorem 2.4 in [9], I 6= ∅. According to Lemma 2.8 it is enough
to prove that there exists a left invariant mean on l∞(I). Let θ be a real
valued function on I. Define

θ̄ : P 1(K/H) → IR

by

θ̄(f̄) = θ(f̄ ◦ πH),
where πH : K → K/H is the canonical map (see [5, §14.1]). Then
by Theorem 2.4(i) in [9], f̄ ◦ πH ∈ P 1(K) is constant on cosets and
therefore it belongs to I. Hence, θ̄ is well defined. Let m̄ be a LIM on
l∞(P 1(K/H)) and define a linear functional m on l∞(I) by 〈m, θ〉 =
〈m̄, θ̄〉. Then m is a mean on l∞(I). Note that if f ∈ I, then f = f̄ ◦ πH

for some f̄ ∈ P 1(K/H) (by definition of I). Now, by Theorem 2.4(i(c))
in [9], we have ( fθ)̄ = f̄ θ̄. In fact for any ḡ ∈ P 1(K/H),

( fθ)̄(ḡ) = fθ(ḡ ◦ πH) = θ(f ∗ ḡ ◦ πH) = θ(f̄ ◦ πH ∗ ḡ ◦ πH) =

= θ((f̄ ∗ ḡ) ◦ πH) = θ̄(f̄ ∗ ḡ) = f̄ θ̄(ḡ).

Hence
〈m, fθ〉 = 〈m̄, ( fθ)̄〉 = 〈m̄, f̄ θ̄〉 = 〈m̄, θ̄〉 = 〈m, θ〉,

for any f ∈ I, i.e., m is a LIM on l∞(I). �

Remark 2.10. Since a compact normal subgroup of a hypergroup is
strongly normal (see Definition 2.6) and more generally each compact
normal sub-hypergroup is strongly normal, the statement in Theorem
2.9 holds for normal subgroups and compact normal sub-hypergroups
(see also Lemma 1.5 in [15]).

The following example shows that we can not remove the condition
‘strongly normal’ in Theorem 2.9.

Example 2.11. Let SL(2, IR) be the locally compact group (with the
usual topology) of 2× 2 matrices with determinant 1 and let SO(2) be
the compact subgroup of unitary matrices in SL(2, IR). Then SL(2, IR)
contains the discrete (closed) free subgroup F2 on two generators [10,
Corollary 14.6], so by corollary 2.3 in [3], it is not P-amenable. But
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the hypergroup SL(2, IR)/SO(2) is commutative [5, 15.5] and hence P-
amenable.

The following Corollary shows that there are non-compact, non-abelian
P-amenable hypergroups.

Corollary 2.12. Let K = H ∨ J be a hypergroup joins, where H is
a compact hypergroup and J a discrete hypergroup with H ∩ J = {e}.
Then K is P-amenable if and only if J is P-amenable.

Proof. We know that K//H ∼= J (see [17, Proposition 1.3]) and H
is strongly normal compact sub-hypergroup of K [17, Proposition 1.2].
Now by Theorems 2.3 and 2.9, we are done. �

Definition 2.13. Let K be a hypergroup, and let Z(K) = {x ∈ K :
δy ∗ δx = δx ∗ δy for each y ∈ K}. Then K is called a central hypergroup
or Z-hypergroup if K/(Z(K) ∩ G(K)) is compact where G(K) = {x ∈
K : δx ∗δx̆ = δe} is the maximal subgroup of K [4]. Central hypergroups
admit left Haar measures and are unimodular (see [4, p. 93] and [11,
§4]).

Corollary 2.14. Any central hypergroup K (Z-hypergroup) is P-amenable
if Z(K) ∩G(K) is compact.

Proof. It follows from Example 2.2 (b) and Theorem 2.9. �
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